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Preface

This is the beginnings of a textbook for a 1-year course on real analysis; the current
version covers a semester and a half of material. This can be used as a 1-semester
course by omitting some of the topics marked in the text as

• ★: optional topic independent of the main text (referenced only in later starred
sections)

• ♦: content used in main text, but only to prove some supporting or readily-
believed fact: these arguments can be skipped or skimmed with little ill effect.

• ⊕: additional proof of a result which is proved by different (often cleaner)
means elsewhere

The sections ‘Elementary Functions’ present across the second half of the text are
self-contained and could be omitted from a course culminating with the Fundamental
Theorem of Calculus, but will be an integral part of the eventual year-long course.

If you enrolled in my Spring 2025 course the homework assignments are available
here.
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Troubles with the Infinite

Real analysis is born out of our desire to understand infinite processes, and to over-
come the difficulties raised by taking infinity seriously in this way. To appreciate this,
we begin with an overview of some famous results from antiquity, as well as several
paradoxes that arise from taking them seriously, if we are not careful.

The Diagonal of a Square

Around 3700 years ago, a babylonian student was assigned a homework problem, and
their work (in clay) fortuitously survived until the modern day.

Figure 1.: Tablet YBC-7289

The problem involved measuring the length of the diagonal of a square of side
length 1/2, which involves the square root of 2. The tablet records a babylonian
approximation to √2 (Though it does so in base 60, where the ‘decimal’ expression
is 1.(24)(51)(10))

√2 ≈ 577
408 ≈ 1.414215686⋯
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Troubles with the Infinite

Definition 0.1 (Base Systems for Numerals). If 𝑏 > 1 is a positive integer, base-b
refers to expressing a number in terms of powers of 𝑏. In base 10 we write 432 to
mean 4 ⋅ 102 + 3 ⋅ 101 + 2 ⋅ 100, whereas in base 5 the string of digits 432 would denote
4 ⋅ 52 + 3 ⋅ 51 + 2 ⋅ 50.
Numbers between 0 and 1 can also be expressed in a base system, using negative
powers of the base. In base 10, 0.231 means 2 ⋅ 10−1 + 3 ⋅ 10−2 + 1 ⋅ 10−3, whereas in
base 5 the same string of digits would denote 2 ⋅ 10−1 + 3 ⋅ 5−2 + 1 ⋅ 5−3.
The babylonians used base 60, meaning all numbers were written as a series in 60𝑛
for 𝑛 ranging over the integers. This tablet records the approximate square root of 2
as

1.(24)(51)(10)

Which, in base 60 denotes

√2 ≈ 1 ⋅ 600 + 24 ⋅ 60−1 + 51 ⋅ 60−2 + 10 ⋅ 60−3

= 1 + 24
60 + 51

602 + 10
603

= 1 + 24
60 + 17

1200 + 1
21600

= 577
408

Exercise 0.1. By inscribing a regular hexagon in a circle, the Babylonians approxi-
mated 𝜋 to be 25/8. Compute the base 60 ‘decimal’ form of this number.

The tablet itself does not record how the babylonians came up with so accurate an ap-
proximation, but we have been able to reconstruct their reasoning in modern times

Example 0.1 (Babylonian Algorithm Computing √2). Starting with a rectangle of
area 2, call one of its sides 𝑥 . If the rectangle is a square, then 𝑥 = √2 exactly. And
the closer our rectangle is to a square, the closer 𝑥 is to √2. Thus, starting from
this rectangle, we can build an even better approximation by making it more square.
Precisely, the side lengths of this rectangle are 𝑥 and 2/𝑥 , and a rectangle with one
side the average of these two numbers, will be closer to a square than this one.

Starting from a rectangle with side lengths 1 and 2, applying this procedure once im-
proves our estimate from 1 to 3/2, and then applying it again improves it to 577/408.
This Babylonian approximation is just the third element in an infinite sequence of
approximations to √2

4



The Diagonal of a Square

Exercise 0.2 (Babylonian Algorithm Computing √2). Carry out this process, and
show you get 577/408 as the third approximation to √2. What’s the next term in the
sequence? How many decimal places is this accurate to in base 10? (Feel free to use
a calculator of course!)

Exercise 0.3 (Computing Cube Roots). Can you modify the babylonians procedure
which found approximates of √2 to instead find rational approximates of 3√2?
Here, instead of starting with a rectangle of sides 𝑥, 𝑦 let’s start with a three dimen-
sional brick with a square base (sides 𝑥 and 𝑥), height 𝑦 , and area 2. Our goal is to find
a “closer to cube” shaped brick than this one, and then to iterate. Propose a method
of getting “closer to cube-shaped” and carry it out: what are the side lengths of the
next shape in terms of 𝑥 and 𝑦?
Start with a simple rectangular prism of volume 2 and iterate this procedure a couple
times to get an approximate value of 3√2. How close is your approximation?

It is clear from other Babylonian writings that they knew this was merely an approx-
imation, but it took over a thousand years before we had more clarity on the nature
of √2 itself.

Pythagoras

We often remember the Pythagoreans for the theorem bearing their name. But while
they did prove this, the result (likely without proof) was known for millennia before
them. The truly new, and shocking contribution to mathematics was the discovery
that there must be numbers beyond the rationals, if we wish to do geometry.

Theorem 0.1 (√2 is irrational). There is no fraction 𝑝/𝑞 which squares to 2.

To give a proof of this fact we need one elementary result of number theory, known
as Euclid’s Lemma (which says that if a prime 𝑝 divides a product 𝑎𝑏, then 𝑝 must
divide either 𝑎 or 𝑏).

Proof. (Sketch) Assume 𝑝/𝑞 is in lowest terms, and squares to 2. Then 𝑝2/𝑞2 = 2 so
𝑝2 = 2𝑞2. Thus 2 divides 𝑝2, so in fact 2 divides 𝑝 (Euclid’s lemma), meaning 𝑝 is
even.

Thus, we can write 𝑝 = 2𝑘 for some other integer 𝑘, which gives (2𝑘)2 = 2𝑞2, or
4𝑘2 = 2𝑞2. Dividing out one factor of 2 yields 2𝑘2 = 𝑞2< so 2 divides 𝑞2, and thus
(Euclid’s lemma, again) 2 divides 𝑞.
But now we’ve found that both 𝑝 and 𝑞 are divisible by 2, which means 𝑝/𝑞 is not
in lowest terms after all, a contradiction! Thus there can not have been any fraction
squaring to 2 in the first place.

5



Troubles with the Infinite

Exercise 0.4. Following analogous logic, prove that √3 is irrational. Generalize this
to prove that √6 is irrational. But be careful! Make sure that your proof doesn’t also
apply to √9 (which of course, IS rational).

Knowing now that √2 is irrational, it is clear that the Babylonian procedure will never
exactly return the correct answer, as if it starts with a rationally-sided rectangle, it’ll
always produce another with rational side lengths. But its a natural question to won-
der just how good are the babylonian approximations?s

Definition 0.2 (The Babylonian Algorithm and Number Theory). Because √2 is irra-
tional, there is no pair of integers 𝑝, 𝑞 with 𝑝2 = 2𝑞2. Good rational approximations
to √2 will almost satisfy this equation, and we will call an approximation excellent if
it is only off by 1: that is 𝑝/𝑞 is an excellent approximation if

𝑝2 = 2𝑞2 + 1

Exercise 0.5 (The Babylonian Algorithm and Number Theory). Prove that all ap-
proximations produced by the babylonian sequence starting from the rectangle with
sides 1 and 2 are excellent, by induction.

To acomodate this discovery, the Greeks had to add a new number to their number
system - in fact, after really absorbing the argument, they needed to addmany. Things
like √3, but also

√
1 + √3 − √2 + √3 + √2

5
are called constructible numbers, as they were constructed by the greeks using a com-
pass and straightedge, to extend the rational numbers.

Quadrature of the Parabola

The idea to compute some seemingly unreachable quantity by a succession of better
and better approximations may have begun in babylon, but truly blossomed in the
hands of Archimedes.

In his book The Quadrature of the Parabola, Archimedes relates the area of a parabolic
segment to the area of the largest triangle that can be inscribed within.

Theorem 0.2. The area of the segment bounded by a parabola and a chord is 4/3𝑟𝑑 s
the area of the largest inscribed triangle.
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Figure 2.: A parabolic region and its largest inscribed triangle

After first describing how to find the largest inscribed triangle (using a calculation
of the tangent lines to a parabola), Archimedes notes that this triangle divides the
remaining region into two more parabolic regions. And, he could fill these with their
largest triangles as well!

These two triangles then divide the remaining region of the parabola into four new
parabolic regions, each of which has their own largest triangle, and so on.

Figure 3.: Archimedes’ infinite construction of the parabolic segment from triangles

Archimedes proves that in the limit, after doing this infinitely many times, the tri-
angles completely fill the parabolic segment, with zero area left over. Thus, the only
task remaining is to add up the area of these infinitely many triangles. And here, he
discoveries an interesting pattern.

We will call the first triangle in the construction stage 0 of the process. Then the two
triangles we make next comprise stage 1, the ensuing four triangles stage 2, and the
next eight stage 3.

Proposition 0.1 (Area of the 𝑛𝑡ℎ stage). The total area of the triangles in each stage is
1/4 the total area of triangles in the previous stage.

7



Troubles with the Infinite

If 𝐴𝑛 is the area in the 𝑛𝑡ℎ stage, Archimedes is saying that 𝐴𝑛+1 = 1
4𝐴𝑛 . Thus

𝐴0 = 𝑇 𝐴1 = 1
4𝑇 𝐴2 = 1

16𝑇 𝐴3 = 1
64𝑇 …

And the total area 𝐴 is the infinite sum

𝐴 = 𝑇 + 1
4𝑇 + 1

16𝑇 + 1
64𝑇 + ⋯

= (1 + 1
4 + 1

16 + 1
64 + ⋯) 𝑇

Now Archimedes only has to sum this series. For us moderns this is no trouble: we
recognize this immediately as a geometric series

But why is it called geometric? Well (this is not the only reason, but…) Archimedes
was the first human to sum such a series, and he did so completely geometrically.
Ignoring the leading 1, we can interpret all the fractions as proportions of the area
of a square. The first term 1/4 tells us to take a quarter of the square, the next term
says to take a quarter of a quarter more, and so on. Repeating this process infinitely,
Archimedes ends up with the following figure, where the highlighted squares on the
diagonal represent the completed infinite sum.

Figure 4.: The infinite process: 1/4 + 1/16 + 1/64 + ⋯

He then notes that this is precisely one third the area of the bounding square, as two
more identical copies of this sequence of squares fill it entirely (just slide our squares
to the left, or down). Thus, this infinite sum is precisely 1/3, and so the total area is
1 plus this, or 4/3.
This tells us an important fact, beyond just the area of the parabola we sought! We
were looking to compute the area of a curved shape, and the procedure we found could

8
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never give us the answer exactly, but only an infinite sequence of better approxima-
tions. Being acquainted with the work of Pythagoras and the Babylonians, this might
have well led us to conjecture that the area of the parabola must be irrationally related
to the area of the triangle. But Archimedes showed this is not the case; our infinite
sum here evaluates to a rational number, 4/3!
Infinite sequences of rational numbers can sometimes produce a wholly new
number, and sometimes just converge to another rational.*

How can we tell? This is one motivating reason to develop a rigorous study of such
objects. But it gets even more important, if we try to generalize Archimedes’ argu-
ment.

Troubles with Geometric Series

Archimedes’ quadrature of the parabola represents a monumental leap forward in
human history. This is the first time in the mathematical literature where infinity is
not treated as some distant ideal, but rather a real place that can be reached. And the
argument itself is an absolute classic - involving the first occurrence of an infinite
series in mathematics, and a wonderfully geometric summation method (hence the
name geometric series, which survives until today). The elegance of Archimedes’ cal-
culation is almost dangerous - its easy to be blinded by its apparent simplicity, and –
like Icarus – fly too close to the sun, falling from these heights of logic directly into
contradiction.

Archimedes visualized his argument for the sum ∑ 1
4𝑛 as though it was occurring

inside of a larger square, but there’s another perspective we could take. Call the total
sum 𝑆,

𝑆 = 1 + 1
4 + 1

42 + 1
43 + ⋯

and note that multiplying 𝑆 by 1/4 is the same as removing the first term, as it shifts
all the terms down by one space:

1
4𝑆 = 1

4 + 1
42 + 1

43 + 1
44 + ⋯ = 𝑆 − 1

Thus, 1
4𝑆 = 𝑆 − 1, and we can solve this algebraic equation directly to find 𝑆 = 4/3.

The beauty of this argument is that unlike Archimedes’ original, its not tied to the
number 1/4 at all! Imagine we took some number 𝑟 , and we wanted to add up the
infinite sum

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + 𝑟5 + 𝑟6 + 𝑟7 + ⋯ + 𝑟𝑛 + ⋯

Call that sum 𝑆, and notice that we have the same property, multiplying the sum by
𝑟 shifts every term down by one, so we get the same result as if we just removed the
first term:

9
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𝑟𝑆 = 𝑆 − 1

We can then solve this for 𝑆 and get

𝑆 = 1
1 − 𝑟

This gives us what we expect when 𝑟 = 1/4, and trying it for other fractions, like
𝑟 = 1/5 or 𝑟 = 23/879, we can confirm (with the help of a computer) that the infinite
sum really does approach the value this formula gives!

Amazingly, it even works for negative numbers, after we think about what this means.
If 𝑟 = −1

2 then

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + 𝑟5 + ⋯ = 1 − 1
2 + 1

4 − 1
8 + 1

16 − ⋯

Using our formula above we see that this is supposed to converge to

𝑆 = 1
1 − (−1

2 )
= 1

1 + 1
2

= 1
3
2

= 2
3

And, using a computer to add up the first 100 terms we see

𝑆 ≈ 0.66666666666666666666666666666692962030174033726847057618

This is pretty incredible, as our original geometric reasoning doesn’t make sense for
𝑟 = −1/2, but the algebra works just fine! We may also wish to investigate what
happens when 𝑟 = 1, which would give

𝑆 = 1 + 1 + 1 + 1 + 1 + 1 + ⋯

This is going off to infinity, and our formula gives 𝑆 = 1/(1 − 1) = 1/0, which could
make sense: we could even take this as an indication that we should define 1/0 = ∞.
But things get more interesting with 𝑟 = −1. Here the sum is

𝑆 = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − ⋯

As we add this up term by term, we first have 1, then 0, then 1 then 0, over and over
agan as we repeatedly add a 1, and then immediately cancel it out. This isn’t getting
close to any number at all! But our formula gives

𝑆 = 1
1 − (−1) = 1

2
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The Circle Constant

Now we have a real question - did we just discover a new, deep fact of mathemat-
ics - that we can sensibly assign values to series like this, that we weren’t originally
concerned with, or did we discover a limitation of our theorem? This is an inter-
esting, and important question to come out of our playing around!

Thus far, we haven’t seen any cases where our theorem has output any ‘obviously’
wrong answers, so we may be inclined to trust it. But this does not hold up to further
scrutiny: what about when 𝑟 = 2? Here the sum is

1 + 2 + 4 + 8 + 16 + 32 + ⋯

which is clearly going to infinity. But our formula disagrees, as it would have you
belive the sum is 𝑆 = 1/(1 − 2) = −1. This raises the more general problem: when
working with infinity, sometimes a formula you derive works, and some-
times it doesn’t. How can you tell when to trust it?

Exercise 0.6. Explain what goes wrong with the argument when 𝑟 = 2…

The Circle Constant

The curved shape that everyone was really interested in was not the parabola, but the
circle. Archimedes tackles this in his paper The Measurement of the Circle, where he
again constructs a finite sequence of approximations built from triangles, and then
reasons about the circle out at infinity. First, we need a definition:

Definition 0.3 (𝜋 and 𝜏 ). The area of the unit circle is denoted by the constant 𝜋 .
The circumference of the unit circle is denoted by the constant 𝜏 .

Archimedes came up with a sequence of overestimates, and underestimates for 𝜋 by
inscribing and circumscribing regular polygons.

Figure 5.: Circumscribed polygons provide an overestimate of the area of the circle.
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Figure 6.: Inscribed polygons provide an underestimate of the area of the circle.

Any polygon inside the unit circle gave an underestimate, and any polygon outside
gave an overestimate. The more sides the polygon had, the better the approximations
would be.

Calculating the area and perimeter of regular 𝑛-gons is (theoretically) straightforward,
as they can be decomposed into 2𝑛 right triangles. Drawing a diagram, we find the
relations below;

Figure 7.: Decomposing a circumscribed polygon into right triangles.

Proposition 0.2 (Area of a Circumscribed Polygon). The area of a regular 𝑛-gon cir-
cumscribing the unit circle is given by

𝐶𝑛 = 2𝑛 ⋅ (12 ⋅ 1 ⋅ tan 180
𝑛 )

= 𝑛 tan 180
𝑛

Proposition 0.3 (Perimeter of a Circumscribed Polygon). The perimeter of a regular
𝑛-gon circumscribing the unit circle is given by

𝑃𝑛 = 2𝑛 ⋅ tan 180
𝑛
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Figure 8.: Decomposing an inscribed polygon into right triangles.

Proposition 0.4 (Area of a Inscribed Polygon). The area of a regular 𝑛-gon inscribed
in the unit circle is given by

𝑎𝑛 = 2𝑛 ⋅ (12 ⋅ cos 180
𝑛 ⋅ sin 180

𝑛 )

= 𝑛
2 sin 360

𝑛

Where we used the trigonometric identity sin(2𝑥) = 2 sin 𝑥 cos 𝑥 to simplify 𝑎𝑛
above.

Proposition 0.5 (Perimeter of a Inscribed Polygon). The perimeter of a regular 𝑛-gon
inscribed in the unit circle is given by

𝑝𝑛 = 2𝑛 ⋅ sin 180
𝑛

Using these, Archimedes calculated away all the way to the 96-gon, which provided
him with the estimates

223
71 < 𝜋 < 22

7
This was the best estimate of 𝜋 calculated during the classical period of the Greeks,
but the same method was applied by Chinese mathematician Zu Chongzi in the 400s
CE to much much larger polygons.
Working with the 24, 576-gon, he found

355
113 < 𝜋 < 22

7
The lower bound here, 355/113 is the best possible rational approximation of
𝜋 with denominator less than four digits, and equals 3.14159292⋯, whereas
𝜋 = 3.14159265⋯. This was the most accurate approximate to 𝜋 calculated any-
where in the world for over 800 years, and was only surpassed in the late 1300s by
Indian mathematician Madhava, about whom we’ll learn more soon.
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Remark 0.1. The next best rational approximation is 52163
16604 , which is a significantly

more complicated looking fraction!

Proving 𝜏 = 2𝜋
While impressive, Archimedes’ main goal was not the approximate calculation above,
but rather an exact theorem. He wanted to understand the true relationship between
the area and perimeter of the circle, and wished to use these approximations as a
guide to what is happening with the real circle, “out at infinity”.

To understand this case, Archimedes argues that as 𝑛 goes to infinity, the sequences
of inscribed and circumscribed polygons approach the circle, and so in the limit, the
sequences of areas must tend to the area of the circle (𝜋 ) and the sequences of perime-
ters must tend to the perimeter of the circle (𝜏 ).

𝐴𝑛 → 𝜋 𝑃𝑛 → 𝜏

But, now look carefully at the form of the expressions we derived for the circumscrib-
ing polygons in Proposition 0.2 and Proposition 0.3:

𝐴𝑛 = 𝑛 ⋅ tan 180
𝑛 𝑃𝑛 = 2𝑛 ⋅ tan 180

𝑛

Here, we do not need to worry about explicitly calculating 𝐴𝑛 or 𝑃𝑛; all we need to
notice is that the perimeter is exactly twice the area, 𝑃𝑛 = 2𝐴𝑛! This makes sense:

• Each polygon is built out of 𝑛 triangles.
• The area of a triangle is half its base times its height
• The height of each triangle is 1 (the radius of the circle)
• Thus, the area the sum of half all the bases, or half the perimeter!

But since this exact relationship holds for every single value of 𝑛, Archimedes argued
it must also be true in the limit, so the perimeter is twice the area:

Theorem 0.3 (Archimedes).
𝜏 = 2𝜋

Troubles With Limits

Archimedes again leaves us with an argument so elegant and deceptively simple that
its easy to under-appreciate its subtlety and immediately fall prey to contradiction.
What if we attempt to repeat Archimedes argument, but with a different sequence of
polygons approaching the circle?
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Remark 0.2. To be fair to the master, Archimedes is much, much more careful in his
paper than I was above, so part of the apparent simplicity is a consequence of my
omission.

For example, what if we start with a square circumscribing the circle, and then at
each stage produce a new polygon with the following rule:

• At each corner of the polygon, find the largest square that fits within the poly-
gon, and remains outside the circle. Then remove this square.

Figure 9.: Iteratively removing the largest square outside the circle at each vertex pro-
duces a sequence of right angled polygons which converges to the circle.

Exactly like in Archimedes’ example this sequence of polygons approaches the circle
as we repeat over and over. In fact, in the limit - this sequence literally becomes the
circle (meaning that after infinitely many steps, there are no points of the resulting
shape remaining outside the circle at all). Thus, just as for our original sequence of
polygons, we expect that the areas and perimeters of these shapes approach the areas
and perimeters of the circle itself. That is,

𝐴𝑛 → 𝜋, 𝑃𝑛 → 𝜏

While the behavior of𝐴𝑛 takes a bit of work to understand, this sequence of polygons
is constructed tomake analyzing the perimeters particularly nice. Lookwhat happens
at each stage near a dent: two edges are turned inward to the circle, but do not change
in length.
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Figure 10.: Removing a square at a vertex does not change the perimeter of the poly-
gon, as it replaces two segments with two other segments of the same
length.

Since adding a dent does not change the length of the perimeter, each polygon in our
sequence has exactly the same perimeter as the original! The original perimeter is
easy to calculate, each side of the square is a diameter of the unit circle, so its total
perimeter is 8. But since this both does not change and converges in the limit to the
circles circumference, we have just derived the amazing fact that

𝜏 = 8

This is inconsistent with what we learn from Archimedes’ argument which shows
that 𝜋 < 22/7 and 𝜏 = 2𝜋 , so 𝜏 < 44/7 = 6.2857…. It appears that we have applied
the same argument twice, and found a contradiction in comparing the results!

Exercise 0.7 (Convergence to the Diagonal). We can run an argument analogous
to the above which proves that √2 = 2, by looking at a sequence of polygons that
converge to a right triangle with legs of length 1. Let 𝑇0 denote the unit square, and
𝑇𝑛
Prove that as 𝑛 goes to infinity the area of the polygons 𝑇𝑛 do converge to the area of
the triangle (Hint: can you write down a formula for the total error between 𝑇𝑛 and
the triangle?) Also, prove that the length of the zig-zag diagonal side of the 𝑇𝑛 has
length 2 always, independent of 𝑛. Thus, the limit of the zigzag, which becomes the
hypotenuse of the triangle, has length 2!

But the pythagorean theorem tells us that its length must be √12 + 12 = √2, so in fact
we have proven √2 = 2, or 2 = 4, a contradiction in mathematics.

Its quite difficult to pinpoint exactly what goes wrong here, and thus this presents
a particularly strong argument for why we need analysis: without a rigorous un-
derstanding of infinite processes and limits, we can never be sure if our seemingly
reasonable calculations give the right answers, or lies!
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Estimating 𝜋

With our modern access to calculator technology, the trigonometric formulas above
essentially solves the problem: for example, plug in 𝑛 = 96 to a calculator (set to
degrees!) to replicate the work of Archimedes in one click.

But this poses a historical problem: of course the ancients did not have a calculator, so
how did they compute such accurate approximations millennia ago? And there’s also
a potential logical problem lurking in the background: inside our calculator there is
some algorithm computing the trigonometric functions, and perhaps that algorithm
depends on already knowing something about the value of 𝜋 . If so, using this calcu-
lator to give a from-first-principles estimate of 𝜋 would be circular!

To compute their estimates, both Archimedes and Zu Chongzi landed on an idea sim-
ilar to the Babylonians and their computation of √2: they found an iterative procedure
that starts with one polygon, and doubles its number of sides. With such a procedure
in hand, they could start with any polygon and rapidly scale it up to better and bet-
ter estimates. Beginning with an hexagon, Archimedes only needed to double four
times:

6 → 12 → 24 → 48 → 96

Exercise 0.8 (The Doublings of Zu Chongzi). How many times did Zu Chongzi dou-
ble the sides of a hexagon to reach the 24,576 gon?

Following Archimedes, we’ll look at the doubling procedure for the perimeter of
inscribed polygons: given 𝑝𝑛 we seek a method to compute 𝑝2𝑛 . By the formula
in Proposition 0.4, it is enough to be able to compute sin(360/(2𝑛)) in terms of
sin(360/𝑛), that is, we need to be able to compute the sine of half the angle. The
half-angle identities from trigonometry prove helpful here:

Definition 0.4 (Half Angle Identities).

cos (𝜃2) = √
1 + cos 𝜃

2 sin (𝜃2) = √
1 − cos 𝜃

2

tan (𝜃2) = √
1 − cos 𝜃
1 + cos 𝜃 = sin 𝜃

1 − cos 𝜃 = 1 − cos 𝜃
sin 𝜃

Also making use of the pythagorean identity sin2 𝜃 + cos2 𝜃 = 1, we can compute as
follows:
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sin 𝜃
2 = √

1 − cos 𝜃
2

= √
1 − √cos2 𝜃

2

= √
1 − √1 − sin2 𝜃

2

Lets write 𝑠𝑛 = sin(180/𝑛) for brevity. Then, the above formula tells us how to com-
pute 𝑠2𝑛 if we know 𝑠𝑛:

𝑠2𝑛 = √
1 − √1 − 𝑠2𝑛

2

This sort of relationship is called a recurrence relation, or a recursively defined sequence
as it tells us how to compute the next term in the sequence if we have the previous
one. Notice there are no more trigonometric formulas in the recurrence - so if we can
find the value 𝑠𝑛 for any polygon, we can start with that, and iteratively double.

Example 0.2 (A Recurrence for 𝑝𝑛). By Proposition 0.5, we see that 𝑝𝑛 = 2𝑛𝑠𝑛 . Thus
𝑝2𝑛 = 2(2𝑛)𝑠2𝑛 = 4𝑠2𝑛 , and using the recurrence for 𝑠2𝑛 we see

𝑝2𝑛 = 4𝑛𝑠2𝑛

= 4𝑛√
1 − √1 − 𝑠2𝑛

2
= 2𝑛√2 − 2√1 − 𝑠2𝑛
= 2𝑛√2 − √4 − 4𝑠2𝑛

But, since 𝑠𝑛 = 𝑝𝑛/(2𝑛), substituting this in gives a relation between 𝑝2𝑛 and 𝑝𝑛 di-
rectly:

𝑝2𝑛 = 2𝑛√2 − √4 − 4𝑠2𝑛

= 2𝑛√2 − √4 − (𝑝𝑛𝑛 )
2
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The incredible fact: even though we used trigonometry to derive this recurrence, we
do not need to know how to evaluate any trigonometric functions to actually use it!
All we need to be able to do is find the perimeter of some inscribed 𝑛-gon, and then
we can repeatedly double over and over!

But how canwe get started? A beautiful observation of Archimedeswas that a regular
hexagon inscribed in the circle has perimeter exactly equal to 6, as it can be decom-
posed into six equilateral triangles, whose side length is the circle’s radius. And with
that, we are off!

Example 0.3 (The Perimeter of an Inscribed 96-gon). Since 𝑝6 = 6, we begin with a
doubling to find 𝑝12 ∶

𝑝12 = 12√2 − √4 − (66)
2

= 12√2 − √3

Using this, we know 𝑝12
12 = √2 − √3, and we can double again:

𝑝24 = 24√2 − √4 − (2 − √3)

= 24√2 − √2 + √3

Now doubling to the 48 gon,

𝑝48 = 48√2 − √4 − (2 − √2 + √3)

= 48√2 − √2 + √2 + √3

One more doubling brings us to the 96-gon,

𝑝96 = 96√2 − √2 + √2 + √2 + √3

Numerically approximating this gives 6.282063901781019276222, which is more rec-
ognizable to us if we compute the half perimeter:

𝑝96
2 ≈ 3.141031950890…
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Exercise 0.9. Find a recurrence relation for the area 𝑎2𝑛 of the inscribed polygon, in
terms of the area 𝑎𝑛 of a polygon with half as many sides.

Exercise 0.10. Let 𝑡𝑛 = tan(180/𝑛). Show that 𝑡𝑛 satisfies the recurrence relation

𝑡2𝑛 =
√
1 + 1

𝑡2𝑛
− 1

𝑡𝑛

Hint: you’ll need some trig identities to write everything in terms of tangent! Use this
to find a recurrence relation for 𝑃𝑛 . Can you use this to find the circumference of an
octagon circumscribing the unit circle?

After all of this are still left with a fundamental question: what sort of number is
𝜋? Archimedes’ calculation out at infinity showed the area and circumference of a
circle were related, but did not give us an exact value for either. These approximate
calculations lead to some pretty scary looking numbers, but we know better than
to trust that: we’ve already seen an infinite series of archimedes that summed to a
nice rational number, and soon we will meet a nested sequence of square roots that
collapses to a single root at infinity:

√1 + √1 + √1 + ⋯ = 1 + √5
2

Convergence, Concern and Contradiction

Madhava, Leibniz & 𝜋/4

Madhava was a Indian mathematician who discovered many infinite expressions for
trigonometric functions in the 1300’s, results which today are known as Taylor Series
after Brook Taylor, who worked with them in 1715. In a particularly important exam-
ple, Madhava found a formula to calculate the arc length along a circle, in terms of
the tangent: or phrased more geometrically, the arc of a circle contained in a triangle
with base of length 1.

The first term is the product of the given sine and radius of the desired
arc divided by the cosine of the arc. The succeeding terms are obtained
by a process of iteration when the first term is repeatedly multiplied by
the square of the sine and divided by the square of the cosine. All the
terms are then divided by the odd numbers 1, 3, 5, …. The arc is obtained
by adding and subtracting respectively the terms of odd rank and those
of even rank.
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As an equation, this gives

𝜃 = sin 𝜃
cos 𝜃 − 1

3
sin2 𝜃
cos2 𝜃 ( sin 𝜃

cos 𝜃 ) + 1
5
sin2 𝜃
cos2 𝜃 ( sin2 𝜃

cos2 𝜃
sin 𝜃
cos 𝜃 ) + ⋯

= tan 𝜃 − tan3 𝜃
3 + tan5 𝜃

5 − tan7 𝜃
7 + tan9 𝜃

9 − ⋯

If we take the arclength 𝜋/4 (the diagonal of a square), then both the base and height
of our triangle are equal to 1, and this series becomes

𝜋
4 = 1 − 1

3 + 1
5 − 1

7 + ⋯

This result was also derived by Leibniz (one of the founders of modern calcuous),
using a method close to something you might see in Calculus II these days. It goes as
follows: we know (say from the last chapter) the sum of the geometric series

∑
𝑛≥0

𝑟𝑛 = 1
1 − 𝑟

Thus, substituting in 𝑟 = −𝑥2 gives

∑
𝑛≥0

(−1)𝑛𝑥2𝑛 = 1
1 + 𝑥2

and the right hand side of this is the derivative of arctangent! So, anti-differentiating
both sides of the equation yields

arctan 𝑥 = ∫∑
𝑛≥0

(−1)𝑛𝑥2𝑛 𝑑𝑥

= ∑
𝑛≥0

∫(−1)𝑛𝑥2𝑛 𝑑𝑥

= ∑
𝑛≥0

(−1)𝑛 𝑥2𝑛+1
2𝑛 + 1

Finaly, we take this result and plug in 𝑥 = 1: since arctan(1) = 𝜋/4 this gives what
we wanted:

𝜋
4 = ∑

𝑛≥0
(−1)𝑛 1

2𝑛 + 1 = 1 − 1
3 + 1

5 − 1
7 + ⋯

This argument is completely full of steps that should make us worried:
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Troubles with the Infinite

• Why canwe substitute a variable into an infinite expression and ensure
it remains valid?

• Why is the derivative of arctan a rational function?
• Why can we integrate an infinite expression?
• Why can we switch the order of taking an infinte sum, and integration?
• How do we know which values of 𝑥 the resulting equation is valid for?

But beyond all of this, we should be even more worried if we try to plot the graphs of
the partial sums of this supposed formula for the arctangent.

The infinite series we derived seems to match the arctangent exactly for a while, and
then abruptly stop, and shoot off to infinity. Where does it stop? *Right at the point
we are interested in, 𝜃 = 𝜋/4, so tan(𝜃) = 1. So, even a study of which intervals a
series converges in will not be enough here, we need a theory that is so precise, it can
even tell us exactly what happens at the single point forming the boundary between
order and chaos.

And perhaps, before thinking the eventual answer might simply say the series always
converges at the endpoints, it turns out at the other endpoint 𝑥 = −1, this series itself
diverges! So whatever theory we build will have to account for such messy cases.
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Convergence, Concern and Contradiction

Dirichlet & log 2
In 1827, Dirichlet was studying the sums of infinitely many terms, thinking about the
alternating harmonic series

∑
𝑛≥1

(−1)𝑛
𝑛 + 1

Like the previous example, this series naturally emerges from manipulations in cal-
culus: beginning once more with the geometric series ∑𝑛≥0 𝑟𝑛 = 1

1−𝑟 . We substitute
𝑟 = −𝑥 to get a series for 1/(1 + 𝑥) and then integrate term by term to produce a
series for the logarithm:

log(1 + 𝑥) = ∫ 1
1 + 𝑥 𝑑𝑥 = ∫∑

𝑛≥0
(−1)𝑛𝑥𝑛

= ∑
𝑛≥0

(−1)𝑛 𝑥𝑛+1
𝑛 + 1 = 𝑥 − 𝑥2

2 + 𝑥3
3 − 𝑥4

4 + ⋯

Finally, plugging in 𝑥 = 1 yields the sum of interest. It turns out not to be difficult
to prove that this series does indeed approach a finite value after the addition of
infinitely many terms, and a quick check adding up the first thousand terms gives an
approximate value of 0.6926474305598, which is very close to log(2) as expected..

log(2) = 1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + 1

9 − 1
10 ⋯

What happens if we multiply both sides of this equation by 2?

2 log(2) = 2 − 1 + 2
3 − 1

2 + 2
5 − 1

3 + 2
7 − 1

4 + 2
9 − 1

5 ⋯

We can simplify this expression a bit, by re-ordering the terms to combine similar
ones:

2 log(2) = (2 − 1) − 1
2 + (23 − 1

3) − 1
4 + (25 − 1

5) − ⋯

= 1 − 1
2 + 1

3 − 1
4 + 1

5 − ⋯

After simplifying, we’ve returned to exactly the same series we started with! That
is, we’ve shown 2 log(2) = log(2), and dividing by log(2) (which is nonzero!) we see
that 2 = 1, a contradiction!
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Troubles with the Infinite

What does this tell us? Well, the only difference between the two equations is the order
in which we add the terms. And, we get different results! This reveals perhaps themost
shocking discovery of all, in our time spent doing dubious computations: infinite
addition is not always commutative, even though finite addition always is.

Here’s an even more dubious-looking example where we can prove that 0 = log 2.
First, consider the infinite sum of zeroes:

0 = 0 + 0 + 0 + 0 + 0 + ⋯

Now, rewrite each of the zeroes as 𝑥 − 𝑥 for some specially chosen 𝑥s:

0 = (1 − 1) + (12 − 1
2) + (13 − 1

3) + (1 − 1
4) + ⋯

Now, do some re-arranging to this:

(1 + 1
2 − 1) + (13 + 1

4 − 1
2) + (15 + 1

6 − 1
3) + ⋯

Make sure to convince yourselves that all the same terms appear here after the rear-
rangement!

Simplifying this a bit shows a pattern:

(1 − 1
2) + (13 − 1

4) + (15 − 1
6) + ⋯

Which, after removing the parentheses, is the familiar series ∑ (−1)𝑛
𝑛 . But this series

equals log(2) (or, was it 2 log 2?) So, if we are to believe that arithmetic with infinite
sums is valid, we reach the contradiction

0 = log 2

Infinite Expressions in Trigonometry

The sine function (along with the other trigonometric, exponential, and logarithmic
functions) differs from the common functions of early mathematics (polynomials, ra-
tional functions and roots) in that it is defined not by a formula but geometrically.

Such a definition is difficult to work with if one actually wishes to compute: for exam-
ple, Archimedes after much trouble managed to calculate the exact value of sin(𝜋/96)
using a recursive doubling procedure, but he would have failed to calculate sin(𝜋/97)
- 97 is not a multiple of a power of 2, so his procedure wouldn’t apply! The search
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Infinite Expressions in Trigonometry

for a general formula that you could plug numbers into and compute their sine, was
foundational to the arithmetization of geometry.

One big question about this procedure is why in the world should this work? We
found a function that sin(𝑥) satisfies, and then we plugged something else into that
function and started iterating: what justification do we have that this should start to
approach the sine? We can check after the fact that it (seems to have) worked, but
this leaves us far from any understanding of what is actually going on. –>

Infinite Product of Euler

One famous infinite expression for the sine function arose from thinking about the
behavior of polynomials, and the relation of their formulas to their roots. As an
example consider a quartic polynomial 𝑝(𝑥) with roots at 𝑥 = 𝑎, 𝑏, 𝑐, 𝑑 . Then we can
recover 𝑝 up to a constant multiple as a product of linear factors with roots at 𝑎, 𝑏, 𝑐, 𝑑 .
If the 𝑦−intercept is 𝑝(0) = 𝑘, we can give a fully explicit description

𝑝(𝑥) = 𝑘 (1 − 𝑥
𝑎 ) (1 − 𝑥

𝑏 ) (1 − 𝑥
𝑐 ) (1 − 𝑥

𝑑 )

In 17334, Euler attempted to apply this same reasoning in the infinite case to the
trigonometric function sin(𝑥). This has roots at every integer multiple of 𝜋 , and so
following the finite logic, should factor as a product of linear factors, one for each root.
There’s a slight technical problem in directly applying the above argument, namely
that sin(𝑥) has a root at 𝑥 = 0, so 𝑘 = 0. One work-around is to consider the function
sin 𝑥
𝑥 . This is not actually defined at 𝑥 = 0, but one can prove lim𝑥→0 sin 𝑥

𝑥 = 1, and
attempt to use 𝑘 = 1
GRAPH

Its roots agree with that of sin(𝑥) except there is no longer one at 𝑥 = 0. That is, the
roots are … ,−3𝜋, −2𝜋, −𝜋, 𝜋, 2𝜋, 3𝜋, …, and the resulting factorization is

sin 𝑥
𝑥 = ⋯(1 + 𝑥

3𝜋 ) (1 + 𝑥
2𝜋 ) (1 + 𝑥

𝜋 ) (1 − 𝑥
𝜋 ) (1 − 𝑥

2𝜋 ) (1 − 𝑥
3𝜋 )⋯

Euler noticed all the factors come in pairs, each of which represented a difference of
squares.

(1 − 𝑥
𝑛𝜋 ) (1 + 𝑥

2𝑛𝜋 ) = (1 − 𝑥2
𝑛2𝜋2 )

Not worrying about the fact that infinite multiplication may not be commutative (a
worry we came to appreciate with Dirichlet, but this was after Euler’s time!), we may
re-group this product pairing off terms like this, to yield
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Troubles with the Infinite

sin 𝑥
𝑥 = (1 − 𝑥2

𝜋2 ) (1 − 𝑥2
22𝜋2 ) (1 − 𝑥2

32𝜋2 )⋯

Finally, we may multiply back through by 𝑥 and get an infinite product expression
for the sine function:

Proposition 0.6 (Euler).

sin 𝑥 = 𝑥 (1 − 𝑥2
𝜋2 ) (1 − 𝑥2

4𝜋2 ) (1 − 𝑥2
9𝜋2 )⋯

This incredible identity is actually correct: there’s only one problem - the argument
itself is wrong!

Exercise 0.11. In his argument, Euler crucially uses that if we know

• all the zeroes of a function
• the value of that function is 1 at 𝑥 = 0

then we can factor the function as an infinite polynomial in terms of its zeroes. This
implies that a function is completely determined by its value at 𝑥 = 0 and its zeroes
(because after all, once you know that information you can just write down a formula
like Euler did!) This is absolutely true for all finite polynomials, but it fails spectacu-
larly in general.

Show that this is a serious flaw in Euler’s reasoning by finding a different function
that has all the same zeroes as sin(𝑥)/𝑥 and is equal to 1 at zero (in the limit)!

Exercise 0.12 (The Wallis Product for 𝜋 ). In 1656 John Wallis derived a remarkably
beautiful formula for 𝜋 (though his argumnet was not very rigorous).

𝜋
2 = 2

1
2
3
4
3
4
5
6
5
6
7
8
7
8
9
10
9

10
11

12
11

12
13 ⋯

Using Euler’s infinite product for sin(𝑥) evaluated at 𝑥 = 𝜋/2, give a derivation of
Wallis’ formula.
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Infinite Expressions in Trigonometry

The Basel Problem

The Italian mathematician Pietro Mengoli proposed the following problem in 1650:

Definition 0.5 (The Basel Problem). Find the exact value of the infinite sum

1 + 1
22 + 1

32 + 1
42 + 1

52 + ⋯

By directly computing the first several terms of this sum one can get an estimate of
the value, for instance adding up the first 1,000 terms we find 1+ 1

22 + 1
32 +⋯ 1

1,0002 =
1.6439345…, and ading the first million terms gives

1 + 1
22 + 1

32 + ⋯ + 1
1, 0002 + ⋯ + 1

1, 000, 0002 = 1.64492406…

so we might feel rather confident that the final answer is somewhat close to 1.64. But
the interesting math problem isn’t to approximate the answer, but rather to figure
out something exact, and knowing the first few decimals here isn’t of much help.

This problem was attempted by famous mathematicians across Europe over the next
80 years, but all failed. All until a relatively unknown 28 year old Swissmathematician
named Leonhard Euler published a solution in 1734, and immediately shot to fame.
(In fact, this problem is named the Basel problem after Euler’s hometown.)

Proposition 0.7 (Euler).

∑
𝑛≥1

1
𝑛2 = 𝜋2

6

Euler’s solution begins with two different expressions for the function sin(𝑥)/𝑥 ,
which he gets from the sine’s series expansion, and his own work on the infinite
product:

sin 𝑥
𝑥 = 1 − 𝑥2

3! + 𝑥4
5! − 𝑥6

7! + 𝑥8
9! − 𝑥10

11! + ⋯

= (1 − 𝑥2
𝜋2 ) (1 − 𝑥2

22𝜋2 ) (1 − 𝑥2
32𝜋2 )⋯

Because two polynomials are the same if and only if the coefficients of all their terms
are equal, Euler attempts to generalize this to infinite expressions, and equate the
coefficients for sin. The constant coefficient is easy - we can read it off as 1 from both
the series and the product, but the quadratic term already holds a deep and surprising
truth.
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Troubles with the Infinite

From the series, we can again simply read off the coefficient as −1/3!. But from the
product, we need to think - after multiplying everything out, what sort of products
will lead to a termwith 𝑥2? Since each factor is already quadratic this is more straight-
forward than it sounds at first - the only way to get a quadratic term is to take one of
the quadratic terms already present in a factor, and multiply it by 1 from another fac-
tor! Thus, the quadratic terms are − 𝑥2

22𝜋2 − 𝑥2
32𝜋2 − 𝑥2

42𝜋2 −⋯. Setting the two coefficients
equal (and dividing out the negative from each side) yields

1
3! = 1

𝜋2 + 1
22𝜋2 + 1

32𝜋2 + ⋯

Which quickly leads to a solution to the original problem, after multiplying by 𝜋2:

𝜋2
3! = 1 + 1

22 + 1
32 + ⋯

Euler had done it! There are of course many dubious steps taken along the way in
this argument, but calculating the numerical value,

𝜋2
3! = 1.64493406685…

We find it to be exactly the number the series is heading towards. This gave Euler the
confidence to publish, and the rest is history.

But we analysis students should be looking for potential troubles in this argument.
What are some that you see?

Viète’s Infinite Trigonometric Identity

Viete was a French mathematician in the mid 1500s, who wrote down for the first
time in Europe, an exact expression for 𝜋 in 1596.

Proposition 0.8 (Viète’s formula for 𝜋 ).

2
𝜋 = √2

2
√2 + √2

2
√2 + √2 + √2

2
√2 + √2 + √2 + √2

2 ⋯
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Infinite Expressions in Trigonometry

Figure 11.: Viete’s original publicaiton of this formula - it predates our modern nota-
tion for square roots!

How could one derive such an incredible looking expression? One approach uses
trigonometric identities…an infinite number of times! Start with the familiar function
sin(𝑥). Then we may apply the double angle identity to rewrite this as

sin(𝑥) = 2 sin (𝑥2 ) cos (
𝑥
2 )

Nowwe may apply the double angle identity once again to the term sin(𝑥/2) to get

sin(𝑥) = 2 sin (𝑥2 ) cos (
𝑥
2 )

= 4 sin (𝑥4 ) cos (
𝑥
4 ) cos (

𝑥
2 )

and again

sin(𝑥) = 8 sin (𝑥8 ) cos (
𝑥
8 ) cos (

𝑥
4 ) cos (

𝑥
2 )

and again

sin(𝑥) = 16 sin ( 𝑥
16) cos (

𝑥
16) cos (

𝑥
8 ) cos (

𝑥
4 ) cos (

𝑥
2 )
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Troubles with the Infinite

And so on….after the 𝑛𝑡ℎ stage of this process one can re-arrange the the above into
the following (completely legitimate) identity:

sin 𝑥
2𝑛 sin 𝑥

2𝑛
= cos 𝑥

2 cos 𝑥
4 cos 𝑥

8 cos 𝑥
16 ⋯ cos 𝑥

2𝑛

Viete realized that as 𝑛 gets really large, the function 2𝑛 sin(𝑥/2𝑛) starts to look a lot
like the function 𝑥…and making this replacement in the formula as we let 𝑛 go to
infinity yields

Proposition 0.9 (Viète’s Trigonometric Identity).

sin 𝑥
𝑥 = cos 𝑥

2 cos 𝑥
4 cos 𝑥

8 cos 𝑥
16 ⋯

An incredible, infinite trigonometric identity! Of course, there’s a huge question
about its derivation: are we absolutely sure we are justified in making the denom-
inator there equal to 𝑥? But carrying on without fear, we may attempt to plug in
𝑥 = 𝜋/2 to both sides, yielding

2
𝜋 = cos 𝜋

4 cos 𝜋
8 cos 𝜋

16 cos 𝜋
32 ⋯

Now, we are left just to simplify the right hand side into something computable, using

more trigonometric identities! We know cos 𝜋/4 is √2
2 , and we can evaluate the other

terms iteratively using the half angle identity:

cos 𝜋
8 = √

1 + cos 𝜋
4

2 = √
1 + √2

2
2 = √2 + √2

2

cos 𝜋
16 = √

1 + cos 𝜋
8

2 = √
1 + √2+√2

2
2 = √2 + √2 + √2

2

Substituting these all in gives the original product. And, while this derivation
has a rather dubious step in it, the end result seems to be correct! Computing
the first ten terms of this product on a computer yields 0.63662077105…, wheras
2/𝜋 = 0.636619772. In fact, Viete used his own formula to compute an approximation
of 𝜋 to nine correct decimal digits. This leaves the obvious question, Why does this
argument work?
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The Infinitesimal Calculus

The Infinitesimal Calculus

In trying to formalize many of the above arguments, mathematicians needed to put
the calculus steps on a firm footing. And this comes with a whole collection of its
own issues. Arguments trying to explain in clear terms what a derivative or integral
was really supposed to be often led to nonsensical steps, that cast doubt on the entire
procedure. Indeed, the history of calculus is itself so full of confusion that it alone
is often taken as the motivation to develop a rigorous study of analysis. Because we
have already seen so many other troubles that come from the infinite, we will content
ourselves with just one example here: what is a derivative?

The derivative is meant to measure the slope of the tangent line to a function. In
words, this is not hard to describe. But like the sine function, this does not provide
a means of computing, and we are looking for a formula. Approximate formulas are
not hard to create: if 𝑓 (𝑥) is our function, and ℎ is some small number the quantity

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

represents the slope of the secant line to 𝑓 between 𝑥 and ℎ. For any finite size
in ℎ this is only an approximation, and so thinking of this like Archimedes did his
polygons and the circle, we may decide to write down a sequence of ever better ap-
proximations:

𝐷𝑛 =
𝑓 (𝑥 + 1

𝑛 ) − 𝑓 (𝑥)
1
𝑛

and then define the derivative as the infiniteth term in this sequence. But this is just
incoherent, taken at face value. If 1/𝑛 → 0 as 𝑛 → ∞ this would lead us to

𝑓 (𝑥 + 0) − 𝑓 (𝑥)
0 = 0

0

So, something else must be going on. One way out of this would be if our sequence
of approximates did not actually converge to zero - maybe there were infinitely small
nonzero numbers out there waiting to be discovered. Such hypothetical numbers
were called infinitesimals.

Definition 0.6 (Infinitesimal). A positive number 𝜖 is infinitesimal if it is smaller
than 1/𝑛 for all 𝑛 ∈ ℕ.

31



Troubles with the Infinite

This would resolve the problem as follows: if 𝑑𝑥 is some infinitesimal number, we
could define the derivative as

𝐷 = 𝑓 (𝑥 + 𝑑𝑥) − 𝑓 (𝑥)
𝑑𝑥

But this leads to its own set of difficulties: its easy to see that if 𝜖 is an infinitesimal,
then so is 2𝜖, or 𝑘𝜖 for any rational number 𝑘.

Exercise 0.13. Prove this: if 𝜖 is infinitesimal and 𝑘 ∈ ℚ show 𝑘𝜖 is infinitesimal$.

So we can’t just say define the derivative by saying “choose some infinitesimal 𝑑𝑥”
- there are many such infinitesimals and we should be worried about which one we
pick! What actually happens if we try this calculation in practice, showcases this.

Let’s attempt to differentiate 𝑥2, using some infinitesimal 𝑑𝑥 . We get

(𝑥2)′ = (𝑥 + 𝑑𝑥)2 − 𝑥2
𝑑𝑥 = 𝑥2 + 2𝑥𝑑𝑥 + 𝑑𝑥2 − 𝑥2

𝑑𝑥
= 2𝑥𝑑𝑥 + 𝑑𝑥2

𝑑𝑥 = 2𝑥 + 𝑑𝑥

Here we see the derivative is not what we expected, but rather is 2𝑥 plus an infinites-
imal! How do we get rid of this? One approach (used very often in the foundational
works of calculus) is simply to discard any infinitesimal that remains at the end of a
computation. So here, because 2𝑥 is finite in size and 𝑑𝑥 is infinitesimal, we would
just discard the 𝑑𝑥 and get (𝑥2)′ = 2𝑥 as desired.

But this is not very sensible: when exactly are we allowed to do this? If we can
discard an infinitesimal whenever its added to a finite number, shouldn’t we already
have done so with the (𝑥 + 𝑑𝑥) that showed up in the numerator? This would have
led to

(𝑥 + 𝑑𝑥)2 − 𝑥2
𝑑𝑥 = 𝑥2 − 𝑥2

𝑑𝑥 = 0
𝑑𝑥 = 0

So, the when we throw away the infinitesimal matters deeply to the answer we get!
This does not seem right. How can we fix this? One approach that was suggested
was to say that we cannot throw away infinitesimals, but that the square of an in-
finitesimal is so small that it is precisely zero: that way, we keep every infinitesimal
but discard any higher powers. A number satisfying this property was called nilpo-
tent as nil was another word for zero, and potency was an old term for powers (𝑥2
would be the *second potency of 𝑥).

Definition 0.7. A number 𝜖 is nilpotent if 𝜖 ≠ 0 but 𝜖2 = 0.
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The Infinitesimal Calculus

If our infinitesimals were nilpotent, that would solve the problem we ran into above.
Now, the calculation for the derivative of 𝑥2 would proceed as

(𝑥 + 𝑑𝑥)2 − 𝑥2
𝑑𝑥 = 𝑥2 + 2𝑥𝑑𝑥 + 𝑑𝑥2 − 𝑥2

=
2𝑥𝑑𝑥 + 0

𝑑𝑥 = 2𝑥

But, in trying to justify just this one calculation we’ve had to invent two new types
of numbers that had never occurred previously in math: we need positive numbers
smaller than any rational, and we also need them (or at least some of those numbers)
to square to precisely zero. Do such numbers exist?
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Part I.

Numbers
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• In Chapter 1 we begin axiomatizing the real numbers by axiomatizing their
operations of addition and multiplication, leading to the field axioms.

• In Chapter 2 we define the notion of inequality in terms of the notion of posi-
tivity which we axiomatize, leading to the definition of an ordered field.

• In Chapter 3 we look to formalize the notion of limit used by the babylonians
and archimedes, and end up with the Nested Interval Property. This leads us to
introduce new concepts (infima and suprema) and a new axiom: completeness.

• In Chapter 4 we define the real numbers as the (unique) complete, ordered field
and study its properties.

• In ?@sec-numbers-functions we look at the modern defintion of real valued
functions, and some of the monstrous objects this allows.
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1. Operations

Highlights of this Chapter: We begin axiomatizing the real numbers
by axiomatizing their operations of addition and multiplication, leading
to the field axioms. We give careful definitions of various notations from
arithmetic, and do several example calculations (including a proof that
2+2 = 4 and (𝑎 + 𝑏)2 = 𝑎2 +2𝑎𝑏 + 𝑏2) to exhibit that all arithmetical facts
are consequences of the field axioms.

The first step to axiomatizing numbers is to give a precise description of addition,
subtraction, multiplication and division. These operations naturally group into two
pairs (addition/subtraction as well as multiplication/division) of operation/inverse, so
first we will formalize the notion of an invertible operation. Furthermore, the two op-
erations are related to one another by the distributive law. Two invertible operations
bonded together by the distributive law form a mathematical structure we call a field,
which is what we axiomatize in this chapter.

1.1. Binary Operations

Definition 1.1 (Binary Operation). A binary operation ⋆ on a set 𝑆 is a rule that
takes any two elements of 𝑆 and combines them to make a new element of 𝑆.
Formally, this is a function ⋆∶ 𝑆×𝑆 → 𝑆. Whereas we oftenwrite functions 𝑓 ∶ 𝑆×𝑆 →
𝑆 as 𝑓 (𝑎, 𝑏) for a binary operation we traditionally write the function name in the
middle so 𝑎 ⋆ 𝑏 instead of ⋆(𝑎, 𝑏).

Addition is a binary operation on the natural numbers, integers, rationals, and real
numbers. Subtraction is a binary operation on the integers, but not on the natural
numbers, as 4 − 7 = −3 gives an element not in the original set.

Definition 1.2 (Commutativity & Associativity). An operation ⋆ is commutative if
the order the elements are combined does not affect the outcome: for all elements
𝑎, 𝑏 ∈ 𝑆

𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎

An operation is associative if combinations of 3 or more terms can be re-grouped at
will (not changing the order), without affecting the outcome: for all 𝑎, 𝑏, 𝑐 ∈ 𝑆

(𝑎 ⋆ 𝑏) ⋆ 𝑐 = 𝑎 ⋆ (𝑏 ⋆ 𝑐)
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1. Operations

The operation of addition is commutative and associative, but the operation of sub-
traction is neither. The operation of matrix multiplication is associative, but is not
commutative in general.

An operation which is commutative but not associative is given by the children’s
game rock paper scissors: if 𝑆 = {𝑟 , 𝑝, 𝑠} we may define the operation ⋆ to select the
winning element of any pair. Thus, because paper beats rock, we have 𝑟 ⋆ 𝑝 = 𝑝.
Explain why this is commutative, and find an example proving it is not associative.

Definition 1.3 (Identities & Inverses). Let 𝑆 be a set with binary operation ⋆. Then
an element 𝑒 ∈ 𝑆 is an identity for the operation if it does not change any elements
under combination. Formally, for all 𝑠 ∈ 𝑆

𝑒 ⋆ 𝑠 = 𝑠 ⋆ 𝑒 = 𝑠

Given a binary operation ⋆ on a set 𝑆 with identity 𝑒 ∈ 𝑆, an element 𝑥 ∈ 𝑆 is invertible
if it can be combined with something to produce the identity. That is, if there exists
a 𝑦 ∈ 𝑆 with

𝑥 ⋆ 𝑦 = 𝑦 ⋆ 𝑥 = 𝑒

This element 𝑦 is called the inverse of 𝑥 . An operation ⋆ is called invertible if every
element of 𝑆 has an inverse.

Zero is the identity of the operation of addition, 1 is the identity of multiplication (in
any familiar number system you’d like to take as an example). The identity matrix
( 1 00 1 ) is the identity of 2×2matrix multiplication. Not all operations have an identity.
Can you see why there is no identity operation for exponentiation 𝑥𝑦 on the positive
integers?

The operation of addition is invertible, and its inverse is subtraction. The operation of
multiplication is not invertible, because the number 0 does not have an inverse (you
can’t divide by zero! We’ll prove this soon)

Definition 1.4 (Group). A group is a set 𝐺 with an associative, invertible binary
operation 𝑒.

1.2. Fields

We’ve defined what a nice binary operation is. Numbers have two of these!

Definition 1.5 (Distributive Law). Let 𝑆 be a set with two commutative binary oper-
ations +, ⋅. Then ⋅ distributes over + if for all 𝑎, 𝑏, 𝑐 ∈ 𝑆 we have

𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐)
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1.2. Fields

Definition 1.6 (Field). A Field is a set 𝔽 with two binary operations denoted + (ad-
dition) and ⋅ (multiplication) satisfying the following axioms.

• (Commutativity) If 𝑎, 𝑏 ∈ 𝔽 then 𝑎 + 𝑏 = 𝑏 + 𝑎 and 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎.
• (Associativity) If 𝑎, 𝑏, 𝑐 ∈ 𝔽 then (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) and (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐)
• (Identities) There are special elements denoted 0, 1 ∈ 𝔽 where for all 𝑎 ∈ 𝔽,
𝑎 + 0 = 𝑎 and 1 ⋅ 𝑎 = 𝑎.

• (Inverses) For every 𝑎 ∈ 𝔽 there is an element −𝑎 such that 𝑎 + (−𝑎) = 0. If
𝑎 ≠ 0, then there is also an element 𝑎−1 such that 𝑎 ⋅ 𝑎−1 = 1.

• (Distributivity) If 𝑎, 𝑏, 𝑐 ∈ 𝔽 then 𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐)

Example 1.1. The rational numbersℚ form a field, but the integersℤ do not, as they
do not contain multiplicative inverses.

1.2.1. Shorthand Notation

We will work with fields and their operations throughout the course, so it is useful to
introduce some shorthand notation that is familiar to us from previous mathematics
classes, and put it on rigorous foundations in terms of the field axioms.

• Since addition and multiplication are associative, we will drop parentheses
when three or more terms are combined using the same operation. That is,
we will write 𝑎 + 𝑏 + 𝑐 for both (𝑎 + 𝑏) + 𝑐 and 𝑎 + (𝑏 + 𝑐) when convenient.

• Wewill adopt the convention that multiplication takes precedence over addition;
that is, we drop parentheses in (𝑎 ⋅ 𝑏) + 𝑐 to allow ourselves to write 𝑎 ⋅ 𝑏 + 𝑐; but
we require parentheses to write 𝑎 ⋅ (𝑏 + 𝑐).

• We will denote multiplication by simple juxtaposition when convenient, drop-
ping the ⋅ symbol. That is, we will write 𝑎𝑏 for 𝑎 ⋅ 𝑏 and 𝑎(𝑏 + 𝑐) for 𝑎 ⋅ (𝑏 + 𝑐).

• We use a bar 𝑎
𝑏 to denote multiplication by the inverse: that is 𝑎(𝑏−1).

We also have a special shorthand for numerals, familiar to all

• The numerals 0 and 1 denote the special elements of any field guaranteed to
exist by the axioms.

• We write 2 as a shorthand for 1 + 1.
• We write 3 as a shorthand for 2 + 1.
• We write 4 as a shorthand for 3 + 1.

For large integers, we use the base 10 system unless otherwise specified. That is, we
interpret 364 as 3 ⋅ 102 + 6 ⋅ 101 + 4 ⋅ 100.

Exercise 1.1 (2 + 2 and 2 ⋅ 2). Prove, using only the field axioms and the definitions
of the symbols 0, 1, 2, 3, 4 that 2 + 2 = 4 and 2 ⋅ 2 = 4.
Show that 2 is the only natural number where 𝑥 + 𝑥 = 𝑥 ⋅ 𝑥 .
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1. Operations

1.3. Elementary Computations

Example 1.2 (Multiplication by Zero).

0𝑥 = 0

To prove this for an arbitrary 𝑥 ∈ 𝔽, recall that 0 is the additive identity so for any
field element 𝑐, we have 0 + 𝑐 = 𝑐. Thus, when 𝑐 = 0 we have 0 + 0 = 0. We can use
this together with the distributive property to get

0𝑥 = (0 + 0)𝑥
= 0𝑥 + 0𝑥

Now, we can take the additive inverse of 0𝑥 and add it to both sides:

0𝑥 + (−0𝑥) = 0𝑥 + 0𝑥 + (−0𝑥)
This gives the additive identity 0 by definition on the left side, and cancels one of the
factors of 0𝑥 on the right, yielding

0 = 0𝑥 + 0

Finally we use again that 0 is the additive identity to see 0𝑥 + 0 = 0𝑥 , which gives us
what we want:

0𝑥 = 0

Example 1.3 (The Zero-Product Property). Let 𝑎, 𝑏 be elements of a field and assume
that 𝑎𝑏 = 0. Then either 𝑎 = 0 or 𝑏 = 0.
We assume that both 𝑎 and 𝑏 are nonzero, and see that we reach a contradiction. Since
they’re nonzero, they have multiplicative inverses 𝑎−1 and 𝑏−1, so we may multiply
both sides of 𝑎𝑏 = 0 by these to get

𝑏−1𝑎−1𝑎𝑏 = 𝑏−1𝑎−10

On the left this simplifies to 𝑏−11𝑏 = 𝑏−1𝑏 = 1 by definition, and on the right this
becomes 0(𝑏−1𝑎−1) = 0 by the previous example. Thus, we’ve proven 0 = 1! So this
could not have been the case, and either 𝑎 or 𝑏 must have not been invertible to start
with - they must have been zero.
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1.3. Elementary Computations

Example 1.4 (Additive Inverses and Negatives).

−𝑥 = (−1)𝑥

The definition of the symbol −𝑥 is the element of 𝔽 which, when added to 𝑥 , gives 0.
Thus, to prove that −𝑥 = −1𝑥 we want to prove that if you add (−1)𝑥 to 𝑥 , you get 0.
Since 1 is the additive identity, we know 1𝑥 = 𝑥 so we may write

𝑥 + (−1𝑥) = 1𝑥 + (−1𝑥)

Using the fact that multiplication is commutative and the distributive law, we may
factor out the 𝑥 :

1𝑥 + (−1)𝑥 = (1 + (−1))𝑥

Now, by definition 1 + (−1) is the additive identity 0, so this is just equal to 0𝑥 . But
by Example 1.2 we know 0𝑥 = 0! Thus

𝑥 + (−1𝑥) = 0
And so −1𝑥 is the additive inverse of 𝑥 as claimed. Thus we may write −𝑥 = (−1)𝑥

Example 1.5 (Negative times a Negative).

(−1)(−1) = 1

This is an immediate corollary of the above: we know that (−1)𝑥 is the additive in-
verse of 𝑥 , and so (−1)(−1) is the additive inverse of −1. But this is just 1 itself, by
definition!

Exercise 1.2 (Negative of a Negative). For any 𝑥 ∈ 𝔽 we have

−(−𝑥) = 𝑥

All of the standard arithmetic “rules” learned in grade school are consequences of
the field axioms, and so you are welcome to use all of them in this course, without
comment. To feel justified in doing this, its good to prove a couple of them yourself,
to convince yourself that you could in fact trace and any all such manipulations back
to the rigorous axioms we laid down.

Exercise 1.3 (The difference of squares). Prove that for any 𝑎, 𝑏 ∈ 𝔽
(𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏2

In your proof you may use the field axioms, the notational shorthands, and any of the
example properties proved above in the notes. Anything else you need, you should
prove from this.
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1. Operations

Exercise 1.4. Prove, using the field axioms and our notational shorthands, for any
𝑎, 𝑏 and 𝑐 ≠ 0

𝑎 + 𝑏
𝑐 = 𝑎

𝑐 + 𝑏
𝑐

Exercise 1.5. Prove that fraction addition works by finding a common denominator:
for any 𝑎, 𝑐 and nonzero 𝑏, 𝑑

𝑎
𝑏 + 𝑐

𝑑 = 𝑎𝑑 + 𝑏𝑑
𝑏𝑑

In your proof you may use the field axioms, the notational shorthands, and any of the
example properties proved above in the notes. Anything else you need, you should
prove from this.

1.4. Problems

Exercise 1.6. Fix some number 𝑟 ≠ 1 in a field, and prove by induction that

1 + 𝑟 + 𝑟2 + ⋯ + 𝑟𝑛 = 1 − 𝑟𝑛+1
1 − 𝑟

FURTHER TOPICS

Other Fields (define binary field just with symbols 0,1: show it satisfies axioms)

Show R2 is not a field

Field of Fractions

1.4.1. Base Systems

Euclidean division with remainder

Existence of base 10 expansion for any natural number

Base 5, base 2, other bases.

Examples finding base 16 expressions.
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2. Order

Highlights of this Chapter: Wedefine the notion of inequality in terms
of the notion of positivity which we axiomatize, leading to the definition
of an ordered field. We prove this new axiom is required as not all fields
can be ordered (by looking at the complex numbers), and then we inves-
tigate several important properties and definitions related to order that
are essential to real analysis:

• We define absolute value, and give several characterizations
• We prove the triangle inequality
• We define square roots, and 𝑛𝑡ℎ roots

2.1. Defining Inequality

How are we supposed to make sense of 𝑎 < 𝑏? One approach is to start by thinking
about a simpler case: can formalize the idea 𝑎 > 0? We will give axioms for how the
set of positive numbers should behave:

Definition 2.1 (Positivity). A subset 𝑃 ⊂ 𝔽 is called the positive elements if

• (Trichotomy) For every 𝑎 ∈ 𝔽 exactly one of the following is true: 𝑎 = 0, 𝑎 ∈ 𝑃
−𝑎 ∈ 𝑃 .

• (Closure) If 𝑎, 𝑏 ∈ 𝑃 then 𝑎 + 𝑏 ∈ 𝑃 and 𝑎𝑏 ∈ 𝑃 .

Given these, we can define inequality in terms of positivity!

Definition 2.2 (Inequality). Let 𝐹 be an ordered field and 𝑃 a set of positive elements
for 𝐹 . If 𝑎, 𝑏 ∈ 𝔽, we write 𝑎 < 𝑏 as a shorthand for the statement that 𝑏 − 𝑎 ∈ 𝑃 , and
we write 𝑎 ≤ 𝑏 if either 𝑎 < 𝑏 or 𝑎 = 0.
Analogously, we write 𝑎 > 𝑏 if 𝑎 − 𝑏 ∈ 𝑃 and 𝑎 ≥ 𝑏 if either 𝑎 > 𝑏 or 𝑎 = 𝑏.

Definition 2.3 (Ordered Field). An ordered field is a field 𝐹 together with a fixed
choice of positive elements 𝑃 (which then gives a precise definition of inequality).
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2. Order

2.1.1. Properties of Ordered Fields

Proposition 2.1 (1 is a Positive Number). If (𝐹 , 𝑃) is any ordered field, then 1 ∈ 𝑃 .

Proof. Since 1 ≠ 0 we know that either 1 ∈ 𝑃 or −1 ∈ 𝑃 . So, to show 1 ∈ 𝑃 its enough
to see −1 ∈ 𝑃 leads to contradiction.

If −1 ∈ 𝑃 then by closure, (−1)(−1) = 1 ∈ 𝑃 : so now we have both 1 and −1 in 𝑃 ,
contradicting trichotomy.

Exercise 2.1 (Squares are Positive). Let 𝐹 be an ordered field and 𝑥 ≠ 0 an element.
Then 𝑥2 > 0.

Proposition 2.2 (ℂ is not ordered). The complex numbers cannot be made into an
ordered field: there is no subset 𝑃 ⊂ ℂ such that 𝑃 is a positive cone for ℂ.

Proof. The complex numbers contain an element 𝑖 with the property that 𝑖2 = −1. If
they were ordered, since 𝑖 ≠ 0 we know either 𝑖 ∈ 𝑃 or −𝑖 ∈ 𝑃 , but both of these lead
to contradiction.

If 𝑖 ∈ 𝑃 then 𝑖2 = −1 ∈ 𝑃 contradicting the previous theorem that 1 ∈ 𝑃 always. And
−𝑖 ∈ 𝑃 leads to the same problem: (−𝑖)2 = (−𝑖)(−𝑖) = − − (𝑖2) = 𝑖2 = −1, so −1 ∈ 𝑃
again.

This may seem like a strange example to start with, as the course is about real anal-
ysis. But its actually quite important: every time we introduce a new concept to the
foundations of our theory we should ask ourselves, is this an axiom, or a theorem?
We don’t want to add as axioms things that we can already prove from the existing
axioms, as that is redundant! So before adding a new axiom, we should convince our-
self that its necessary: that it is impossible to prove the existence of this new structure
given the previous. And that’s what this example does. By exhibiting something that
satisfies all the field axioms but cannot be ordered, we see that it is logically impossible
to prove the existence of an order from the field axioms alone, and thus we must take
Definition 2.3 as a new axiom.

Theorem 2.1 (The Rationals are an Ordered Field).

In fact the rationals are uniquely ordered: we know that 1 > 0 and this, together with
the behavior of inequality, determines exactly when one rational number is greater
than any other.

Exercise 2.2. Prove that 𝑎
𝑏 < 𝑐

𝑑 if and only if 𝑎𝑑 < 𝑏𝑐.
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2.2. Working with Inequalities

2.1.2. Definitions Requiring an Order

Definition 2.4 (Intervals). Let 𝐹 be an ordered field. We write [𝑎, 𝑏] for the set {𝑥 ∣
𝑎 ≤ 𝑥 ≤ 𝑏}, and call this set a closed interval in 𝐹 . Similarly we write (𝑎, 𝑏) for the
set {𝑥 ∣ 𝑎 < 𝑥 < 𝑏}, which we call an open interval. Mixed intervals are also possible,
such as [𝑎, 𝑏) = {𝑥 ∣ 𝑎 ≤ 𝑥 < 𝑏}.
An unbounded interval, or a ray is a set of the form {𝑥 ∣ 𝑥 > 𝑎} or {𝑥 ∣ 𝑥 ≥ 𝑎}. We call
the first an open ray and the latter a closed ray, and often denote them (𝑎, ∞) or [𝑎∞)
as a shorthand. Similarly with (−∞, 𝑎) and (−∞, 𝑎].

Definition 2.5 (Absolute Value). Let 𝔽 be an ordered field. Then the absolute value
is a function | ⋅ | ∶ 𝔽 → 𝔽 defined by

|𝑥 | = {𝑥 𝑥 ≥ 0
−𝑥 𝑥 < 0

Definition 2.6 (The √⋅ symbol). Let 𝔽 be an ordered field, and 𝑥 ∈ 𝔽. If there exists
a 𝑦 ≥ 0 in 𝔽 such that 𝑦2 = 𝑥 , we call 𝑦 the square root of 𝑥 and denote √𝑥 .
We generalize this by defining 𝑞√𝑥 to be the number 𝑦 with 𝑦𝑝 = 𝑥 , when such a
number exists.

Exercise 2.3 (No Square Roots of Negatives). Let 𝐹 be any ordered field, and let 𝑥 < 0.
Prove that 𝑥 does not have a square root in 𝐹 .

Definition 2.7 (Rational Powers). Let 𝑎 ∈ 𝔽 and 𝑝/𝑞 ∈ ℚ.
Then if the element 𝑎𝑝 ∈ 𝔽 has a 𝑞𝑡ℎ root, we define the fractional power 𝑎𝑝/𝑞 as

𝑎𝑝/𝑞 = 𝑞√𝑎𝑝

2.2. Working with Inequalities

All the standard properties of inequalities from arithmetic hold in an ordered field,
and so you will be able to use them without comment throughout the course. How-
ever, its good to derive a few of these for yourselves from the definitions at first, to
see how it goes.

Example 2.1 (Inequality is antisymmetric). By trichotomy we see that for every
𝑥 ≠ 𝑦 we have either 𝑥 < 𝑦 or 𝑦 < 𝑥 (as, 𝑥 − 𝑦 ≠ 0 implies either 𝑥 − 𝑦 ∈ 𝑃 , so
𝑥 − 𝑦 > 0 and 𝑥 > 𝑦 or the reverse).

Proposition 2.3 (Inequality is transitive). Let 𝐹 be an ordered field and 𝑎, 𝑏, 𝑐 in 𝐹 . If
𝑎 < 𝑏 and 𝑏 < 𝑐, then 𝑎 < 𝑐.
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2. Order

Proof. If 𝑎 < 𝑏 then 𝑏 − 𝑎 ∈ 𝑃 . Similarly, 𝑏 < 𝑐 implies 𝑐 − 𝑏 ∈ 𝑃 . Closure then tells us
their sum, (𝑐 − 𝑏) + (𝑏 − 𝑎) ∈ 𝑃 , and so after simplifying,

𝑐 + (−𝑏 + 𝑏) − 𝑎 = 𝑐 + 0 − 𝑎 = 𝑐 − 𝑎 ∈ 𝑃

This is the definition of 𝑐 > 𝑎.

Exercise 2.4 (Adding to an Inequality). Let 𝐹 be an ordered field and 𝑎, 𝑏, 𝑐 ∈ 𝐹 with
𝑎 < 𝑏. Then

𝑎 + 𝑐 < 𝑏 + 𝑐

Proposition 2.4 (Multiplying an Inequality). Let 𝐹 be an ordered field and 𝑎, 𝑏, 𝑐 ∈ 𝐹
with 𝑎 < 𝑏. Then if 𝑐 > 0, it follows that 𝑐𝑎 < 𝑐𝑏, and if 𝑐 < 0 we have instead 𝑐𝑎 > 𝑐𝑏.

Proof. First treat the case 𝑐 > 0. Since 𝑎 < 𝑏we know 𝑏−𝑎 ∈ 𝑃 , and 𝑐 ∈ 𝑃 so 𝑐(𝑏−𝑎) ∈ 𝑃
by the closure axiom. Distributing gives 𝑐𝑏 − 𝑐𝑎 ∈ 𝑃 which is the definition of 𝑐𝑏 > 𝑐𝑎.
Now, if 𝑐 < 0, we know 𝑐 ∉ 𝑃 , so −𝑐 ∈ 𝑃 . Closure then gives (−𝑐)(𝑏 − 𝑎) ∈ 𝑃 , and
simplifying yields −𝑐𝑏 + 𝑐𝑎 ∈ 𝑃 or 𝑐𝑎 − 𝑐𝑏 ∈ 𝑃 , the definition of 𝑐𝑎 > 𝑐𝑏.

2.2.1. Powers and Roots

Some basic inequalities for powers and roots that will prove useful: like other basic
properties of inequalities, you do not need to prove or cite these when you use them
in this course, but it is good to have a reference seeing why they are true from our
axioms.

Example 2.2 (𝑥 ↦ 𝑥2 is increasing). If 𝐹 is an ordered field and 𝑎, 𝑏 ∈ 𝐹 are elements
with 0 < 𝑎 < 𝑏 then 𝑎2 < 𝑏2.
To prove this, we use both Proposition 2.3 and Proposition 2.4. Since 𝑎 < 𝑏 and 𝑎 > 0
we see 𝑎2 < 𝑎𝑏. But since 𝑎 < 𝑏 and 𝑏 > 0, we see 𝑎𝑏 < 𝑏2. Putting these together
yields 𝑎2 < 𝑎𝑏 < 𝑏2, so 𝑎2 < 𝑏2.

Its necessary to assume 𝑎, 𝑏 are positive in the theorem above: for example −3 < 1
but (−3)2 = 9 is not less than 12 = 1. In fact this proof works in reverse as well (check
this!) to provide the following useful fact:

Proposition 2.5. If 𝑎, 𝑏 ∈ 𝔽 are positive elements of an ordered field, then

𝑎 < 𝑏 ⟺ 𝑎2 < 𝑏2

This generalizes to arbitrary powers:
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2.3. Working with Absolute Values

Exercise 2.5 (𝑥 ↦ 𝑥𝑛 is increasing). Prove that if 𝐹 is an ordered field containing
positive elements 𝑎, 𝑏, then for all 𝑛 ∈ ℕ, 𝑎 < 𝑏 if and only if 𝑎𝑛 < 𝑏𝑛 .

In fact, when 𝑛 is odd, you may wish to prove that you can remove the assumption
that 𝑎, 𝑏 > 0.
Here’s a quick fact about inequalities that will prove useful to us later on in the
course:

Exercise 2.6 (Bernoulli’s inequality). Let 𝔽 be an ordered field and 𝑥 > 0 be a positive
element. Prove by induction that for all natural numbers ℕ

(1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥

Exercise 2.7 (√⋅ is increasing). Prove that if 0 < 𝑥 < 𝑦 in an ordered field 𝐹 , and 𝐹
contains the square roots √𝑥, √𝑦 , then √𝑥 < √𝑦 .

Proposition 2.6. If 𝑟 ∈ ℚ, 𝑟 > 0 is a positive rational number and 𝑥, 𝑦 ∈ 𝐹 are positive
field elements

𝑥 < 𝑦 ⟹ 𝑥 𝑟 < 𝑦 𝑟

Proof. Use that 𝑥 𝑟 = 𝑥𝑝/𝑞 = ( 𝑞√𝑥𝑝) to break this into two problems: first 𝑥 < 𝑦 implies
𝑥𝑝 < 𝑦𝑝 . Now, if 𝑢 = 𝑥𝑝 and 𝑣 = 𝑦𝑝 we have 𝑢 < 𝑣 ⟹ 𝑞√𝑢 < 𝑞√𝑣 , completing the
proof.

2.3. Working with Absolute Values

Proposition 2.7 (Absolute Values and Maxima). For all 𝑥 in an ordered field,

|𝑥| = max{𝑥, −𝑥}

Corollary 2.1. If 𝑥, 𝑎 are in an ordered field, the conditions −𝑥 < 𝑎 and 𝑥 < 𝑎 are
equivalent to

|𝑥| < 𝑎

Proof. If −𝑥 < 𝑎 and 𝑥 < 𝑎 then max{𝑥, −𝑥} < 𝑎, so by Proposition 2.7, |𝑥 | < 𝑎.
Conversely, if |𝑥 | < 𝑎 then max{𝑥, −𝑥} < 𝑎 so both 𝑥 < 𝑎 and −𝑥 < 𝑎.

Corollary 2.2 (Defining Feature of the Absolute Value). Let 𝐹 be an ordered field:
then |𝑥 | < 𝑎 if and only if −𝑎 < 𝑥 < 𝑎.
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Proof. By the above |𝑥| < 𝑎 means 𝑥 < 𝑎 and −𝑥 < 𝑎. Multiplying the second inequal-
ity by −1 yields 𝑥 > −𝑎, and stringing them together results in −𝑎 < 𝑥 < 𝑎.

Finally, we can get a formula for the absolute value in terms of squaring and roots.

Example 2.3. For all 𝑥 in an ordered field |𝑥 | = √𝑥2.

Example 2.4 (Multiplication and the Absolute Value).

|𝑥𝑦 | = |𝑥||𝑦 |

| 𝑥𝑦 | = |𝑥|
|𝑦 |

The interaction of the absolute value with addition is more subtle, but crucial. One
of the most important inequalities in all of analysis is the triangle inequality of the
absolute value:

Proposition 2.8 (The Triangle Inequality). For any 𝑥, 𝑦 in an ordered field

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦 |

Proof. It suffices to prove that we have both

𝑥 + 𝑦 ≤ |𝑥| + |𝑦 | − (𝑥 + 𝑦) ≤ |𝑥| + |𝑦 |

For the first, note that as 𝑥 ≤ |𝑥| and 𝑦 ≤ |𝑦 |,
𝑥 + 𝑦 ≤ |𝑥| + 𝑦 ≤ |𝑥| + |𝑦 |

Similar reasoning succeeds for the second as −𝑥 ≤ |𝑥| and −𝑦 ≤ |𝑦 |:
−𝑥 − 𝑦 ≤ |𝑥| + (−𝑦) ≤ |𝑥| + |𝑦 |

Exercise 2.8. Let 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 be any finite sum. Prove that

|
𝑛
∑
𝑖=1

𝑎𝑖| ≤
𝑛
∑
𝑖=1

|𝑎𝑖|

The reverse triangle inequality is another very useful property of absolute values,
logically equivalent to the usual triangle inequality, but giving a lower bound for
|𝑎 − 𝑏| instead of an upper bound for |𝑎 + 𝑏|.
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2.4. Problems

Exercise 2.9 (Reverse Triangle Inequality). Prove that for all 𝑎, 𝑏 in an ordered field
𝐹

||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|

Finally, two corollaries of the triangle inequality and its reverse, by replacing 𝑦 with
−𝑦 .

Corollary 2.3 (Corollaries of the Triangle Inequality). For all 𝑥, 𝑦 in an ordered field,

|𝑥 − 𝑦| ≤ |𝑥| + |𝑦 |

|𝑥 + 𝑦| ≥ ||𝑥| − |𝑦 ||

2.4. Problems

EXTRA STUFF

Fields with multiple orderings

Q adjoin sqrt 2 as an arbitrart element tau: two ways to order it.

Field of rational functions: how do we order x?

2.4.1. ★ Topology

A final familiar property that arises from ordering a field is the notion of open sets
and closed sets. This in turn is the foundations of the subject of topology or the ab-
stract study of shape, which becomes quite important in advanced applications of
analysis.

We will not require any deep theory in this course, and stop pause briefly to give a
definition of openness and closedness.

Definition 2.8 (Open Set). A set of the form (𝑎, 𝑏) = {𝑥 ∣ 𝑎 < 𝑥 < 𝑏} is called an
open interval. A set 𝑈 ⊂ 𝔽 is called open, if for every point 𝑢 ∈ 𝑈 there is some open
interval 𝐼 containing 𝑢 which is fully contained in 𝑈 :

𝑢 ∈ 𝐼 ⊂ 𝑈

One notable property of this definition: the empty set ∅ = {} is open, as this con-
dition is vacuously true: there are no points of ∅ so this condition doesn’t pose any
restriction!
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Exercise 2.10. Explain why the set 𝑈 = {𝑥 ∣ 𝑥 > 0 and 𝑥 ≠ 2} is an open set.

Exercise 2.11. Let {𝑈𝑛} be any collection of open sets. Prove that the union ⋃𝑛 𝑈𝑛 is
also open.

Hint: his collection doesn’t have to be finite, so induction won’t help us here. Can you
supply a direct proof, using the definition of union and open?

Definition 2.9 (Closed Set). A set is 𝐾 ⊂ 𝔽 is closed, if its complement is an open set.

Exercise 2.12. Show that intervals of the form [𝑎, 𝑏] = {𝑥 ∣ 𝑎 ≤ 𝑥 ≤ 𝑏} are closed
sets. This is why we call them closed intervals in calculus courses.

This terminology is rather unfortunate when first learning the subject, as while open
and closed are antonyms in english, they are not in mathematics! Being open is a
special property that most sets do not have, and so being closed (which is defined
relative to an open set) is also a special property. Most sets are neither open nor
closed!

Example 2.5 (A set that is neither open nor closed). The set 𝑆 = [1, 2) is neither
open nor closed. Its not open because the point 1 ∈ 𝑆, but there is no open interval
containing 1 which is fully contained in 𝑆 (every open interval containing 1 contains
numbers smaller than 1 as well).

To see its not closed, we need to show that its complement is not open. Its complement
is the set

𝑆𝑐 = {𝑥 ∣ 𝑥 < 1} ∪ {𝑥 ∣ 𝑥 ≥ 2}
Here we have the same problem at the number two: 2 ∈ 𝑆𝑐 but there is no open
interval containing 2 which is fully inside 𝑆𝑐 , as any such interval would contain
points less than 2, and these are not in 𝑆𝑐 .
Thus, [1, 2) is neither open nor closed.

But perhaps even stranger, not only can sets be neither open nor closed, but they can
also be both open and closed! Such sets are called clopen.

Example 2.6 (A set that is both open and closed). If 𝔽 is the entire ordered field, 𝔽
is both open and closed.

To see it is open, note for any 𝑥 we can form the interval (𝑥 − 1, 𝑥 + 1) and this lies
inside of 𝔽. To see its closed, note that its complement is the empty set and this is
vacuously open as commented above.
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2.4. Problems

2.4.2. ★ Measure

Generalizes the concept of length of an interval.

Give sketch of definition with inner and outer measure

If a set is covered in intervals of total length 𝐿 its measure must be less than 𝐿. Moti-
vates def of measure zero below.

Definition 2.10 (Measure Zero). Covered with intervals of total length < 𝜖, for any
epsilon.
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3. Completeness

Highlights of this Chapter: We look to formalize the notion of limit
used by the babylonians and archimedes, and come to the Nested Inter-
val Property. We see that this property does not hold in ℚ, so we must
seek another axiom which implies us. This leads us to bounds, infima,
and suprema. We study the properties of this new definition, use it to de-
fine completeness, and show completeness does indeed imply the nested
interval property, as we wished.

Now that we have axiomatized the notion of a ‘number line’ as an ordered field, it’s
time to try and figure out how to describe “completed” infinite processes in a formal
way. This is an inherently slippery notion, as it runs into the difficulty of “talking
about infinity, without saying infinity” that lies at the heart of analysis.

So, before introducing the abstract tools that end up best suited for this task (the
infimum and supremum), we’ll begin with some motivational exploration, and think
about what sort of theorems we wouldwant to be true in a number system that allows
one to do infinite constructions.

3.1. Dreaming of Infinity

Archimedes idea for calculating 𝜋 was to give an upper bound and a lower bound for
the area of a circle, in terms of the area 𝑎𝑛 of an inscribed polygon and a circumscribed
polygon𝐴𝑛 . This provided an interval that archimedes hoped to trap 𝜋 inside of, each
time 𝑛 grows, 𝑎𝑛 grows and 𝐴𝑛 shrinks - so the confidence interval of Archimedes
shrinks!

⋯ [𝑎6, 𝐴6] ⊃ [𝑎12, 𝐴12] ⊃ [𝑎24, 𝐴24] ⊃ ⋯

A collection of intervals like this is called nested:

Definition 3.1 (Nested Intervals). A sequence of intervals 𝐼1, 𝐼2, 𝐼3, … in an ordered
field is called nested if for all 𝑛, 𝐼𝑛+1 ⊆ 𝐼𝑛 .
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3. Completeness

As these nested intervals shrink in size, the hope is that they zero in on 𝜋 exactly:
mathematically we might express this with an intersection over all intervals (where
the questionmark over the equals means we have not proven this, but hope its true)

⋂
𝑛
[𝑎𝑛 , 𝐴𝑛] ?= {𝜋}

The babylonian process approximating √2 can also be recast in terms of a sequence
of nested intervals: where we take the two sides 𝑤𝑛 , ℎ𝑛 (width and height) of each
approximating rectangle as a confidence interval around √2. We of course want, that
in the limit this zeroes in directly on the square root,

⋂
𝑛
[𝑤𝑛 , ℎ𝑛] ?= {√2}

In formulating any of these processes (pre-rigorously, say, in antiquity) mathemati-
cians always assumed without proof that if you had a collection of shrinking inter-
vals, they were shrinking around some number that could be captured after infinitely
many steps. We capture this unstated assumption rigorously below, and title it the
Approximation Property based on its use approximating numbers by intervals:

Definition 3.2 (Approximation Property). A number system has the approximation
property if the intersection of any sequence of nested intervals whose lengths go to
zero contains a single element.

How do we tell if our current axioms imply that our number system has the approx-
imation property? In a situation like this, mathematicians may try to ask what sort
of things satisfy the current axioms and look at these for inspiration. Here - the ra-
tional numbers satisfy the axioms of an ordered field, and this provides a big hint:
Pythagoras proved that there is no rational square root of 2, which implies the Baby-
lonian process does not zero in on any number at all, but rather at infinity reaches
nothing!

⋂
𝑛
[𝑤𝑛 , ℎ𝑛] = ∅

Because there is at least one ordered field (the rationals) that does not satisfy the
dream theorem, we know that these axioms are not enough.

Theorem 3.1. The axioms of an ordered field are not enough to deal with completed
infinity: there are ordered fields in which do not have the approximation property.
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3.2. Suprema and Infima

This tells us we must look to extend our axiom system and search out a new axiom
that will help our number system capture the slippery notion of infinite processes.
One might be tempted to just take the approximation property itself as an axiom(!);
but this comes with its own challenges. The property is rather specific (about certain
collections nested intervals), whereas we want axioms to be as general and simple-to-
state as possible, and worse, it contains a currently undefined term lengths tending to
zero which we would have to first make rigorous.

Happily, it turns out a productive approach to this grows naturally out of our discus-
sion of nested intervals. But, to decrease the complexity instead of focusing on the
entire interval [ℓ𝑛 , 𝑢𝑛], we will look separately at the sequence of lower bounds ℓ𝑛 and
upper bounds 𝑢𝑛 . Understanding the behavior of either of these will turn out to be
enough to extend our axiom system appropriately.

3.2. Suprema and Infima

A confidence interval like [width𝑛 , height𝑛] or [inscribed𝑛 , circumscribed𝑛] gives us
for each 𝑛 both an upper bound for the number we are after, and a lower bound.
It will be useful to describe these concepts more precisely.

Definition 3.3 (Bounds). Let 𝑆 be a nonempty subset of an ordered field. An upper
bound for 𝑆 is an element 𝑢 ∈ 𝔽 greater than or equal to all the elements of 𝑆:

∀𝑠 ∈ 𝑆 𝑠 ≤ 𝑢
A lower bound for 𝑆 is an element ℓ ∈ 𝔽 which is less than or equal to all the elements
of 𝑆:

∀𝑠 ∈ 𝑆 ℓ ≤ 𝑢
𝑆 is said to be bounded above if there exists an upper bound, and to be bounded below
if there exists a lower bound. If 𝑆 is both bounded above and below, then 𝑆 is said to
be bounded.

Definition 3.4 (Maximum & Minimum). Let 𝑆 be a nonempty subset of an ordered
field. Then 𝑆 has a $maximum* if there is an element of 𝑀 ∈ 𝑆 that is also an upper
bound for 𝑆, and a minimum if some element 𝑚 is also a lower bound for 𝑆.

The maximum and minimum elements of a set are the best possible upper and lower
bounds when they exist: after all, you couldn’t hope to find a smaller lower bound
than the maximum, as the maximum would be greater than it, so it couldn’t be an
upper bound! While maxima andminima always exist for finite sets things get trickier
with infinity. For example, the open interval (0, 1) of rational numbers does not have
any maximum element.

The correct generalization of maximum to cases like this is called the supremum: the
best possible upper bound.
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Definition 3.5 (Supremum). Let 𝑆 be a set which is bounded above. The least upper
bound for 𝑆 is a number 𝜎 such that

• 𝜎 is an upper bound for 𝑆
• If 𝑢 is any upper bound, then 𝜎 ≤ 𝑢.

When such a least upper bound exists, we call it the supremum of 𝑆 and denote it
𝜎 = sup 𝑆.

This notion of best possible upper bound allows us to rigorously capture the notion
of endpoint even for infinite sets that do not have a maximum.

Example 3.1 (A set with no maximum). The set (0, 1) = {𝑥 ∈ ℚ ∣ 0 < 𝑥 < 1} has no
maximal element, but it does have a supremum in ℚ, namely 1 = sup 𝑆.

Definition 3.6 (Infimum). The infimum of a set 𝑆 is the least upper bound: that is,
an element 𝜆 where

• 𝜆 is a lower bound for 𝑆.
• If ℓ is any other lower bound for 𝑆, then ℓ ≤ 𝜆.

If such an element exists it is denoted 𝜆 = inf 𝑆.

Example 3.2.

• The set ℕ has no upper bounds at all, so supℕ does not exist. It has many
lower bounds (like 0, and -14), and its infimum is infℕ = 1.

• The rational numbers themselves have no upper nor lower bound, so supℚ and
infℚ do not exist.

3.3. Completeness

Because infima and suprema are such a useful tool to precisely describe the final
state of certain infinite processes, they are a natural choice of object to concentrate
on when looking for an additional axiom for our number system. Indeed - after some
thought you can convince yourself that the statement every infinite process that should
end in some number, does end in some number is equivalent to the following definition
of completeness.

Definition 3.7 (Completeness). An ordered set is complete if every nonempty subset
𝑆 that is bounded above has a supremum.
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3.3. Completeness

Remark 3.1. One question you might ask yourself is why we chose supremum here,
and not infimum - or better, why not both?! It turns out that all of these options are
logically equivalent, as you can prove in some exercises below. So, any one of them
suffices

We can formalize Pythagoras’ observation about the irrationality of √2 in this lan-
guage

Theorem 3.2 (ℚ is not complete). The set 𝑆 = {𝑠 ∈ ℚ ∣ 𝑠2 < 2} does not have a
supremum in ℚ.

Sketch. A rigorous proof can be given by contradiction: assume that a supremum 𝜎 =
sup 𝑆 exists, and then show that we must have 𝜎2 = 2 by ruling out the possibilities
𝜎2 < 2 and 𝜎2 > 2. The calculations required for these steps are more relevant to the
next chapter, so we postpone until then (specifically, Example 4.1 and Exercise 4.2).

Once its known that the supremum must satisfy 𝜎2 = 2, we apply Pythagoras’ obser-
vation (Theorem 0.1) that there are no rational solutions to this equation, to reach a
contradiction.

Thus, asking a field to be complete is a constraint above and beyond being an ordered
field. So, this is a good candidate for an additional axiom! But before we too hastily
accept it, we should check that it actually solves our problem:

Theorem 3.3 (Nested Interval Property). Let 𝔽 be an ordered field which is also
complete, and 𝐼0, 𝐼1, 𝐼2, … , 𝐼𝑛 , … be a collection of nested closed intervals. Then their
intersection is nonempty:

⋂
𝑛≥0

𝐼𝑛 ≠ ∅

Proof. Let 𝐼𝑛 = [𝑎𝑛 , 𝑏𝑛]. We need to use the fact that 𝔽 is complete to help us find a
number which lies in 𝐼𝑛 for every 𝑛. One idea - consider the set of lower endpoints

𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 , …}
This set is nonempty, and because the intervals are nested any one of the 𝑏𝑛’s serves
as an upper bound for 𝐴.

By completeness the supremum must exist: lets call this 𝛼 = sup𝐴. Now we just
need to see that 𝛼 ∈ 𝐼𝑛 = [𝑎𝑛 , 𝑏𝑛] for all 𝑛. Fix some 𝑛: then as 𝑎𝑛 ∈ 𝐴 and 𝛼 is an
upper bound, we know that 𝑎𝑛 ≤ 𝛼 . But 𝑏𝑛 is an upper bound for 𝐴 so the least upper
bound must satisfy 𝛼 ≤ 𝑏𝑛 . Putting these together

𝑎𝑛 ≤ 𝛼 ≤ 𝑏𝑛 ⟹ 𝛼 ∈ 𝐼𝑛
And, since this holds for all natural numbers 𝑛, we actually have 𝛼 ∈ ⋂𝑛 𝐼𝑛 , so the
intersection is nonempty.
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Confirm that the property the ancients assumed held of the number line is now a
theorem of our formal system!

Exercise 3.1 (The Approximation Property). Let 𝐼𝑛 = [𝑎𝑛 , 𝑏𝑛] be a nested sequence of
intervals and assume sup{𝑎𝑛} = inf{𝑏𝑛}. Then show ⋂𝑛 𝐼𝑛 contains exactly one point.

3.4. Working with inf and sup

Proposition 3.1 (Uniqueness of Supremum). If the supremum of a set exists, it is
unique.

Proof. Let𝐴 be a set. To show uniqueness, wewill assume that there are two numbers
𝑥 and 𝑦 which both satisfy the definition of the supremum of 𝐴, and then we will
show 𝑥 = 𝑦 . Thus, any two possibilities for the supremum are equal, so if theres a
supremum at all there can only be one.

To prove 𝑥 = 𝑦 , we will prove 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 . Once we have these two, we can
immediately conclude that since we can’t simultaneously have 𝑥 < 𝑦 and 𝑦 < 𝑥 (what
axiom of an ordered field would this violate?) we must have 𝑥 = 𝑦 .
If 𝑥 and 𝑦 both are least upper bounds for 𝐴, then they are both in particular upper
bounds. So, 𝑥 is an upper bound and 𝑦 is a least upper bound implies 𝑦 ≤ 𝑥 . But
similarly, 𝑦 being an upper bound while 𝑥 is a least upper bound implies 𝑥 ≤ 𝑦 . Thus
𝑥 = 𝑦 and so the supremum is unique.

This uses two important proof techniques in analysis.
First, one way to show that something is unique is to show that if you had two of
them, they have to be equal. Second, to show 𝑥 = 𝑦 it is often useful to show both
𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 .

Exercise 3.2. Prove the infimum of a set is unique when it exists.

Proposition 3.2. Let 𝐴 be a set which is bounded above. An upper bound 𝛼 for 𝐴 is
actually the supremum if for every positive 𝜖 > 0, there exists some element of 𝐴 greater
than 𝛼 − 𝜖.

Proof. Let’s prove the contrapositive, meaning we assume the conclusion is false and
prove the premise is false. The conclusion would be false if there were some positive
𝜖 where no element of 𝑎 is larger than 𝛼 − 𝜖. But this means that 𝛼 − 𝜖 ≥ 𝑎 for all
𝑎 ∈ 𝐴, or that 𝛼 − 𝜖 is an upper bound for 𝐴. Since this is less than 𝛼 (remember, 𝜖
is positive), we found a smaller upper bound, so 𝛼 cannot be the least upper bound:
thus its false that 𝛼 = sup𝐴.
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3.4. Working with inf and sup

Since anytime our proposed condition doesn’t hold, 𝛼 isnt the supremum, this means
if 𝛼 were the supremum, the condition must hold! And this is what we sought to
prove.

Remark 3.2. The contrapositive is a very useful proof style, especially in situations
where the premise is something short, and the conclusion is something complicated.
By taking a look at the contrapositive, you get to assume the negation of the conclu-
sion, meaning you get to assume the complicated thing, and then use it to prove the
simple thing (the negation of the premise)

Exercise 3.3. Prove the corresponding characterization of infima: a lower bound ℓ
for a set 𝐴 is the infimum if for every positive 𝜖 > 0 there is some element of 𝐴 less
than ℓ + 𝜖.

Exercise 3.4. Let𝐴, 𝐵 be nonempty bounded subsets of a complete field, and suppose
𝐴 ⊂ 𝐵. Prove that sup𝐴 ≤ sup𝐵.

Example 3.3. Let 𝐴 be a bounded set with supremum sup𝐴 and 𝑐 an element of the
field. Define the set 𝑆 = {𝑎 + 𝑐 ∣ 𝑎 ∈ 𝐴}. Then

sup 𝑆 = 𝑐 + sup𝐴

To prove this, we need to show two things: (1) that 𝑐 + sup𝐴 is an upper bound for 𝑆,
and (2) that its in fact the least upper bound.

First, we consider (1). Since sup𝐴 is an upper bound for𝐴, we know ∀𝑎 ∈ 𝐴, 𝑎 ≤ sup𝐴.
Adding 𝑐 to both sides, we also have 𝑐 +𝑎 ≤ 𝑐 + sup𝐴 for all 𝑎, which implies 𝑐 +sup𝐴
is an upper bound.

Now, (2). Let 𝑢 be any upper bound for 𝑆. This means that 𝑢 ≥ 𝑐 + 𝑎 for all 𝑎 ∈ 𝐴, so
subtracting 𝑐 from both sides, that 𝑢 − 𝑐 ≥ 𝑎. Thus, 𝑢 − 𝑐 is an upper bound for 𝐴, and
this is real progress because we know sup𝐴 is the least upper bound. That implies
sup𝐴 ≤ 𝑢 − 𝑐 and so adding 𝑐 to both sides, 𝑐 + sup𝐴 ≤ 𝑢. Putting this all together,
we assumed 𝑢 was any upper bound and we proved 𝑐 + sup𝐴 was a smaller one.

Thus, 𝑐 + sup𝐴 is the least upper bound to 𝑆, and so by definition we have sup 𝑆 =
𝑐 + sup𝐴 as required.

Exercise 3.5. Let 𝑐 > 0 and 𝐴 be a bounded set with supremum sup𝐴. Define the
set 𝑆 = {𝑐𝑎 ∣ 𝑎 ∈ 𝐴}. Then sup 𝑆 exists and

sup 𝑆 = 𝑐 sup𝐴
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Exercise 3.6. Let 𝐴, 𝐵 be two bounded nonempty sets. Assuming that the suprema
and infima of 𝐴 and 𝐵 both exist, prove they do for 𝐴 ∪ 𝐵 as well and

sup𝐴 ∪ 𝐵 = max{sup𝐴, sup𝐵}
inf𝐴 ∪ 𝐵 = min{inf𝐴, inf𝐵}

Exercise 3.7 (Sup and Inf of Intervals). Let 𝐴, 𝐵 be two open intervals in ℝ, and
assume that sup𝐴 = inf𝐵.
True or false: it is possible to add a single point to 𝐴∪𝐵 so the entire set is an interval.
(Explain your reasoning, but you don’t have to write a rigorous proof).

3.5. Problems

Exercise 3.8. Let 𝐴, 𝐵 be subsets of a complete ordered field with sup𝐴 < sup𝐵.
• Prove that there is an element 𝑏 ∈ 𝐵 which is an upper bound for 𝐴.
• Give an example to show this is not necessarily true if we only assume sup𝐴 ≤
sup𝐵.

Exercise 3.9. Consider the following subsets of the rational numbers. State whether
or not they have infima or suprema; when they do, give the inf and sup.

• [1, 3]
• [1, 3)
• {𝑥 ∣ 𝑥2 < 1}
• {𝑥 ∣ 𝑥3 < 1}
• {𝑥 ∣ 1 + 1

𝑛 , 𝑛 ∈ ℕ}
• {𝑥 ∣ 1 + (−1)𝑛

𝑛 , 𝑛 ∈ ℕ}

Exercise 3.10. For each item, compute the supremum and infimum, or explain why
they does not exist. (You should explain your answers but you do not need to give a
rigorous proof)

• 𝐴 = { (−1)𝑛𝑛 ∣ 𝑛 ∈ ℕ}$
• Fix 𝛽 ∈ (0, 1), and define 𝐵 = {𝛽𝑛 ∣ 𝑛 ∈ ℕ}
• Fix 𝛾 ∈ (1, ∞) and define 𝐶 = {𝛾 𝑛 ∣ 𝑛 ∈ ℕ}.

Exercise 3.11. The proof of the nested interval theorem used the endpoints of the
intervals crucially in the proof. One might wonder if the same theorem holds for open
intervals (even though the proof would have to change).

Show the analogous theorem for open intervals is false by finding a counter example:
can you find a collection of nested open intervals whose intersection is empty?
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3.5. Problems

Exercise 3.12. Either give an example of each (explaining why your example works)
or provide an argument (it doesn’t have to be a formal proof) why no such example
should exist:

• A sequence of nested closed intervals, whose intersection contains exactly 𝑛
points, for some finite 𝑛 > 1.

• A sequence of nested closed rays whose intersection is empty. (A closed ray
has the form [𝑎, ∞) or (−∞, 𝑎] as in ?@def-intervals).

3.5.1. ★ Measure

Come back to “Measure”: use inf and sup to define inner/outer measures?
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4. The Real Numbers

We have now carefully axiomatized the properties that are used in classical math-
ematics when dealing with the number line, defining a the structure of a complete
ordered field.

Definition 4.1. A complete ordered field is an ordered field that satisfies the com-
pleteness axiom. Precisely, it is a set 𝔽 with the following properties

• Addition: A commutative associative operation +, with identity 0, where ever
element has an additive inverse.

• Multiplication: A commutative associative operation ⋅ with identity 1 ≠ 0,
where every nonzero element has a multiplicative inverse.

• Distributivity: For all 𝑎, 𝑏, 𝑐 ∈ 𝔽 we have 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐
• Order: A subset 𝑃 ⊂ 𝔽 called the positives containing exactly one of 𝑥, −𝑥 for
every nonzero 𝑥 ∈ 𝔽, which is closed under addition and multiplication: if
𝑎, 𝑏 ∈ 𝑃 then 𝑎 + 𝑏 ∈ 𝑃 and 𝑎𝑏 ∈ 𝑃 .

• Completeness: Every nonempty subset 𝐴 ⊂ 𝔽 which is bounded above has a
least upper bound.

The subject of real analysis is the study of complete ordered fields and their properties,
so everything that follows in this course logically follows from this set of axioms, and
nothing more. The success and importance of the above definition is best exemplified
by the following theorem:

Remark 4.1. This was very important work at the turn of the previous century; as nei-
ther step is a priori obvious. It’s easy to write down axiom systems that don’t describe
anything because they’re inconsistent (for example, add to ordered field axioms that
all polynomials have at least one zero, and there is no longer such a structure), and its
also common that axioms don’t uniquely pick out a single object but rather describe
an entire class (the axioms of a group define a whole subject, not a single example).

Theorem 4.1 (Uniqueness of the Reals). There exists a complete ordered field, and it
is unique. We call this field the real numbers and denote it by ℝ.

This theorem represents the culmination of much work at the end of the 19th and
beginning of the 20th century to fully understand the real number line.

While not necessarily beyond our abilities, proving existence of a structure satisfying
these axioms is a job for the set theorists and logicians that we will not tackle here.
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4. The Real Numbers

Beyond providing justification for our usual way of speaking, the uniqueness of the
reals is an important result to the history of mathematics. Its statement and proof
in 1903 by Huntington marked the end of the era of searching for the fundamental
principles behind the real numbers, and the beginning of the modern point of view,
completely specifying their structure axiomatically.

Remark 4.2. The completeness axiom is what sets analysis apart from algebra, as it
does not tell us how elements behave with respect to a given operation, but rather
tells us about the existence of new elements. Indeed, this assertive ability of the com-
pleteness axiom is more radical than it seems at first, and can even be captured by
mathematical logic: the other axioms are all first order axioms, whereas the complete-
ness axiom is second order.

We will spend the majority of this course working out the properties of the real num-
ber line from these axioms, but its important to not loose sight of the bigger picture,
why we are doing this. The real numbers provide a foundation for many objects in
modern math:

• Complex numbers can be defined as pairs of real numbers (𝑥, 𝑦) ∶= 𝑥 + 𝑖𝑦 with
component-wise addition and a new rule for multiplication

• Real and complex vector spaces can be constructed from 𝑛-tuples of real num-
bers, which lie at the foundation of much of modern mathematics, computer
science, and physics.

• Manifolds are spaces which look locally like real vector spaces, and underly the
modern fields of topology and differential geometry.

4.1. Dubious Numbers

Proposition 4.1 (Fields have no Nilpotent Numbers). Let $𝔽 be any field, and 𝜖 some
number where 𝜖2 = 0. By the zero-product-property (Example 1.3), this implies 𝜖 = 0.
Thus there are no nonzero elements that square to zero.

Theorem 4.2 (Infinite Numbers Do Not Exist). There are no infinite elements of ℝ.

Proof. Assume for the sake of contradiction that there is some infinite number: with-
out loss of generality (perhaps after multiplying by −1) we may assume its positive.
Thus, this number is greater than every natural number, and so the natural numbers
are bounded above.

Thus, by the completeness axiom, we find that the natural numbers must have a
supremum. Denote this by 𝑋 = supℕ. So far, everything seems fine. But consider
the number 𝑋 − 1. This is smaller than 𝑋 , and since 𝑋 is the least upper bound, 𝑋 − 1
cannot be an upper bound to ℕ. This means there must be some element 𝑛 ∈ ℕ with
𝑛 > 𝑋 − 1. But this means 𝑋 < 𝑛 + 1, and as 𝑛 + 1 is a natural number whenever 𝑛 is,
we’ve run headfirst into a contradiction: 𝑋 is not an upper bound at all!
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4.2. The Archimedean Property

It is an immediate corollary of this that infinitesimals also do not exist (but, because
this is such an important result, we call it a theorem on its own.)

Theorem 4.3 (Infinitesimals Do Not Exist). There are no infinitesimal elements of ℝ.

Proof. Let 𝑥 be a positive element of ℝ, and consider its reciprocal 1/𝑥 . By Theo-
rem 4.2 1/𝑥 is finite, so there’s some 𝑛 ∈ ℕwith 𝑛 > 1/𝑥 . Re-arranging the inequality
shows 𝑥 > 1/𝑛 as required, so 𝑥 is not infinitesimal.

This argument shows that for a field, containing infinite elements and infinitesimal
elements are logically equivalent: thanks to division, you can’t have one without the
other.

4.2. The Archimedean Property

A useful way to repackage the nonexistence of infinite numbers and infinitesimals
into a usable statement known as the Archimedean property, as Archimedes took it as
an axiom describing the number system in his paper The Sphere and the Cylinder. It
also appears (earlier) as a definition in Euclid’s elements: Book V Definition 4:

Magnitudes are said to have a ratio to one another which can, when mul-
tiplied, exceed one another.

We rephrase this in precise modern terminology below:

Definition 4.2 (Archimedean Field). A field 𝔽 is archimedean if for every positive
𝑎, 𝑏 ∈ 𝔽 there is a natural number 𝑛 with

𝑛𝑎 > 𝑏

Remark 4.3. While Archimedes himself attributes this to Eudoxus of Cnidus, it was
named after Archimedes in the 1880s.

The important applications of this property all come from the case where 𝑏 is really
large, and 𝑎 is really small. In an archimedean field, no matter how small 𝑎 is you can
always collect enough of them 𝑛𝑎 = 𝑎 + 𝑎 + 𝑎 +⋯+ 𝑎 to surpass 𝑏. A common way to
remember this property is to poetically rephrase it as you can empty the ocean with a
teaspoon.

Its possible to give an elementary proof (directly from the definition of rational num-
bers as fradtions 𝑝/𝑞 for 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0) that ℚ is an archimedean field:

Exercise 4.1 (The Rationals are Archimedean). Prove the rationals are an
archimedean field. Hint: write 𝑎 and 𝑏 as fractions, can you figure out from the
inequality you want, what 𝑛 can be?
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4. The Real Numbers

Such a proof is not possible for ℝ as we don’t have an explicit description of its ele-
ments! All we know is its axiomatic properties. However, a proof is immediate using
Theorem 4.2:

Theorem 4.4 (The Reals are Archimedean). Complete ordered fields satisfy the
Archimedean property.

Proof. Let 𝑎, 𝑏 be positive real numbers. Since 𝑏/𝑎 ∈ ℝ it is finite (by Theorem 4.2), so
there is some 𝑛 ∈ ℕ with 𝑛 > 𝑏

𝑎 , and thus 𝑛𝑎 > 𝑏.

Its also a short proof to show that archimedean fields cannot contain infinite elements
(and thus also cannot contain infinitesimals), providing a useful equivalence:

Theorem 4.5. The following three conditions are equivalent, for an ordered field 𝔽:

• 𝔽 is archimedean.
• 𝔽 contains no infinite elements.
• 𝔽 contains no infinitesimal elements.

Proof. We already know the existence of infinite elements and infinitesimal elements
are equivalent, so all we need to show is that 𝔽 is archimedean if and only if all
elements are finite.

But the proof of Theorem 4.4 already provides an argument that a field with only
finite elements is necessarily archimedean, so we seek only the converse.

If 𝔽 is archimedean, then for any positive 𝑏 ∈ 𝔽 we may take 𝑎 = 1 and apply the
archimedean property to get an 𝑛 ∈ ℕ with 𝑛 ⋅ 1 > 𝑏. For negative 𝑏, applying the
ame to −𝑏 results in a 𝑛 ∈ ℕ where −𝑛 < 𝑏, and together these imply all elements of
𝔽 are finite.

Remark 4.4. In fact one can be more precise than this: it turns out that the real num-
bers are the largest possible archimedean field - and every archimedean field fits some-
where between the rationals and the reals.

4.3. Irrationals

Definition 4.3 (Irrational Numbers). A number 𝑥 ∈ ℝ is irrational if it is not rational.
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4.3. Irrationals

4.3.1. Existence of √2
Our first goal is to prove that irrational numbers exist, by exhibiting one. We will use
the example of the square root of two, and rigorously prove that √2 is a real number.
(Just so you don’t brush this off as trivial, its not immediately obvious: after all, √−2
is not a real number!)

Theorem 4.6. Let 𝔽 be archimedean, and consider the set

𝑆 = {𝑟 ∈ 𝔽 ∣ 𝑟2 < 2}
Then if 𝜎 = sup 𝑆 exists, 𝜎2 = 2.

We prove this rather indirectly, showing that both 𝜎2 > 2 and 𝜎2 < 2 are impossible,
so the only remaining option is 𝜎2 = 2.

Example 4.1 (𝜎2 > 2 is impossible.). To show this is impossible, we will show if you
have any upper bound 𝑏 ∈ 𝔽 with 𝑏2 > 2, it’s not the least upper bound, as we can
make a smaller one.

Let 𝑏 be any upper bound with 𝑏2 > 2. To find a smaller upper bound, one idea is to
try and find a natural number 𝑛 where 𝛽 = 𝑏 − 1/𝑛 works. That is,

(𝑏 − 1
𝑛)

2
> 2

Expanding this out, we see 𝑏2 − 2𝑏/𝑛 + 1/𝑛2 > 2, or after moving terms around,
𝑏2 − 2 > 2𝑏/𝑛 − 1/𝑛2. Now we need a little ingenuity: notice that 2𝑏/𝑛 − 1/𝑛2 is less
than 2𝑏/𝑛 (because we’re subtracting something) so in fact, if we can find an 𝑛 where
2𝑏/𝑛 < 𝑏2 −2 we’re already good. Re-arranging this equation, we need to find 𝑛 with

(𝑏2 − 2)𝑛 > 2𝑏
But this is possible using the Archimedean property! Since 𝐴 = 𝑏2 −2 and 𝐵 = 2𝑏 are
both positive numbers, we can always find an 𝑛 ∈ ℕ where 𝑛𝐴 > 𝐵. Thus, we may
choose this value of 𝑛, and note that 𝛽 = 𝑏 − 1

𝑛 is an upper bound for 𝑆 that is smaller
than 𝑏. Thus 𝑏 was not the least upper bound!

Exercise 4.2 (𝜎2 < 2 is impossible.). Can you preform an argument similar to Exam-
ple 4.1, to prove that 𝜎2 < 2 also leads to contradiction?

Since both the real numbers and the rationals are archimedean, the above applies to
a consideration of either field

However applying the same knowledge to the reals yields the opposite conclusion,
by virtue of the completeness axiom.
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4. The Real Numbers

Theorem 4.7 (√2 is a Real Number). There exists a positive real number which squares
to 2.

Proof. Let 𝑆 = {𝑟 ∈ ℝ ∣ 𝑟2 < 2}. Then, 𝑆 is nonempty, as 0 ∈ 𝑆 since 𝑂2 = 0 and 0 < 2.
Next, we show that 𝑆 is bounded above by 10:
Let 𝑟 ∈ 𝑆 is arbitrary. Without loss of generality we may assume 𝑟 > 0 as if 𝑟 < 0 then
certainly 𝑟 < 10. By the definition of 𝑆, we know 𝑟2 < 2 and thus clearly 𝑟2 < 100.
But recall Proposition 2.5: for positive 𝑎, 𝑏 if 𝑎2 < 𝑏2 then 𝑎 < 𝑏, so from 𝑟2 < 100 we
may conclude 𝑟 < 10.
Knowing that 𝑆 is both nonempty and bounded above, the completeness axiom ap-
plies to furnish us with a least upper bound 𝜎 = sup 𝑆. And knowing its existence,
Theorem 4.6 immediately implies that 𝜎2 = 2, so 𝜎 is by definition a square root of
2.

Theorem 4.8 (The Rationals are Incomplete). Within the field of rational numbers,
the set 𝑆 = {𝑟 ∈ ℚ ∣ 𝑟2 < 2} is bounded above and nonempty, but does not have a
supremum.

Proof. The argument that 𝑆 is nonempty and bounded above is identical to that in
Theorem 4.7. And, Theorem 4.6 implies that if the supremum exists it must square
to 2. But we know by Theorem 0.1 that there is no such rational number. Thus, the
supremum must not exist, and so ℚ fails the completeness axiom.

There is nothing special about 2 in the above argument, other than it is easy for us
to work with. We could stop right now to prove the more general statement that all
square roots exist:

Theorem 4.9 (Square Roots Exist). If 𝑥 ∈ ℝ is positive, then √𝑥 is a real number.

Though to not be too repetitive, we will hold off and prove this a different way, to
illustrate more powerful tools in CITE.

Exercise 4.3. Prove that the product of a nonzero rational and an irrational number
is irrational.

Exercise 4.4. The sum of two irrational numbers need not be irrational, as the exam-
ple √2−√2 = 0 shows. Prove or disprove: the sum of two positive irrational numbers
is irrational.

70



4.3. Irrationals

4.3.2. Density

Definition 4.4 (Density). Let 𝑆 be a subset of an ordered field 𝔽. Then 𝑆 is dense in
𝔽 if between any two elements 𝑎, 𝑏 ∈ 𝔽 with 𝑎 < 𝑏 there is some 𝑠 ∈ 𝑆 with

𝑎 < 𝑠 < 𝑏

Theorem 4.10 (Density of the Rationals). The rational numbers are dense in the real
numbers.

Proof. We need to start with two arbitrary real numbers 𝑎 < 𝑏, and find a rational
number 𝑟 between them. Let’s do some scratch work: if 𝑟 = 𝑚/𝑛 and we want 𝑎 <
𝑚/𝑛 < 𝑏 then it suffices to find an integer 𝑚 between 𝑛𝑎 and 𝑛𝑏. This sounds doable!
Precisely, since 𝑏 − 𝑎 > 0, we can use the archimedean property to find some 𝑛 ∈ ℕ
with 𝑛(𝑏 − 𝑎) > 1. Now since 𝑛𝑏 − 𝑛𝑎 > 1, we just need to prove there’s an integer 𝑚
between them, and this’ll be the number we want!

To rigorously prove this 𝑚 exists, we can reason as follows: we know there are inte-
gers greater than 𝑛𝑎 (since ℝ has no infinite elements), so let 𝑚 be the smallest such.
Then by definition 𝑚 > 𝑛𝑎, so all we need to show is 𝑚 < 𝑛𝑏. Since 𝑚 is the smallest
integer greater than 𝑛𝑎, we know 𝑚−1 < 𝑛𝑎, or 𝑚 < 𝑛𝑎+1. But 𝑛𝑎+1 < 𝑛𝑏 so 𝑚 < 𝑛𝑏
as required.

Now we have a natural number 𝑛 and an integer 𝑚 with 𝑛𝑎 < 𝑚 < 𝑛𝑏. Dividing
through by 𝑛 gives

𝑎 < 𝑚
𝑛 < 𝑏

As we have gotten used to being very careful in our arguments, you may think while
working out the above argument to fill in a little lemma showing that every set of
integers bounded below has a minimum. And, you could indeed do so by induction
(try it - but fair warning, the argument is a little tricky! It’s easiest with “strong
induction” - what are we inducting over?). However this fact is actually logically
equivalent to the principle of induction, and in foundations of arithmetic things are
often reversed: we take this as an axiom, and prove induction from it! The statement
is called the well ordering principle.

Definition 4.5 (The Well Ordering Principle). Every nonempty subset of ℕ has a
least element.

Exercise 4.5 (Density of the Irrationals). Use ?@thm-rationals-are-dense above
to prove that the irrationals are also dense in the reals.
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4. The Real Numbers

Exercise 4.6. The dyadic rationals are the subset ofℚwhich have denominators that
are a power of 2 when written in lowest terms.

Prove the dyadic rationals are dense in ℝ.

4.4. Uncountability

We can use this to prove the uncountability of the reals using Cantor’s original argu-
ment. (We will give the better known Cantor diagonalization argument later, once
we’ve introduced decimals)

Theorem 4.11 (ℝ is Uncountable). There is no bijection between ℕ and ℝ

Proof. Let 𝑓 ∶ ℕ → [0, 1] be any function whatsoever. We can use this function to
produce a sequence of points as follows:

𝑓 (1) = 𝑥1, 𝑓 (2) = 𝑥2, 𝑓 (3) = 𝑥3 …

From this we can construct a set of nested intervals.
Let 𝐼1 ⊂ [0, 1] be any closed interval that doesn’t contain 𝑥1. Then let 𝐼2 ⊂ 𝐼1 be a
closed interval which does not contain 𝑥2 (if 𝑥2 was outside 𝐼1, you could just take
𝐼1 again, otherwise if its inside 𝐼1 just take an interval on one side or the other of it).
Continuing, we can easily choose an interval 𝐼𝑛+1 ⊂ 𝐼𝑛 which doesn’t contain 𝑥𝑛+1.
This gives us an infinite sequence of closed nested intervals inside a complete ordered
field, so Theorem 3.3 tells us that their intersection must be nonempty. That is, there
is some point 𝑦 ∈ [0, 1] where 𝑦 ∈ 𝐼𝑛 for all 𝑛.
What does this mean? Well, since 𝑦 ∈ 𝐼1 we know 𝑦 ≠ 𝑥1 since 𝐼1 was purpose-built
to exclude 𝑥1. Similarly 𝑦 ∈ 𝐼2 guarantees 𝑦 ≠ 𝑥2, and so on…𝑦 ∈ 𝐼𝑛 means 𝑦 ≠ 𝑥𝑛 .
Thus, 𝑦 is some point in [0, 1] which is not in our list!

Since 𝑦 ≠ 𝑓 (𝑛) for any 𝑛, we see that our original (arbitrary) function cannot have
been surjective. And, since bijections are both injective and surjective, this proves
there is no bijection from ℕ to [0, 1], so [0, 1] is uncountable! Then, as [0, 1] ⊂ ℝ we
see ℝ is uncountable as well.

This has some pretty wild corollaries if you have studied countable sets before. Here’s
a couple examples

Corollary 4.1 (Transcendental Numbers). There exist real numbers which are not the
solution of any algebraic equation with rational coefficients.
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4.5. ★ Infinity

Corollary 4.2 (Uncomputable Numbers). There exist real numbers which cannot be
computed by any computer program.

These are additional motivation for why we really need a precise theory of the real
numbers: with very little work we’ve already proven that there is no way to study
this number system with algebra alone - or even with the most powerful computer
you could imagine.

4.5. ★ Infinity

The real numbers do not contain any infinite numbers, but dealing with the infinite
is a key component of a real analysis course. To help us conduct such discussions rig-
orously we make clear what is meant (and what is not meant) by the infinity symbol
familiar from prevous mathematics courses.

Definition 4.6. The symbol ∞ is a formal symbol: that is, a symbol that we agree to
write, but do not attach any specific value to.

By default, any expression involving the symbol ∞ is considered undefined. We will
use define certain contexts where the symbol ∞ is meaningful below.

Our first use of the symbol∞ is to expand interval notation of the real numbers. Right
now, using the order < we have rigorously defined intervals such as (𝑎, 𝑏), [𝑎, 𝑏) and
[𝑎, 𝑏] for 𝑎, 𝑏 ∈ ℝ.

Definition 4.7. For any real number 𝑎, we define the following intervals with ±∞ as
an endpoint:

(−∞, 𝑎) = {𝑥 ∈ ℝ ∣ 𝑥 < 𝑎}
(−∞, 𝑎] = {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝑎}
(𝑎, ∞) = {𝑥 ∈ ℝ ∣ 𝑥 > 𝑎}
[𝑎, ∞) = {𝑥 ∈ ℝ ∣ 𝑥 ≥ 𝑎}

But we can take this farther, by actually adding the formal symbols±∞ to our number
system, to create a set called the extended reals.

Definition 4.8 (The Extended Reals). The extended real number line is the set

ℝ = ℝ ∪ {−∞,∞}.
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4. The Real Numbers

Definition 4.9 (Ordering on ℝ). The order < on ℝ can be extended to ℝ by the fol-
lowing two rules:

∀𝑥 ∈ ℝ, 𝑥 < ∞ ∀𝑥 ∈ ℝ, −∞ < 𝑥

This allows for interval notation on ℝ where, we may may write intervals such as
[−∞1] to mean the points {𝑥 ∣ 𝑅 ∣ 𝑥 ≤ 1} etc.

In ℝ then, ∞ is an upper bound for every set, and −∞ is a lower bound for every set.
On the real numbers alone, the completeness axiom tells us that the supremum of
bounded nonempty sets exist, but unbounded sets do not have a supremum. In the
extended reals, we see that ±∞ naturally satisfy the definitions of

Proposition 4.2 (Unbounded Above means sup = ∞). Let 𝐴 be a nonempty subset of
ℝ which is not bounded above. Then as a subset of of the extended reals, sup𝐴 = ∞.

Proof. By the definition of ∞, we see that ∞ is an upper bound for 𝐴 always, so we
need only show it is the supremum. Let 𝑥 ∈ ℝ be any element less than ∞. Then 𝑥
must be an element of ℝ, and since 𝐴 is not bounded above in ℝ, there is some 𝑎 ∈ 𝐴
with 𝑎 > 𝑥 . Thus 𝑥 is not an upper bound, and so every element less than ∞ fails to
be an upper bound: that is, ∞ is the least upper bound as claimed.

Exercise 4.7 (Unbounded Below means inf = −∞).

Corollary 4.3 (Sup and Inf in the Extended Reals). Every nonempty subset of the
extended real line has both an infimum and a supremum.

Proof. Let 𝐴 be a nonempty subset of ℝ. First, if 𝐴 contains ∞, then sup𝐴 = ∞ as
it is the maximum. So, we can consider the case that ∞ ∉ 𝐴. If 𝐴 is bounded above
by a real number, then sup𝐴 is also a real number by completeness, and if 𝐴 is not
bounded above, then sup𝐴 = ∞ by Proposition 4.2.

The same logic applies to lower bounds: after taking care of the case where inf𝐴 =
min𝐴 = −∞, if 𝐴 is bounded below completeness furnishes a real infimum, and if it
is not, Exercise 4.7 shows the infimum to be −∞.

In the extended reals, it is still common to take the infimum and supremum of the
empty set to be undefined. But there is also another option: one can assign inf∅ = ∞
and sup∅ = −∞: if we do this then every set in the extended reals has an infimum
and supremum!
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4.6. ★ Topology

One final basic property of ℝ that we will show follows from completeness is that its
“connected” - it really does form a continuous line.

Definition 4.10 (Connected). Let 𝑆 be a subset of a topological space. Then a sepa-
ration of 𝑆 is a pair of disjoint open sets 𝑈 , 𝑉 whose union is 𝑆.
A subset is called disconnected if there is a separation, and connected if there is no
way to make a separation.

Example 4.2 (A disconnected set). Let 𝑆 = {𝑥 ∈ ℝ ∣ 𝑥 > 0, 𝑥 < 2, and 𝑥 ≠ 1}. Then 𝑆
is disconnected as we can write

𝑆 = (0, 1) ∪ (1, 2)
And note these two intervals are both open, and dont share any points in common
(so they are disjoint).

It’s harder to imagine doing this for the interval (0, 2) however: if you try to imagine
cutting it into two disjoint intervals at some point 𝑥 , you’re going to end up with
(0, 𝑥) ∪ [𝑥, 2) or (0, 𝑥] ∪ (𝑥, 2). In either case, these intervals are not both open! To
make them both open you could try (0, 𝑥) ∪ (𝑥, 2) but now they miss the point 𝑥 (so
their union isnt the whole space) or (0, 𝑥+0.01)∪(𝑥−0.01, 2) but now they overlap and
aren’t disjoint. Intuitively there’s no way to do it - the interval (0, 2) is connected!

Theorem 4.12 (The Real Line is Connected).

Proof. Assume for the sake of contradiction that 𝑈 ∪ 𝑉 is a separation of ℝ (so, 𝑈 , 𝑉
are nonempty open sets and every point of ℝ is in exactly one of them).

Choose some 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 - we can do this because they’re nonempty - and
without loss of generality assume that 𝑥 < 𝑦 . Considering the interval [𝑥, 𝑦] we
know the left side is in 𝑈 and the right in 𝑉 , so we can define the

𝑍 = {𝑧 ∈ [𝑥, 𝑦] ∣ [𝑥, 𝑧] ⊂ 𝑈 }

This set is nonempty (as 𝑥 ∈ 𝑍 ) and its bounded above (by 𝑦 ), so by completeness it
has some supremum 𝜁 = sup𝑍 . Now the question is, which set is 𝜁 in, 𝑈 or 𝑉 ?

If 𝜁 ∈ 𝑉 then we know that since 𝑉 is open ther’s some small interval (𝜁 − 𝜖, 𝜁 + 𝜖)
fully contained in 𝑉 . But this means there’s a number smaller than 𝜁 contained in 𝑉 ,
which means the interval [0, 𝜁 ] isnt fully contained in 𝑈 , a contradiction!

If 𝜁 ∈ 𝑈 then we know since 𝑈 is open, that there must be some tiny open interval
(𝜁 − 𝜖, 𝜁 + 𝜖) around 𝜁 contained 𝑈 . This means there’s a number *larger than 𝜁 (for
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example, 𝜁 + 𝜖/2) where [𝑥, 𝜁 + 𝜖/2] is contained in 𝑈 . So, 𝜁 can’t even be an upper
bound to the set of all such numbers, a contradiction!

Both cases lead to contradiction, so there must be no such 𝜁 , and hence no such
separation.

Exercise 4.8 (Open Intervals of ℝ are connected). Prove that every open interval
(𝑎, 𝑏) ⊂ ℝ is connected, mimicking the proof style above.

This fails for the rational numbers - they are not connected!

Theorem 4.13 (The Rationals are Not Connected). Consider the following two subsets
of the rational numbers:

𝐴 = {𝑥 > 0 ∣ 𝑥2 > 2}
𝐵 = {𝑥 ∈ ℚ ∣ 𝑥 ∉ 𝐴}

Then 𝐴 and 𝐵 form a separation of ℚ.

Proof. 𝐴 and 𝐵 are open intervals in ℚ (they’re the rational points of the open inter-
vals (√2,∞) and (−∞, √2)). By definition every point of ℚ is in either 𝐴 or 𝐵 and
they’re disjoint. Since we just showed they are open, they form a separation, so ℚ is
disconnected.

In fact, ℚ is extremely disconnected - this same argument applies at every irrational
number of ℝ.

4.7. Problems

Extended Reals

The Extended Reals: Add in infinity and negative infinity. This preserves order, but
breaks field properties. Useful to make sense of certain limits “equal” infinity.

Exercise 4.9 (An Flawed Argument for the Nonexistence of Infinitesimals). Its pos-
sible to show that the infimum of the set of all positive real numbers is zero, just from
the definition of infimum.

• Prove this
• Explain why this is not enough to conclude the nonexistence of infinitesimals.
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Highlights of this Chapter: we briefly explore the evolution of the mod-
ern conception of a function, and give foundational definitions for refer-
ence.

5.1. Freedom from Formulas

The term function was first introduced to mathematics by Leibniz during his devel-
opment of the Calculus in the 1670s (he also introduced the idea of parameters and
constants familiar in calculus courses to this day). In the first centuries of its math-
ematical life, the term function usually denoted what we would think of today as a
formula or algebraic expression. For example, Euler’s definition of function from his
1748 book Introductio in analysin infinitorum embodies the sentiment:

A function of a variable quantity is an analytic expression composed in
any way whatsoever of the variable quantity and numbers or constant
quantities.

As a first step to adding functions to our theory of real analysis, we would somehow
like to make this definition rigorous. But upon closer inspection, this concept, of
“something expressible by a (single) analytic expression” is actually logically incoher-
ent! For example, say that we decide, after looking at the definition of |𝑥 |, that it
cannot be a function as it is not expressed as a single formula:

|𝑥 | = {−𝑥 𝑥 ≤ 0
𝑥 𝑥 > 0

But we also agree that 𝑥2 and √𝑥 are both (obviously!) functions as they are given
by nice algebraic expressions. What are we then to make of the fact that for all real
numbers 𝑥 ,

√𝑥2 = |𝑥|

77



5. Functions

It seems we have found a perfectly good “single algebraic expression” for the absolute
value after all! This even happens for functions with infinitely many pieces (which
surely would have been horrible back then)

𝑓 (𝑥) =

⎧⎪⎪
⎨⎪⎪
⎩

⋮ ⋮
3 + sin(𝑥) 𝑥 ∈ (0, 𝜋]
1 + sin(𝑥) 𝑥 ∈ (𝜋, 2𝜋]
3 + sin(𝑥) 𝑥 ∈ (2𝜋, 3𝜋]
⋮ ⋮

This can be written as a composition involving just one piecewise function

𝑓 (𝑥) = |1 + sin 𝑥| + 2

Which can, by the earlier trick, be reduced to a function with no “pieces” at all:

𝑓 (𝑥) = 2 + √1 + 2 sin(𝑥) + sin2(𝑥)

So the idea of “different pieces” or different rules, seemingly so clear to us, is not
a good mathematical notion at all! We are forced by logic to include such things,
whether we aimed to or not. This became clear rather quickly, as even Euler had
altered a bit his notion of functions by 1755:

When certain quantities depend on others in such a way that they un-
dergo a change when the latter change, then the first are called functions
of the second. This name has an extremely broad character; it encom-
passes all the ways in which one quantity can be determined in terms of
others.

The modern approach is to be much more open minded about functions, and define
a function as any rule whatsoever which uniquely specifies an output given an in-
put. This seems to have first been clearly articulated by Lobachevsky (of hyperbolic
geometry fame) in 1834, and independently by Dirichlet in 1837

The general concept of a function requires that a function of x be defined
as a number given for each x and varying gradually with x. The value
of the function can be given either by an analytic expression, or by a
condition that provides a means of examining all numbers and choosing
one of them; or finally the dependence may exist but remain unknown.
(Lobachevsky)

If now a unique finite 𝑦 corresponding to each 𝑥 , and moreover in such
a way that when 𝑥 ranges continuously over the interval from 𝑎$ to 𝑏,
𝑦 = 𝑓 (𝑥) also varies continuously, then 𝑦 is called a continuous function
of x for this interval. It is not at all necessary here that 𝑦 be given in
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terms of 𝑥 by one and the same law throughout the entire interval, and
it is not necessary that it be regarded as a dependence expressed using
mathematical operations. (Dirichlet)

Through this definitions added generality comes simplicity: we are not trying to po-
lice what sort of rules can be used to define a function, and so the notion can be
efficiently captured in the language of sets and logic.

Definition 5.1. A function from a set 𝑋 to a set 𝑌 is an assignment to each element
of 𝑋 a unique element of 𝑌 . If we call the function 𝑓 , we write the unique element of
𝑌 assigned to 𝑥 ∈ 𝑋 as 𝑦 = 𝑓 (𝑥), and the entire function as

𝑓 ∶ 𝑋 → 𝑌

The definition of a function comes with three parts, so its good to have precise names
for all of these.

Definition 5.2. If 𝑓 is a function, its input set 𝑋 is called the domain, and the set of
possible outputs 𝑌 is called the codomain. The set of actual outputs, that is 𝑅 = {𝑓 (𝑥) ∣
𝑥 ∈ 𝑋} is called the range.

If the codomain of a function 𝑓 is the real numbers, we call 𝑓 a real-valued function.
We will be most interested in real valued function throughout this course.

5.2. Composition and Inverses

Likely familiar from previous math classes, but it is good to get rigorous definitions
down on paper when we are starting anew.

Definition 5.3 (Composition). If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 then we may use 𝑓 to
send an element of 𝑋 into 𝑌 , and follow it by 𝑔 to get an element of 𝑍 . The result is
a function from 𝑋 to 𝑍 , known as the composition

𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 𝑔 ∘ 𝑓 (𝑥) ∶= 𝑔(𝑓 (𝑥))

Every set has a particularly simple function defined on it known as the identity func-
tion: id𝑋 ∶ 𝑋 → 𝑋 is the function that takes each element 𝑥 ∈ 𝑋 and does nothing:
id𝑋 (𝑥) = 𝑥 . These play a role in concisely defining inverse functions below:

Definition 5.4 (Inverse Functions). If 𝑓 ∶ 𝑋 → 𝑌 is a function, and 𝑔 ∶ 𝑌 → 𝑋 is
another function such that

𝑔 ∘ 𝑓 = id𝑋 𝑓 ∘ 𝑔 = id𝑌
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Then 𝑓 and 𝑔 are called inverse functions of one another, and we write 𝑔 = 𝑓 −1 if we
wish to think of 𝑔 as inverting 𝑓 , or 𝑓 = 𝑔−1 rather we started with 𝑔, and think of 𝑓
as undoing it.

Example 5.1. The function 𝑓 (𝑥) = 2𝑥 and 𝑔(𝑥) = 𝑥/2 are inverses of one another
as functions ℝ → ℝ.
The squaring function 𝑠 ∶ ℝ → ℝ defined by 𝑠(𝑥) = 𝑥2 has the square root as an in-
verse, only if the domain and codomain are restricted to the nonnegative reals. Oth-
erwise, we see that 𝑠(−2) = 4 and √4 = 2 so √ ∘ 𝑠 is not the identity: it takes −2 to
2!

5.3. Useful Terminology

Definition 5.5 (Restricting the Domain). Given a function 𝑓 with domain 𝐷, the
restriction to a subset 𝑆 ⊂ 𝐷 is denoted 𝑓 |𝑆 .
Definition 5.6. Given a function with a domain 𝐷, an extension of 𝑓 to a set 𝑋 ⊃ 𝐷
is a function ̃𝑓 ∶ 𝑋 → ℝ such that ̃𝑓 |𝐷 = 𝑓 .
Definition 5.7 (Increasing / Decreasing). A function 𝑓 is (monotone) increasing if
for all 𝑥 ≤ 𝑦 we have 𝑓 (𝑥) ≤ 𝑓 (𝑦). It’s monotone decreasing if instead 𝑥 ≤ 𝑦 implies
𝑓 (𝑥) ≥ 𝑓 (𝑦). A function is strictly increasing if 𝑥 < 𝑦 impleis 𝑓 (𝑥) < 𝑓 (𝑦), and
analogously for strictly decreasing.

Exercise 5.1. If 𝑓 is a strictly increasing function, then it is one-to-one: every output
𝑦 is achieved by a unique input 𝑥 .
This exercise implies that strict monotone functions are invertible, as the inverse of
any one-to-one function is defined by sending a given 𝑦 to the unique 𝑥 that maps to
it.

Definition 5.8 (Convexity). Let 𝑓 be a function defined on some interval (possibly
all of ℝ). Then 𝑓 is convex if for any interval [𝑥, 𝑦] ⊂ dom𝑓 , the value of 𝑓 at the
midpoint exceeds the average value of 𝑓 at the endpoints:

∀𝑥, 𝑦 𝑓 (𝑥 + 𝑦
2 ) ≥ 𝑓 (𝑥) + 𝑓 (𝑦)

2
A function 𝑓 is said to be monotone or convex (etc) on a set 𝑆 if the restriction of 𝑓 to
𝑆 is monotone / convex.

Definition 5.9 (Local Extrema).
• Increasing Decreasing
• Convex
• Local Extrema
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5.4. A Zoo of Examples

Example 5.2 (Polynomial Functions). A polynomial function is an assignment
𝑝∶ ℝ → ℝ which takes each 𝑥 to a linear combination of powers of 𝑥 :

𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯𝑎1𝑥 + 𝑎0
The highest power of 𝑥 appearing in 𝑝 is called the degree of the polynomial.

The idea of a function defined by a formula can be extended even farther by allowing
the field operation of division; though this timewemust be careful about the inputs.

Example 5.3 (Rational Functions). A rational function is a an assignment

𝑓 (𝑥) = 𝑝(𝑥)
𝑞(𝑥)

where 𝑝 and 𝑞 are polynomials. Rational functions are real-valued, but their domain
is not all of ℝ: at any zero of 𝑞 the formula above is undefined, a rational function is
only defined on the set of points where 𝑞 is nonzero.

We already saw that piecewise formulas count in our modern definition, but perhaps
didn’t fully think through the implications: they can be very, very piecewise

Example 5.4 (The Characteristic Function of ℚ). The function 𝑓 ∶ ℝ → ℝ defined as
follows

𝑓 (𝑥) = {1 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ

Here’s another monstrous piecewise function we will encounter again soon:

Example 5.5 (Thomae’s Function). This is the function 𝜏 ∶ ℝ → ℝ defined by

𝜏 (𝑥) = {
1
𝑞 𝑥 ∈ ℚ and 𝑝

𝑞 is lowest terms.

0 𝑥 ∉ ℚ

We’ve stressed that functions don’t need to be given by explicit formulas, sowe should
give an example of that: here’s a function that is defined at each point as a different
limit (using the completeness axiom)

Example 5.6. A function may be defined for each 𝑥 ∈ ℝ as the limit of a sequence,
such as

𝐸(𝑥) = lim𝑛→∞

𝑛
∑
𝑘=0

𝑥𝑘
𝑘!
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A function can also be defined by a less explicit limit procedure, like the limits defin-
ing powers: where we’ve previously seen that any sequence 𝑟𝑛 → 𝑥 of rationals
converging to 𝑥 produces the same limiting value of 𝑎𝑟𝑛 .

Example 5.7 (Exponential as Powers). For any 𝑥 ∈ ℝ and 𝑎 ≥ 0 the function 𝑓 (𝑥) =
𝑎𝑥 is defined by

𝑎𝑥 = lim𝑛 𝑎𝑟𝑛

for 𝑟𝑛 a sequence of rational numbers converging to 𝑥 .

A function can also be defined by an existence proof telling us that a certain rela-
tionship determines a function, without giving us any hint on how to compute its
value:

Example 5.8 (√⋅ defined by an existence theorem). We proved that for every 𝑥 ≥ 0
that there exists some number 𝑦 > 0 with 𝑦2 = 𝑥 , back in our original study of
completeness (Theorem 4.9).

We can easily see that such a number is unique: if 𝑦1 ≠ 𝑦2 then by the order axioms
one is greater: without loss of generality 0 < 𝑦1 < 𝑦2. Thus 𝑦21 < 𝑦22 , so we can’t have
both 𝑦21 = 𝑥 and 𝑦22 = 𝑥 , and 𝑥 → 𝑦 = √𝑥 is a function.

Alright - that’s plenty of examples to get ourselves in the right mindset. Let’s give a
non-example, to remind us that while there need not be formulas, the modern notion
of function is not ‘anything goes’!

Example 5.9. The assignment taking an integer to one of its prime factors does not
define a function. This would take the integer 6 to both 2 and 3, and part of the
definition of a function is that the output is unique for a given input.

5.5. Problems

Max/Min: describe piecewise, give HW to show it can be written as a formula involv-
ing absolute value.

Exercise 5.2. Prove that if 𝑓 is convex then for any 𝑥, 𝑦 in the domain, the the secant
line connecting 𝑓 (𝑥) to 𝑓 (𝑦) lies above the graph of 𝑓 .

Hint: the equation of secant line is 𝐿(𝑡) = 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓 (𝑦): so need to show 𝐿(𝑡) ≥
𝑓 (𝑡).
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Proposition 5.1. If 𝑓 is a convex function and 𝑎 ∈ ℝ Then for 𝑥 < 𝑎 the function

ℓ(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎

is monotone increasing.

The same is true for 𝑥 > 𝑎: on this domain the difference quotient also defines a
monotone increasing function (so, its monotone decreasing when going “backwards”
towards 𝑎).

Exercise 5.3 (Invertibility implies Monotonicity). Let 𝑓 be an invertible function.
Prove that 𝑓 is (strictly) monotone increasing, or (strictly) monotone decreasing.
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This part of the text covers the elementary theory of sequences:

• In Chapter 6 we define sequences and convergence, and see how to prove
lim 𝑠𝑛 = 𝐿 directly from the definition.

• In Chapter 7 we study the arithemetic of convergent sequences, and prove the
limit laws familiar from an introductory calculus course.

• In Chapter 8 we prove the monotone convergence theorem which gives simple
conditions that ensure the convergence of a sequence, and use this to study
infinite processes and the square root calculating algorithm of the babylonians.

• In Chapter 9 we extend the reach of our theory to cover non-monotone se-
quences, by decomposing them into subsequences and investigating the result-
ing limits.

• In Chapter 10 we define the notion of a Cauchy sequence, and prove it is equiv-
alent to convergence. This lets us study all sorts of new convergent sequences,
such as contraction maps.

• In Chapter 11 we get a first look at the complications that arise when multiple
limits interact in a single expression. Such limits underlie many interesting
situations in analysis, from the theory of power series, to the commutativity of
partial derivatives and the ability to differentiate under the integral.
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Having formalized the number line, we can now get to work. If we want to rigorously
understand any of the approximation efforts of the ancients, we must think about
sequences.

Definition 6.1 (Sequence). A sequence is an infinite ordered list of numbers

(𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛 , …)
Each individual element is a term of the sequence, with an subscript (the index) de-
noting its position in the list.

Most often, we take the set of indices to be 1, 2, 3, …, but any infinite subset of the
integers will do. For example, the sequence 𝑝𝑛 of perimeters of inscribed 𝑛-gons starts
with index 3 (the triangle), as this is the smallest polygon. And, the subsequence
Archimedes used to calculate 𝜋 started with the hexagon and then iterated doubling:
𝑃6, 𝑃12, 𝑃24, … so has index set

{6, 12, 24, 48, 96, 192, 384, …}

Formally, we note all of this is captured using functions, though we will not need this
perspective during our day-to-day usage of sequences.

Remark 6.1. Let 𝐼 ⊂ ℤ be any infinite set of indices. Then a sequence is a function
𝑠 ∶ 𝐼 → ℝ.
While sequence itself is just an infinite ordered list of numbers, to work with such
an object we often require a way to compute its terms. Sometimes this is hard! For
example, the sequence

𝜋𝑛 = the number of prime numbers ≤ 𝑛

Is called the prime counting function, and being able to compute its exact values effi-
ciently would be monumental progress in number theory. In practice, sequences that
we can compute with efficiently are often presented to us in one of two ways:

• Closed Formula For each 𝑛, we are given some formula of the type familiar
from high school mathematics, and plugging 𝑛 into this formula yields the 𝑛𝑡ℎ
term of the sequence. Some examples are
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𝑎𝑛 = 𝑛2 + 1
3𝑛 − 2 , 𝑏𝑛 = sin (1𝑛 ) 𝑐𝑛 = √1 + √𝑛

𝑛 + 1
• Recursive Definition For each 𝑛, we are not given a formula to compute 𝑠𝑛
directly, but rather we are given a formula to compute it from the previous
value 𝑠𝑛−1.

Here’s some example sequences that are important both to us, and the history of
analysis:

Example 6.1 (Babylonians and √2). Starting from rectangle of width and height 𝑤, ℎ,
the Babylonians created a new rectangle whose width was the average of these, and
whose height was whatever is required to keep the area 2:

𝑤new = 𝑤 + ℎ
2 ℎnew = 2

𝑤new

This because we can solve for ℎ in terms of 𝑤 , this induces a recursive sequence for
the widths. Starting from some (𝑤𝑛 , ℎ𝑛) we have

𝑤𝑛+1 = 𝑤𝑛 + ℎ𝑛
2 =

𝑤𝑛 + 2
𝑤𝑛

2 = 𝑤𝑛
2 + 1

𝑤𝑛

Thus, in modern terminology the babylonian procedure defines a recursive sequence,
given any starting rectangle. If we begin with the rectangle of wdith 2 and height 1,
we get

𝑤0 = 2, 𝑤𝑛+1 = 𝑤𝑛
2 + 1

𝑤𝑛

Exercise 6.1 (Babylonians and √2). Following the same type of reasoning as for
width, use the babylonian procedure to produce a recursive formula for the sequence
of heights ℎ𝑛 , for a rectangle starting with ℎ = 1.

Example 6.2. An infinite sum is a type of recursively defined sequence, built from
another sequence called its terms. Assume that 𝑎𝑛 is any sequence. Then we build a
sequence 𝑠𝑛 by

𝑠0 = 𝑎0 𝑠𝑛+1 = 𝑠𝑛−1 + 𝑎𝑛

Unpacking this, we see that 𝑠1 = 𝑠0 + 𝑎1 = 𝑎0 + 𝑎1, and thus 𝑠2 = 𝑠1 + 𝑎2 = 𝑎0 + 𝑎1 + 𝑎2
etc.
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6.1. Convergence

The reason to define a sequence precisely is that we are interested in making rig-
orous the idea of infinitely many steps, the way the Babylonians may have pictured
running their procedure an infinite number of times to produce a perfect square, or
Archimedes who ran his side-doubling procedure infinitely many times to produce a
circle.

In both cases, there was some number 𝐿 out there at infinity that they were probing
with a sequence. We call such a number 𝐿 the limit of the sequence.

Definition 6.2 (Convergent Sequence). A sequence 𝑠𝑛 converges to a limit 𝐿 if for all
𝜖 > 0 there is some threshold 𝑁 past which every further term of the sequence is
within 𝜖 of 𝐿. Formally, this is the logic expression

∀𝜖 > 0 ∃𝑁 ∀𝑛 > 𝑁 |𝑠𝑛 − 𝐿| < 𝜖
When a sequene converges to 𝐿 we write

lim 𝑠𝑛 = 𝐿 or 𝑠𝑛 → 𝐿

A sequence is divergent if its not convergent. The definition of convergence formal-
izes the idea the ancients sought if you keep calculating terms, you’ll get as close
as you like to the number you seek

That is, the definition sets up a challenge between you (the computer of the sequence)
and the error tolerance. Once you set a certain amount of acceptable error 𝜖, the
definition furnishes an 𝑁 and guarantees that if you compute the sequence out until
𝑁 you’ll be within the tolerated error - and if you keep computing more terms, the
approximation will never get worse. Its good to look at some specific examples, while
getting comfortable with this:

Exercise 6.2 (Understanding Convergence). Consider the sequence 𝑎𝑛 = 1
𝑛2+13 . Feel

free to use a calculator (even just the google search bar) to experiment and answer
these questions.

• What value 𝐿 do you think this sequence converges to?
• If 𝜖 = 1/10, what value of 𝑁 ensures that 𝑎𝑛 is always within 𝜖 of 𝐿 for, 𝑛 > 𝑁 ?
• If 𝜖 = 1/100, what value of 𝑁 ensures that 𝑎𝑛 is always within 𝜖 of 𝐿 for, 𝑛 > 𝑁 ?

Exercise 6.3 (Convergence and √2). This problem concerns the babylonian sequence
for√2 in Example 6.1. Again, use a calculator to play around and answer the following

• For which value of𝑁 are we guaranteed that 𝑤𝑛 calculates the first two decimal
places √2 correctly, when 𝑛 > 𝑁 ?

• For which value of 𝑁 are we guaranteed that 𝑤𝑛 calculates the first eight deci-
mal places √2 correctly, when 𝑛 > 𝑁 ?
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6. Convergence

6.1.1. The 𝜖 − 𝑁 Game

To prove a sequence converges, we need to work through the string of quantifiers
∀𝜖∃𝑁∀𝑛… This sets up a sort of imagined battle between an imagined foe setting a
value of 𝜖, and you needing to come up with an 𝑁 such that you can get the sequence
within 𝜖 of the limit.

Here’s one incredibly useful example, that will serve as the basis of many future cal-
culations.

Proposition 6.1 (1/𝑛 converges to 0.). Prove that the sequence 𝑠𝑛 = 1/𝑛 of reciprocals
of the natural numbers converges to 0.

Proof. Let 𝜖 > 0. Then set 𝑁 = 1/𝜖, and choose arbitrary 𝑛 > 𝑁 . Since 𝑛 > 1/𝜖 it
follows that 1/𝑛 < 𝜖, and hence that

| 1𝑛 − 0| < 𝜖

Since 𝑛 > 𝑁 was arbitrary, this holds for all such 𝑛, and we have proved for this 𝜖,
theres an 𝑁 with 𝑛 > 𝑁 implying the sequence 1/𝑛 is within 𝜖 of the proposed limit
0. Since 𝜖 was also arbitrary, we have in fact proved this for all positive epsilon, and
thus we conclude 1

𝑛 → 0

Often when working out such a computation, the scratch work is backwards of the
final proof. In a proof, you need to fix an arbitrary epsilon, then

Exercise 6.4 ( 𝑛
𝑛+1 converges to 1).

Sometimes the scratch work takes a bit more thinking or algebraic manipulation. Its
OK if the scratch work isn’t fully rigorous or perfectly written, as long as the eventual
proof is! Here’s an example of some scratch work taking a naive approach (just “solve
for 𝑛”) that arrives at an easy bound, and a nice formal proof verifying it.

Example 6.3 ( 𝑛
𝑛2+1 converges to 0.).

Scratch. We want 𝑛
𝑛2+1 < 𝜖, and we attempt to solve this inequality for 𝑛 by multiply-

ing through and using the quadratic formula:

𝑛 < 𝜖𝑛2 + 𝜖 ⟹ 0 < 𝜖𝑛2 − 𝑛 + 𝜖
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6.1. Convergence

The zeroes satisfy

𝑛 = 1 ± √1 − 4𝜖2
2𝜖

The larger of these is the one with the + sign, so as long ad 𝑛 is bigger than this the
proof will work. This term as written is rather annoying to deal with as we have
1 − 4𝜖2 under the square root, and to do a formal proof using it as is, we’d need to
ensure this wasn’t negative. But since we are only looking for a bound, we can use
that

1 + √1 − 4𝜖2
2𝜖 < 1 + 1

2𝜖 = 1
𝜖

and just require 𝑛 > 1
𝜖 .

Formal. Let 𝜖 > 0 and set 𝑁 = 1
𝜖 . For any 𝑛 > 𝑁 we see that 1

𝑛2 < 𝜖2, and 1
𝑛2+1 < 1

𝑛2
so 1

𝑛2+1 < 𝜖2. Multiplying by 𝑛 gives

𝑛
𝑛2 + 1 < 𝑛𝜖2 < 1

𝜖 𝜖
2 = 𝜖

Thus for any 𝑛 > 𝑁 we have | 𝑛
𝑛2+1 − 0| < 𝜖 so the sequence converges to 0 by defini-

tion.

Example 6.4 ( 1
2𝑛 → 0). Here’s a sketch of an argument: you should fill in the details.

Let 𝜖 > 0. Then we want to find an 𝑁 where 𝑛 > 𝑁 implies 1/2𝑛 < 𝜖. First, we prove
by induction that 2𝑛 ≥ 𝑛 for all 𝑛. Thus, 1/2𝑛 < 1/𝑛, and so it suffices to find 𝑁 where
1/𝑛 < 𝜖. But this is exactly what we did above in the proof that 1/𝑛 → 0. So this is
possible, and hence 1/2𝑛 → 0.

Exercise 6.5. Give an example of the following, or explain why no such example can
exist.

• A sequence with infinitely many terms equal to zero, but does not converge to
zero.

• A sequence with infinitely many terms equal to zero, which converges to a
nonzero number.

• A sequence of irrational numbers that converges to a rational number.
• A convergent sequence where every term is an integer.

Exercise 6.6. Prove, directly from the definition of convergence, that

2𝑛 − 2
5𝑛 + 1 → 2

5
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6. Convergence

6.1.2. Divergence

The definition of convergence picks out a very nice class of sequences: those that get
arbitrarily close to a fixed value, as their index grows. The rest of sequences - anything
that does not have this nice property, are all lumped into the category of divergent.

Definition 6.3 (Divergence). A sequence diverges if its not true that for any 𝜖 you
can find an 𝑁 where beyond that, all terms of the sequence differ from some constant
(the limit) less than 𝜖.
Phrasing this positively: a sequence 𝑎𝑛 diverges if for every value of 𝑎, there exists
some 𝜖 > 0 where no matter which 𝑁 you pick, there’s always some 𝑛 > 𝑁 where
|𝑎𝑛 − 𝑎| > 𝜖. There’s a lot of quantifiers here! Written out in first order logic:

∀𝑎 ∈ ℝ ∃𝜖 > 0 ∀𝑁 ∃𝑛 > 𝑁 |𝑎𝑛 − 𝑎| > 𝜖

Again, its easiest to illustrate with an example:

Example 6.5 ((−1)𝑛 Diverges). Here’s the idea: The sequence 𝑠𝑛 = (−1)𝑛 alternates
back and forth from 1 to −1 forever. Assume for the sake of contradiction that it in
fact converges to some real number 𝐿. Then (by definition) eventually all terms must
get within 𝜖 of 𝐿, but this is impossible if 𝜖 is small as every term differs from its
successor by 2.

Proof. Note that for all 𝑛, |𝑠𝑛 − 𝑠𝑛+1| = 2 as when 𝑛 is even this is |1 − (−1)| = |2| and
when 𝑛 is odd its | − 1− (1)| = | − 2|. Assume for the sake of contradiction that 𝑠𝑛 → 𝐿
for some 𝐿 ∈ ℝ, and set 𝜖 = 1

2 . This implies there exists an 𝑁 such that for all 𝑛 > 𝑁
we have |𝑠𝑛 − 𝐿| < 1

2 . Choosing some 𝑛 > 𝑁 we use the triangle inequality to see

2 = |𝑠𝑛 − 𝑠𝑛+1| = |𝑠𝑛 − 𝐿 + 𝐿 − 𝑠𝑛+1| ≤ |𝑠𝑛 − 𝐿| + |𝐿 − 𝑠 + 𝑛 + 1| ≤ 𝜖 + 𝜖 = 1

Thus we’ve proven 2 < 1 which is a contradiction, so it must not be true that 𝑠𝑛 → 𝐿
for any 𝐿: the sequence diverges.

Definition 6.4 (Diverging to ±∞). A sequence 𝑠𝑛 diverges to ∞ if for all 𝑀 > 0
there exists an threshold past which the sequence is always larger than 𝑀 . As a logic
statement,

∀𝑀 > 0 ∃𝑁 ∀𝑛 > 𝑁 𝑠𝑛 > 𝑀

Exercise 6.7 (𝑛2 diverges to ∞.).

Exercise 6.8.

• Give an example of two divergent sequences 𝑎𝑛 , 𝑏𝑛 where 𝑎𝑛 + 𝑏𝑛 is convergent.
• Give an example of two divergent sequences 𝑎𝑛 , 𝑏𝑛 where 𝑎𝑛𝑏𝑛 is convergent.
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6.2. Uniqueness

6.2. Uniqueness

Theorem 6.1 (Limits are unique). Let 𝑎𝑛 be a convergent sequence. Then there exists
a unique 𝑎 ∈ ℝ with 𝑎𝑛 → 𝑎.

Here’s a sketch of the idea, which uses several big ideas that can be recycled in similar
arguments:

• We prove uniqueness by showing that if 𝑥 and 𝑦 were both limits, then 𝑥 = 𝑦 .
• We prove 𝑥 = 𝑦 by showing that for every 𝜖 > 0 the difference |𝑥 − 𝑦| < 𝜖.
• We prove |𝑥 − 𝑦| < 𝜖 by an 𝜖/2 argument:

– We add zero in a clever way: |𝑥 − 𝑦| = |𝑥 − 𝑎𝑛 + 𝑎𝑛 − 𝑦|
– We use the triangle inequality |𝑥 − 𝑎𝑛 + 𝑎𝑛 − 𝑦| ≤ |𝑥 − 𝑎𝑛 | + |𝑎𝑛 − 𝑦|
– We use the fact that 𝑎𝑛 → 𝑥 and 𝑎𝑛 → 𝑦 to make each of |𝑎𝑛−𝑥| and |𝑎𝑛−𝑦|

less than 𝜖/2.

Proof. Assume that a sequence 𝑎𝑛 converges to two limits 𝑎𝑛 → 𝑥 and 𝑎𝑛 → 𝑦 . Then
for any 𝜖 we can find an 𝑁1 where 𝑛 > 𝑁1 implies |𝑎𝑛 − 𝑥| < 𝜖/2 and an 𝑁2 where
𝑛 > 𝑁2 implies |𝑎𝑛 − 𝑦| < 𝜖/2. Setting 𝑁 = max{𝑁1, 𝑁2} we see for any 𝑛 > 𝑁 that

|𝑥 − 𝑦| = |𝑥 − 𝑎𝑛 + 𝑎𝑛 − 𝑦| ≤ |𝑥 − 𝑎𝑛 | + |𝑎𝑛 − 𝑦| < 𝜖
2 + 𝜖

2 = 𝜖

Thus for any positive 𝜖 we know |𝑥 − 𝑦| < 𝜖, so in particular |𝑥 − 𝑦| ≠ 𝜖, and |𝑥 − 𝑦|
can’t be positive. Since absolute values are always nonnegative, the only remaining
option is that |𝑥 − 𝑦| = 0. But this means 𝑥 − 𝑦 = 0 and hence 𝑥 = 𝑦 : the two limits
are equal.

There’s one more uniqueness-type theorem about limits that’s useful to get a handle
on. We just saw that the limit is uniquely determined by the sequence, but we can
say something slightly stronger. Its uniquely determined by the end of the sequence:
if you throw away the first finitely many terms, it won’t change the limit.

Definition 6.5. A shifted sequence the result of shifting the indices by a constant 𝑘,
deleting the first 𝑘 terms. Precisely, given a sequence 𝑎𝑛 and some 𝑘 ∈ ℕ, the sequence
𝑠𝑛 = 𝑎𝑛+𝑘 is the result of shifting 𝑎 by 𝑘.

𝑠0 = 𝑎𝑘 , 𝑠1 = 𝑎𝑘+1, 𝑠2 = 𝑎𝑘+2, …

Proposition 6.2. Shifting a convergent sequence does not change its limit.
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6. Convergence

Scratch Work. Assume that 𝑎𝑛 converges to 𝑎, and define the sequence 𝑠𝑛 by deleting
the first 𝑘 terms of 𝑎𝑛 , that is, 𝑠𝑛 = 𝑎𝑛+𝑘 . We claim that 𝑠𝑛 → 𝑎.
Let 𝜖 > 0 and choose an 𝑁 such that if 𝑛 > 𝑁 we know that |𝑎𝑛 − 𝑎| < 𝜖 (we know
such an 𝑁 exists by the assumption 𝑎𝑛 → 𝑎). Now consider |𝑠𝑛 − 𝑎|. Since 𝑠𝑛 = 𝑎𝑛+𝑘 ,
we know |𝑠𝑛 − 𝑎| < 𝜖 because we already knew |𝑎𝑛+𝑘 − 𝑎| < 𝜖: we knew this for every
single index bigger than 𝑁 .

Thus, for all 𝑛 > 𝑁 we have |𝑠𝑛 − 𝑎| < 𝜖, which is the definition of 𝑠𝑛 → 𝑎.

This can be generalized, to show that any two sequences which are eventually the
same have the same limit. Since the first finite part of any sequence is irrelevant
to its limiting behavior, its nice to have a word for “the rest of the sequence, after
throwing away an unspecified amount at the beginning”. This is called the tail.

Definition 6.6 (Tail of a Sequence). The tail of a sequence is what remains after
chopping off an arbitrary (finite) number of terms from the beginning of the sequence.
Two sequences have the same tail if they agree after some point: more precisely, 𝑎𝑛
and 𝑏𝑛 have the same tail if there is an 𝑁𝑎 and 𝑁𝑏 such that for all 𝑘 ∈ ℕ

𝑎𝑁𝑎+𝑘 = 𝑏𝑁𝑏+𝑘

Example 6.6 (Tail of a Sequence). The following two sequences have the same tail:

𝑎𝑛 = 1, 1, 4, 3, 1, 5, 1, 3, 1, 4, 7, 8, 9, 10, 11, 12, 13, 14, …
𝑏𝑛 = −4, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18…

We can see this because 𝑎13 = 𝑏3 = 9, and 𝑎14 = 𝑏4 = 10, and 𝑎15 = 𝑏5 = 11…for every
𝑘 we have that 𝑎13+𝑘 = 𝑏3+𝑘 so they agree after chopping the first 12 terms off of 𝑎𝑛
and the first two terms off of 𝑏𝑛 .

Exercise 6.9 (Convergence only depends on the tail). If two sequences have the same
tail, then they either both converge or both diverge, and if they converge, they have
the same limit.

6.3. Important Sequences

We will soon develop several theorems that let us calculate many limits without te-
diously chasing down an𝑁 for every 𝜖. But there are still several ‘basic limits’ that we
will need to know, that will prove useful as building blocks of more complicated lim-
its, as well as foundations to further theory in analysis. We compute several of them
here: you should not worry too hard about committing these to memory; but rather
read the proofs as examples of how to play the 𝜖 − 𝑁 game in tricky situations.

The first and most important are familiar from above:
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Example 6.7. As 𝑛 → ∞ the sequence 1/𝑛 converges to 0.

The next is useful in developing the theory of geometric series:

Example 6.8. Let |𝑎| < 1, then the sequence 𝑎𝑛 of repeated powers of 𝑎 converges to
0.

There’s a corresponding result for larger values of 𝑎:

Example 6.9. If 𝑎 > 1 then 𝑎𝑛 diverges to infinity.

This next is an essential building block of the theory of exponential functions:

Example 6.10. The sequence 𝑛1/𝑛 converges to 1.

Proof. (Page 157 Amazing)

Example 6.11. Let 𝑎 > 0. Then the sequence 𝑎1/𝑛 converges to 1.

6.4. ★ Topology

With an eye to topology, everything about sequences and convergence can be
rephrased in terms of open sets, instead of with talk about 𝜖 and inequalities.

Definition 6.7 (Neighborhoods). A neighborhood of a point 𝑥 is any open set 𝑈 con-
taining 𝑥 . The 𝜖-neighborhood of 𝑥 is the neighborhood 𝑈𝜖 = (𝑥 − 𝜖, 𝑥 + 𝜖)

Definition 6.8 (Convergence and 𝜖-Neighborhoods). A sequence 𝑎𝑛 converges to 𝑎
if every 𝜖 neighborhood contains all but finitely many terms of the sequence.

That this is equivalent to Definition 6.2, because the definition of epsilon neigh-
borhood exactly captures the interval discussed in the original definition of conver-
gence.

Exercise 6.10 (Convergence and 𝜖-Neighborhoods). The definition of convergence
in terms of epsilon neighborhoods is equivalent to the usual definition in terms of
absolute values and inequalities.

The definition of an epsilon neighborhood makes sense only somewhere like the real
line, where we can talk about intervals. So, the general topological definition must
dispense with this notion and talk just about open sets:
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Definition 6.9. A sequence 𝑎𝑛 converges to 𝑎 if every neighborhood contains all but
finitely many terms of the sequence.

Exercise 6.11 (Convergence and Neighborhoods). Prove this is equivalent to con-
vergence using 𝜖 neighborhoods. Hint: show that every neighborhood contains some
epsilon neighborhood. Can you show that is enough?

6.5. Problems

Exercise 6.12. Come up with a recursive sequence that could be used to formally
understand the infinite expression below:

√1 + √1 + √1 + √1 + √1 + √1 + ⋯

Exercise 6.13. Given two sequences 𝑥𝑛 , 𝑦𝑛 that converge to 𝑎, show the interleaved
sequence 𝑥1, 𝑦1, 𝑥2, 𝑦2, … converges to 𝑎.

Exercise 6.14. Let 𝑎𝑛 → 0 and let 𝑏𝑛 be a sequence such that for all 𝑛 you know
|𝑏𝑛 − 𝐿| < 𝑎𝑛 . Prove that lim 𝑏𝑛 = 𝐿.
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Highlights of this Chapter: We develop techniques for bounding lim-
its by inequalities, and computing limits using the field axioms. We use
these techniques to prove two interesting results:

• The Babylonian sequence approximating √2 truly does converge to
this value.

• Given any real number, there exists a sequence of rational numbers
converging to it.

Now that we have a handle on the definition of convergence and divergence, our
goal is to develop techniques to avoid using the definition directly, wherever possible
(finding values of 𝑁 for an arbitrary 𝜖 is difficult, and not very enlightening!)

The natural first set of questions to investigate then are how our new definition inter-
acts with the ordered field axioms: can we learn anything about limits and inequali-
ties, or limits and field operations? We tackle both of these in turn below.

7.1. Limits and Inequalities

Proposition 7.1 (Limits of nonnegative sequences). Let 𝑎𝑛 be a convergent sequence
of nonnegative numbers. Then lim 𝑎𝑛 is nonnegative.

Proof. Assume for the sake of contradiction that 𝑎𝑛 → 𝐿 but 𝐿 < 0. Since 𝐿 is negative,
we can find a small enough epsilon (say, 𝜖 = |𝐿|/2) such that the entire interval
(𝐿 − 𝜖, 𝐿 + 𝜖) consists of negative numbers.

The definition of convergence says for this 𝜖, there must be an 𝑁 where for all 𝑛 > 𝑁
we know 𝑎𝑛 lies in this interval. Thus, we’ve concluded that for large enough 𝑛, that
𝑎𝑛 must be negative! This is a contradiction, as 𝑎𝑛 is a nonnegative sequence.

Exercise 7.1. If 𝑎𝑛 is a convergent 𝑎𝑛 ≥ 𝐿 for all 𝑛, then lim 𝑎𝑛 ≥ 𝐿. Similarly prove
if 𝑎𝑛 is a convergent 𝑎𝑛 ≤ 𝑈 for all 𝑛, then lim 𝑎𝑛 ≤ 𝑈 .

This exercise provides the following useful corollary, telling you that if you can bound
a sequence, you can bound its limit.
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Corollary 7.1 (Inequalities and Convergence). If 𝑎𝑛 is a convergent sequence with
𝐿 ≤ 𝑎𝑛 ≤ 𝑈 for all 𝑛, then

𝐿 ≤ lim 𝑎𝑛 ≤ 𝑈

In fact, a kind of converse of this is true as well: if a sequence converges, then we
know the limit ‘is bounded’ (as it exists, as a real number, and those can’t be infinite).
But this is enough to conclude that the entire sequence is bounded!

Proposition 7.2 (Convergent Sequences are Bounded). Let 𝑠𝑛 be a convergent se-
quence. Then there exists a 𝐵 such that |𝑠𝑛 | < 𝐵 for all 𝑛 ∈ ℕ.

Proof. Let 𝑠𝑛 → 𝐿 be a convergent sequence. Then we know for any 𝜖 > 0 eventually
the sequence stays within 𝜖 of 𝐿. So for example, choosing 𝜖 = 1, this means there is
some 𝑁 where for 𝑛 > 𝑁 we are assured |𝑠𝑛 − 𝐿| < 1, or equivalently −1 < 𝑠𝑛 − 𝐿 < 1.
Adding 𝐿,

𝐿 − 1 < 𝑠𝑛 < 𝐿 + 1

Thus, we have both upper and lower bounds for the sequence after 𝑁 and all we are
left to worry about is the finitely many terms before this. For an upper bound on
these we can just take the max of 𝑠1, … , 𝑠𝑁 and for a lower bound we can take the
min.

Thus, to get an overall upper bound, we can take

𝑀 = max{𝑠1, 𝑠2, … , 𝑠𝑁 , 𝐿 + 1}

and for an overall lower bound we can take

𝑚 = min{𝑠1, 𝑠2, … , 𝑠𝑁 , 𝐿 − 1}

Then for all 𝑛 we have 𝑚 ≤ 𝑠𝑛 ≤ 𝑀 so the sequence 𝑠𝑛 is bounded.

Theorem 7.1 (The Squeeze Theorem). Let 𝑎𝑛 , 𝑏𝑛 and 𝑐𝑛 be sequences with 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛
for all 𝑛. Then if 𝑎𝑛 and 𝑐𝑛 are convergent, with lim 𝑎𝑛 = lim 𝑐𝑛 = 𝐿, then 𝑏𝑛 is also
convergent, and

lim 𝑏𝑛 = 𝐿

Proof. Choose 𝜖 > 0. Since both 𝑎𝑛 → 𝐿, we can choose 𝑁𝑎 such that 𝑛 > 𝑁𝑎 implies
|𝑎𝑛 − 𝐿| < 𝜖, and similarly as 𝑐𝑛 → 𝐿 there’s an 𝑁𝑐 with 𝑛 > 𝑁𝑐 implying $|c_n-L|<�.
Set 𝑁 = max{𝑁𝑎 , 𝑁𝑏} and note that for any 𝑛 > 𝑁 this means −𝜖 < 𝑎𝑛 − 𝐿 < 𝜖
and −𝜖 < 𝑐𝑛 − 𝐿 < 𝜖. Since 𝑎𝑛 ≤ 𝑐𝑛 by assumption, we can string these inequalities
together to get
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−𝜖 < 𝑎𝑛 − 𝐿 ≤ 𝑐𝑛 − 𝐿 < 𝜖

But we know more than this: in fact, 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛 and subtracting 𝐿 allows us to
squeeze this directly into the one given above:

−𝜖 < 𝑎𝑛 − 𝐿 ≤ 𝑏𝑛 − 𝐿 ≤ 𝑐𝑛 − 𝐿 < 𝜖

Ignoring the terms with 𝑎𝑛 and 𝑐𝑛 , this says −𝜖 < 𝑏𝑛 − 𝐿 < 𝜖, or |𝑏𝑛 − 𝐿| < 𝜖. Thus
𝑏𝑛 → 𝐿 as claimed.

7.1.1. Example Computations

The squeeze theorem is incredibly useful in practice as it allows us to prove the conver-
gence of complicated looking sequences by replacing them with two (hopefully sim-
pler) sequences, an upper and lower bound. To illustrate, let’s look back at ?@exr-
another-seq-converges, and re-prove its convergence.

Example 7.1 ( 𝑛
𝑛2+1 converges to 0.). Since we are trying to converge to zero, wewant

to bound this sequence above and below by sequences that converge to zero. Since 𝑛
is always positive, a natural lower bound is the constant sequence 0, 0, 0, ….

One first thought for an upper bound may be 𝑛
𝑛+1 : its easy to prove that 𝑛

𝑛2+1 < 𝑛
𝑛+1

(as we’ve made the denominator smaller), and so we have bounded our sequence
0 < 𝑎𝑛 < 𝑛

𝑛+1 . Unfortunately this does not help us, as lim 𝑛
𝑛+1 = 1 (Exercise 6.4) so

the two bounds do not squeeze 𝑎𝑛 to zero!

Another attempt at an upper bound may be 1/𝑛: we know this goes to zero (Proposi-
tion 6.1) and it is also an upper bound:

𝑛
𝑛2 + 1 < 𝑛

𝑛2 = 1
𝑛

Thus since lim 0 = 0 and lim 1
𝑛 = 0, we can conclude via squeezing that lim 𝑛

𝑛2+1 = 0
as well.

This theorem is particularly useful for calculating limits involving functions whose
values are difficult to compute. While we haven’t formally introduced the sine func-
tion yet in this class, we know (and will later confirm) that −1 ≤ sin(𝑥) ≤ 1 for all
𝑥 ∈ ℝ. We can use this to compute many otherwise difficult limits:
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Example 7.2 (𝑠𝑛 = sin 𝑛
𝑛 converges to 0.). Since −1 ≤ sin(𝑥) ≤ 1 we know 0 ≤

| sin 𝑥| ≤ 1 for all 𝑥 , and thus

0 ≤ sin 𝑛
𝑛 ≤ 1

𝑛
Since both of these bounding sequences converge to zero, we know the original does
as well, by the squeeze theorem.

This sort of estimation can be applied to even quite complicated looking limits:

Example 7.3. Compute the following limit:

lim (𝑛
2 sin(𝑛3 − 2𝑛 + 1)
𝑛3 + 𝑛2 + 𝑛 + 1 )

𝑛

Lets begin by estimating as much as we can: we know | sin(𝑥)| ≤ 1, so we can see
that

| 𝑛
2 sin(𝑛3 − 2𝑛 + 1)
𝑛3 + 𝑛2 + 𝑛 + 1 | < 𝑛2

𝑛3 + 𝑛2 + 1
Next, we see that by shrinking the denominator we can produce yet another over
estimate:

𝑛2
𝑛3 + 𝑛2 + 1 < 𝑛2

𝑛3 = 1
𝑛

Bringing back the 𝑛𝑡ℎ power

| 𝑛
2 sin(𝑛3 − 2𝑛 + 1)
𝑛3 + 𝑛2 + 𝑛 + 1 |

𝑛
< 1

𝑛𝑛

And, unpacking the definition of absolute value:

− 1
𝑛𝑛 < (𝑛

2 sin(𝑛3 − 2𝑛 + 1)
𝑛3 + 𝑛2 + 𝑛 + 1 )

𝑛
< 1

𝑛𝑛

It now suffices to prove that 1/𝑛𝑛 converges to zero, as we ve squeezed our sequence
with it. But this is easiest to do with another squeeze: namely, since 𝑛𝑛 > 2𝑛 we see
0 < 1/𝑛𝑛 < 1/2𝑛 , and we already proved that 1/2𝑛 → 0, so we’re done!

lim (𝑛
2 sin(𝑛3 − 2𝑛 + 1)
𝑛3 + 𝑛2 + 𝑛 + 1 )

𝑛
= 0
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Exercise 7.2. Use the squeeze theorem to prove that

lim(
𝑛3 − 2 − 1

𝑛3
3𝑛3 + 5 )

2𝑛+7
= 0

A nice corollary of the squeeze theorem tells us when a sequence converges by esti-
mating its difference from the proposed limit:

Exercise 7.3. Let 𝑎𝑛 be a sequence, and 𝐿 be a real number. If there exists a sequence
𝛼𝑛 where |𝑎𝑛 − 𝐿| ≤ 𝛼𝑛 for all 𝑛, and 𝛼𝑛 → 0, then lim 𝑎𝑛 = 𝐿.

This is useful as unpacking the definition of absolute value (Definition 2.5), a sequence
𝛼𝑛 with

−𝛼𝑛 ≤ 𝑎𝑛 − 𝐿 ≤ 𝛼𝑛
can be thought of as giving “error bounds” on the difference of 𝑎𝑛 from 𝐿. In this lan-
guage, the proposition says if we can bound the error between 𝑎𝑛 and 𝐿 by a sequence
going to zero, then 𝑎𝑛 must actually go to 𝐿.

7.2. Limits and Field Operations

Just like inequalities, the field operations themselves play nicely with limits.

Theorem 7.2 (Constant Multiples). Let 𝑠𝑛 be a convergent sequence, and 𝑘 a real num-
ber. Then the sequence 𝑘𝑠𝑛 is convergent, and

lim 𝑘𝑠𝑛 = 𝑘 lim 𝑠𝑛

Proof. We distinguish two cases, depending on 𝑘. If 𝑘 = 0, then 𝑘𝑠𝑛 is just the constant
sequence 0, 0, 0… and 𝑘 lim 𝑠𝑛 = 0 as well, so the theorem is true.

If 𝑘 ≠ 0, we proceed as follows. Denote the limit of 𝑠𝑛 by 𝐿, and let 𝜖 > 0. Choose 𝑁
such that 𝑛 > 𝑁 implies |𝑠𝑛 − 𝐿| < 𝜖

|𝑘| (we can do so, as 𝑠𝑛 → 𝐿). Now, for this same
value of 𝑁 , choose arbitrary 𝑛 > 𝑁 and consider the difference |𝑘𝑠𝑛 − 𝑘𝐿|:

|𝑘𝑠𝑛 − 𝑘𝐿| = |𝑘(𝑠𝑛 − 𝐿)| = |𝑘||𝑠𝑛 − 𝐿| < |𝑘| 𝜖|𝑘| = 𝜖

Thus, 𝑘𝑠𝑛 → 𝑘𝐿 as claimed!

To do a similar calculation for the sum of sequences requires an 𝜖/2 type argument:
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Theorem 7.3 (Limit of a Sum). Let 𝑠𝑛 , 𝑡𝑛 be convergent sequences. Then the sequence
of term-wise sums 𝑠𝑛 + 𝑡𝑛 is convergent, with

lim(𝑠𝑛 + 𝑡𝑛) = lim 𝑠𝑛 + lim 𝑡𝑛

Exercise 7.4 (Limit of Sums and Differences). Prove Theorem 7.3, that if 𝑠𝑛 and 𝑡𝑛
converge so does 𝑠𝑛 + 𝑡𝑛 and

lim(𝑠𝑛 + 𝑡𝑛) = lim 𝑠𝑛 + lim 𝑡𝑛

Use this together with other limit theorems to prove the same holds for differences:
𝑠𝑛 − 𝑡𝑛 also converges, and

lim(𝑠𝑛 − 𝑡𝑛) = lim 𝑠𝑛 − lim 𝑡𝑛

The case of products is a little more annoying to prove, but the end result is the same
- the limit of a product is the product of the limits.

Theorem 7.4 (Limit of a Product). Let 𝑠𝑛 , 𝑡𝑛 be convergent sequences. Then the se-
quence of term-wise products 𝑠𝑛𝑡𝑛 is convergent, with

lim(𝑠𝑛𝑡𝑛) = (lim 𝑠𝑛) (lim 𝑡𝑛)

Sketch. Let 𝑠𝑛 → 𝑆 and 𝑡𝑛 → 𝑇 be two convergent sequences and choose 𝜖 > 0. We
wish to find an 𝑁 beyond which we know 𝑠𝑛𝑡𝑛 lies within 𝜖 of $ST.

To start, we consider the difference |𝑠𝑛𝑡𝑛 − 𝑆𝑇 | and we add zero in a clever way:

|𝑠𝑛𝑡𝑛 − 𝑆𝑇 | = |𝑠𝑛𝑡𝑛 − 𝑠𝑛𝑇 + 𝑠𝑛𝑇 − 𝑆𝑇 | = |(𝑠𝑛𝑡𝑛 − 𝑠𝑛𝑇 ) + (𝑠𝑛𝑇 − 𝑆𝑇 )|

applying the triangle inequality we can break this apart

|𝑠𝑛𝑡𝑛 − 𝑆𝑇 | ≤ |𝑠𝑛𝑡𝑛 − 𝑠𝑛𝑇 | + |𝑠𝑛𝑇 − 𝑆𝑇 | = |𝑠𝑛 ||𝑡𝑛 − 𝑇 | + |𝑠𝑛 − 𝑆||𝑇 |

The second term here is easy to bound: if 𝑇 = 0 then its just literally zero, and if 𝑇 ≠ 0
then we can make it as small as we want: we know 𝑠𝑛 → 𝑆 so we can make |𝑠𝑛 − 𝑆|
smaller than anything we need (like 𝜖/𝑇 , or even 𝜖/2𝑇 if necessary).

For the first term we see it includes a term of the form |𝑡𝑛 −𝑇 | which we know we can
make as small as we need to by choosing sufficiently large 𝑁 . But its being multiplied
by |𝑠𝑛 | and we need to make sure the whole thing can be made small, so we should
worry about what if |𝑠𝑛 | is getting really big? But this isn’t actually a worry - we know
𝑠𝑛 is convergent, so its bounded, so there is some 𝐵 where |𝑠𝑛 | < 𝐵 for all 𝑛. Now we
can make |𝑡𝑛 − 𝑇 | as small as we like, (say, smaller than 𝜖/𝐵 or 𝜖/2𝐵 or whatever we
need).
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Since each of these terms can be made small as we need individually, choosing large
enough 𝑛’s we can make them both simultaneously small, so the whole difference
|𝑠𝑛𝑡𝑛 − 𝑆𝑇 | is small (less than 𝜖) which proves convergence.

Exercise 7.5. Write the sketch of an argument above in the right order, as a formal
proof.

Corollary 7.2. If 𝑝 is a positive integer then

lim 1
𝑛𝑝 = 0

Hint: Induction on the power 𝑝

The next natural case to consider after sums and differences and products is quotients.
We begin by considering the limit of a reciprocal:

Proposition 7.3 (Limit of a Reciprocal). Let 𝑠𝑛 be a convergent nonzero sequence wtih
a nonzero limit. Then the sequence 1/𝑠𝑛 of reciprocals is convergent, with

lim 1
𝑠𝑛

= 1
lim 𝑠𝑛

Sketch. For any 𝜖 > 0, want to show when 𝑛 is very large, we can make

| 1𝑠𝑛
− 1

𝑠 | < 𝜖

We can get a common denominator and rewrite this as

| 1𝑠𝑛
− 1

𝑠 | =
|𝑠 − 𝑠𝑛 |
|𝑠𝑠𝑛 |

Since 𝑠𝑛 is not converging to zero, we should be able to bound it away from zero: that
is, find some 𝑚 such that |𝑠𝑛 | > 𝑚 for all 𝑛 ∈ ℕ (we’ll have to prove we can actually
do this). Given such an 𝑚 we see the denominator |𝑠𝑠𝑛 | > 𝑚|𝑠|, and so

| 1𝑠𝑛
− 1

𝑠 | <
|𝑠𝑛 − 𝑠|
𝑚|𝑠|

We want this less than 𝜖 so all we need to do is choose 𝑁 big enough that |𝑠𝑛 − 𝑠| is
less than 𝜖𝑚|𝑠| and we’re good.

Exercise 7.6. Turn the sketch argument for lim 1
𝑠𝑛 = 1

𝑠𝑛 in Proposition 7.3 into a
formal proof.
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From here, its quick work to understand the limit of a general quotient.

Theorem 7.5 (Limit of a Quotient). Let 𝑠𝑛 , 𝑡𝑛 be convergent sequences, with 𝑡𝑛 ≠ 0 and
lim 𝑡𝑛 ≠ 0. Then the sequence 𝑠𝑛/𝑡𝑛 of quotients is convergent, with

lim
𝑠𝑛
𝑡𝑛

= lim 𝑠𝑛
lim 𝑡𝑛

Proof. Since 𝑡𝑛 converges to a nonzero limit, by Proposition 7.3 we know that 1/𝑡𝑛
converges, with limit 1/ lim 𝑡𝑛 . Now, we can use Theorem 7.4 for the product 𝑠𝑛 ⋅ 1

𝑡𝑛 :

lim
𝑠𝑛
𝑡𝑛

= lim 𝑠𝑛 ⋅ 1𝑡𝑛
= (lim 𝑠𝑛) (lim 1

𝑡𝑛
)

= lim 𝑠𝑛 1
lim 𝑡𝑛

= lim 𝑠𝑛
lim 𝑡𝑛

Finally we look at square roots. We have already proven in Theorem 4.9 that non-
negative numbers have square roots, and so given a nonnegative sequence 𝑠𝑛 we can
consider the sequence √𝑠𝑛 of its roots. Below we see that the limit concept respects
roots just as it does the other field operations:

Theorem 7.6 (Root of Convergent Sequence). Let 𝑠𝑛 > 0 be a convergent sequence,
and √𝑠𝑛 its sequence of square roots. Then √𝑠𝑛 is convergent, with

lim√𝑠𝑛 = √lim 𝑠𝑛

Sketch. Assume 𝑠𝑛 → 𝑠, and fix 𝜖 > 0. We seek an𝑁 where 𝑛 > 𝑁 implies |√𝑠𝑛−√𝑠| < 𝜖.
This looks hard: because the fact we know is about 𝑠𝑛−𝑠 and the fact we need is about
√𝑠𝑛 − √𝑠.
But what if we multiply and divide by √𝑠𝑛+√𝑠 so we can simplify using the difference
of squares?

|√𝑠𝑛 − √𝑠|√
𝑠𝑛 + √𝑠

√𝑠𝑛 + √𝑠
= |𝑠𝑛 − 𝑠|

√𝑠𝑛 + √𝑠

This has the quantity |𝑠𝑛 − 𝑠| that we know about in it! We know we can make this
as small as we like by the assumption 𝑠𝑛 → 𝑠, so as long as the denominator does not
go to zero, we can make this happen!

106



7.2. Limits and Field Operations

Formal. Let 𝑠𝑛 be a positive sequence with 𝑠𝑛 → 𝑠 and assume 𝑠 ≠ 0 (we leave that
case for the exercise below). Let 𝜖 > 0, and choose 𝑁 such that if 𝑛 > 𝑁 we have
|𝑠𝑛 − 𝑠| < 𝜖√𝑠.

Now for any 𝑛, rationalizing the numerator we see

|√𝑠𝑛 − √𝑠| = |𝑠𝑛 − 𝑠|
√𝑠𝑛 + √𝑠

< |𝑠𝑛 − 𝑠|
√𝑠

Where the last inequality comes from the fact that √𝑠𝑛 > 0 by definition, so √𝑠+√𝑠𝑛 >
√𝑠. When 𝑛 > 𝑁 we can use the hypothesis that 𝑠𝑛 → 𝑠 to see

|√𝑠𝑛 − √𝑠| < |𝑠𝑛 − 𝑠|
√𝑠

= 𝜖√𝑠
√𝑠

= 𝜖

And so, √𝑠𝑛 is convergent, with limit √𝑠.

Exercise 7.7. Prove that if 𝑠𝑛 → 0 is a sequence of nonnegative numbers, that the
sequence of roots also converges to zero √𝑠𝑛 → 0.

Hint: you don’t need to rationalize the numerator or do fancy algebra like above

Together this suite of results provides an effective means of calculating limits from
simpler pieces. They are often referred to together as the limit theorems

Theorem 7.7 (The Limit Theorems). Let 𝑎𝑛 and 𝑏𝑛 be any two convergent sequences,
and 𝑘 ∈ ℝ a constant. Then

lim 𝑘𝑎𝑛 = 𝑘 lim 𝑎𝑛
lim(𝑎𝑛 ± 𝑏𝑛) = (lim 𝑎𝑛) ± (lim 𝑏𝑛)

lim 𝑎𝑛𝑏𝑛 = (lim 𝑎𝑛)(lim 𝑏𝑛)

If 𝑏𝑛 ≠ 0 and lim 𝑏𝑛 ≠ 0,
lim

𝑎𝑛
𝑏𝑛

= lim 𝑎𝑛
lim 𝑏𝑛

And, if 𝑎𝑛 ≥ 0, then √𝑎𝑛 is convergent, with

lim√𝑎𝑛 = √lim 𝑎𝑛
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7.2.1. Example Computations

Example 7.4. Compute the limit of the following sequence 𝑠𝑛:

𝑠𝑛 =
3𝑛3 + 𝑛6−2

𝑛2+5
𝑛3 − 𝑛2 + 1

Example 7.5. Compute the limit of the sequence 𝑠𝑛

𝑠𝑛 =
√

1
2𝑛 + √

𝑛2 − 1
𝑛2 − 𝑛 + 1

7.3. Applications

7.3.1. Babylon and √2
We know that √2 exists as a real number (Theorem 4.7), and we know that the babylo-
nian procedure produces excellent rational approximations to this value (Exercise 0.5),
in the precise sense that the numerator squares to just onemore than twice the square
of the denominator.

Now we finally have enough tools to combine these facts, and prove that the babylo-
nian procedure really does limit to √2.

Theorem 7.8. Let 𝑠𝑛 = 𝑝𝑛
𝑞𝑛 be a sequence of rational numbers where both 𝑝𝑛 , 𝑞𝑛 → ∞

and for each 𝑝2𝑛 = 2𝑞2𝑛 − 1. Then 𝑠𝑛 → √2.

Proof. We compute the limit of the sequence 𝑠2𝑛 . Using that 𝑝2𝑛 = 2𝑞2𝑛 + 1 we can
replace the numerator and do algebra to see

𝑠2𝑛 = 𝑝2𝑛
𝑞2𝑛

= 2𝑞2𝑛 + 1
𝑞2𝑛

= 2 + 1
𝑞2𝑛

.

Now, as by assumption 𝑞𝑛 → ∞ we have that 𝑞2𝑛 = 𝑞𝑛𝑞𝑛 also diverges to infinity (Ex-
ercise 7.12), and so its reciprocal converges to 0 (?@prp-diverge-to-infty-equliv-
converge-to-zero). Thus, using the limit theorems for sums,

lim
𝑝2𝑛
𝑞2𝑛

= lim (2 − 1
𝑞2𝑛

) = 2 − lim 1
𝑞2𝑛

= 2

That is, the limit of the squares approaches 2. Now we apply Theorem 7.6 to this
sequence 𝑠2𝑛 , and conclude that
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• 𝑠𝑛 = √𝑠2𝑛 converges.
• lim 𝑠𝑛 = lim√𝑠2𝑛 = √lim 𝑠2𝑛 = √2

This provides a rigorous justification of the babylonian’s assumption that if you are
patient, and compute more and more terms of this sequence, you will always get
better and better approximations of the square root of 2.

Exercise 7.8. Build a sequence that converges to √𝑛 by following the babylonian
procedure, starting with a rectangle of area 𝑛.

7.3.2. Rational and Irrational Sequences

Combining the squeeze theorem and limit theorems with the density of the
(ir)rationals allows us to prove the existence of certain sequences that will prove
quite useful:

Theorem 7.9. For every 𝑥 ∈ ℝ there exists a sequence 𝑟𝑛 of rational numbers with
𝑟𝑛 → 𝑥 .

Proof. Let 𝑥 ∈ ℝ be arbirary, and consider the sequence 𝑥 + 1
𝑛 . Because the constant

sequence 𝑥, 𝑥, 𝑥 … and the sequence 1/𝑛 are convergent, by the limit theorem for
sums we know 𝑥 + 1

𝑛 is convergent and

lim (𝑥 + 1
𝑛) = 𝑥 + lim 1

𝑛 = 𝑥

Now for each 𝑛 ∈ ℕ, by the density of the rationals we can find a rational number 𝑟𝑛
with 𝑥 < 𝑟𝑛 < 𝑥 + 1

𝑛 . This defines a sequence of rational numbers squeezed between

𝑥 and 𝑥 + 1
𝑛 : thus, by the squeeze theorem we hav

𝑥 < 𝑟𝑛 < 𝑥 + 1
𝑛 ⟹ lim 𝑟𝑛 = 𝑥

Through a similar argument using Exercise 4.5 we find the existence of a sequence of
irrational numbers converging to any real number.

Exercise 7.9. For every 𝑥 ∈ ℝ there exists a sequence 𝑦𝑛 of irrationals with 𝑦𝑛 → 𝑥 .
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7. Limit Laws

7.4. Problems

7.4.1. ★ Infinity

Given the formal defintion of divergence to infinity as meaning eventually gets larger
than any fixed number, we can formulate analogs of the limit theorems for such diver-
gent sequences. We will not need any of these in the main text but it is good practice
to attempt their proofs:

Exercise 7.10. If 𝑠𝑛 → ∞ and 𝑘 > 0 then 𝑘𝑠𝑛 → ∞.

Exercise 7.11. If 𝑡𝑛 diverges to infinity, and 𝑠𝑛 either converges, or also diverges to
infinity, then 𝑠𝑛 + 𝑡𝑛 → ∞.

Exercise 7.12. If 𝑡𝑛 diverges to infinity, and 𝑠𝑛 either converges, or also diverges to
infinity, then 𝑠𝑛𝑡𝑛 → ∞.

Note that there is not an analog of the division theorem: if 𝑠𝑛 → ∞ and 𝑡𝑛 → ∞, with
only this knowledge we can learn nothing about the quotient 𝑠𝑛/𝑡𝑛 .

Exercise 7.13. Give examples of sequences 𝑠𝑛 , 𝑡𝑛 → ∞ where

lim
𝑠𝑛
𝑡𝑛

= 0

lim
𝑠𝑛
𝑡𝑛

= 2

lim
𝑠𝑛
𝑡𝑛

= ∞

These limit laws are the precise statement behind the “rules” often seen in a calculus
course, where students may write 2+∞ = ∞, ∞+∞ = ∞, or ∞⋅∞ = ∞, but they may
not write ∞/∞. (If you are looking at this last case and thinking l’Hospital, we’ll get
there in ?@thm-Lhospital!)
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8. Monotone Convergence

Highlights of this Chapter: We prove the monotone convergence the-
orem, which is our first theorem that tells us a sequence converges, with-
out having to first know its limiting value. We show how to use this the-
orem to find the limit of various recursively defined sequences, including
two important examples.

• We prove the infinite sequence of roots √1 + √1 + √1 + ⋯
converges to the golden ratio.

• We prove the sequence (1 + 1
𝑛 )

𝑛
converges to the number

𝑒 = 2.71828…
• We begin a treatment of irrational exponents, by looking at the limit
of sequences with rational exponents.

8.1. Monotone Convergence

The motivation for inventing sequences is to work with infinite processes, where we
have a precise description of each finite stage, but cannot directly grasp the “com-
pleted” state “at infinity”. In the first section of this chapter we computed a few
specific limits, and then in the second we showed how to find new, more complicated
limits given that you know the value of some simpler ones via algebra.

But what we haven’t done, since our original motivating discussion with the nested
intervals theorem, is actually return to the part of the theory we are most interested
in: rigorously assuring that certain sequences converge, without knowing the value
of their limit ahead of time! The most useful theorem in this direction is themonotone
convergence theorem, which deals with monotone sequences.

Definition 8.1 (Monotone Sequences). A sequence 𝑠𝑛 is monotone increasing (or
more precisely, monotone non-decreasing) if

𝑚 ≤ 𝑛 ⟹ 𝑠𝑚 ≤ 𝑠𝑛
A sequence is monotone decreasing (non-increasing) if

𝑚 ≤ 𝑛 ⟹ 𝑠𝑚 ≥ 𝑠𝑛
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8. Monotone Convergence

Note: constant sequences are monotone: both monotone increasing and monotone
decreasing.

The original inspiration for a monotone sequence is the sequence of upper bounds or
lower bounds from a collection of nested intervals: as the intervals get smaller, the
lower bounds monotonically increase, and the upper bounds monotonically decrease.
The Monotone convergence theorem guanatees that such sequences always converge.
Its proof is below, but could actually be extracted directly from Theorem 3.3.

Theorem8.1 (Monotone Convergence). Let 𝑠𝑛 be amonotone bounded sequence. Then
𝑠𝑛 is a convergent sequence.

Proof. Here we consider the case that 𝑠𝑛 is monotone increasing, and leave the de-
creasing case as an exercise. Let 𝑆 = {𝑠𝑛 ∣ 𝑛 ∈ ℕ}. Then 𝑆 is nonempty, and is bounded
above (by any upper bound for the sequence 𝑠𝑛 , which we assumed is bounded). Thus
by completeness, it has a supremum 𝑠 = sup 𝑆.
We claim that 𝑠𝑛 is actually a convergent sequence, which limits to 𝑠𝑛 . To prove this,
choose 𝜖 > 0, and note that as 𝑠 is the least upper bound, 𝑠 − 𝜖 is not an upper bound
for 𝑆, so there must be some 𝑁 where 𝑠𝑁 > 𝑠 − 𝜖. But 𝑠𝑛 is monotone increasing, so
if 𝑛 > 𝑁 it follows that 𝑠𝑛 > 𝑠𝑁 . Recalling that for all 𝑛 we know 𝑠𝑛 ≤ 𝑠 (since 𝑠 is an
upper bound), we have found some 𝑁 where for all 𝑛 > 𝑁 we know 𝑠 − 𝜖 < 𝑠𝑛 < 𝑠.
This further implies |𝑠𝑛 − 𝑠| < 𝜖, which is exactly the definition of convergence! Thus

𝑠𝑛 → 𝑠
So it is a convergent sequence, as claimed.

Though straightforward to prove, this theorem has tons of applications, as it assures
us that many of the difficult to describe recursively defined sequences that show up in
practice actually do converge, and thus we may rigorously reason about their limits.
We will give several interesting ones below.

8.2. Application: Defining Irrational Powers

We have already defined rational powers of a number in terms of iterated multiplica-
tion/division, and the extraction of roots: but how does one define a real numbered
power? We can use sequences to do this! To motivate this, let’s consider the example
of defining 2𝜋 . We can write 𝜋 as the limit of a sequence of rational numbers, for
instance

3, 3.1, 3.14, 3.141, 3.1415 …
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8.2. Application: Defining Irrational Powers

And since rational exponents make sense, from this we can produce a sequence of
exponentials

23, 2
31
10 , 2

314
100 , 2

3141
1000 , 2

31415
10000 , …

Then we may ask if this sequence has a limit: if it does, it’s natural to try and define
this value two to the power of pi. To make sure this makes sense, we need to check
several potential worries:

• Does this sequence converge?
• Does the limit depend on the particular sequence chosen?

For example if you tried to define 3√2 using the babylonian sequence for √2, and your
friend tried to use the sequence coming from the partial fraction, you’d better get the
same number if this is a reasonable thing to define! Because we are in the section
on monotone convergence, we will restrict ourselves at the moment to monotone
sequences though we will see later we can dispense with this if desired.

Proposition 8.1. If 𝑟𝑛 → 𝑥 is a monotone sequence of rational numbers converging to
𝑥 , and 𝑎 > 0 then the sequence 𝑎𝑟𝑛 converges.

Proof. Recall for a fixed positive base 𝑎, exponentiation by rational numbers is mono-
tone increasing, so 𝑟 < 𝑠 implies 𝑎𝑟 < 𝑎𝑠 .
Thus, given a monotone sequence 𝑟𝑛 , the exponentiated sequence 𝑎𝑟𝑛 remains mono-
tone (for monotone increasing we see 𝑟𝑛 ≤ 𝑟𝑛+1 ⟹ 𝑎𝑟𝑛 ≤ 𝑎𝑟𝑛+1 and the equalities
are reversed if 𝑟𝑛 is monotone decreasing).

Now that we know 𝑎𝑟𝑛 is monotone, we only need to see its bounded to apply Mono-
tone Convergence. Again we have two cases, and will deal here with the monotone
increasing case. As 𝑟𝑛 → 𝑥 and 𝑥 is a real number, there must be some natural number
𝑁 > 𝑥 . Thus, 𝑁 is greater than 𝑟𝑛 for all 𝑛, and so 𝑎𝑁 is greater than 𝑎𝑟𝑛 : our sequence
is bounded above by 𝑎𝑁 . Thus all the hypotheses of monotone convergence are sat-
isfied, and lim 𝑎𝑟𝑛 exists.

Now that we know such sequences make sense, we wish to clear up any potential
ambiguity, and show that if two different sequences both converge to 𝑥 , the value we
attempt to assign to 𝑎𝑥 as a limit is the same for each. As a lemma in this direction,
we look at sequences converging to zero.

Exercise 8.1. Let 𝑟𝑛 be any sequence of rationals converging to zero. Then for any
𝑎 > 0 we have

lim 𝑎𝑟𝑛 = 1
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8. Monotone Convergence

Corollary 8.1. If 𝑟𝑛 , 𝑠𝑛 are two monotone sequences of rationals each converging to 𝑥 ,
then

lim 𝑎𝑟𝑛 = lim 𝑎𝑠𝑛
for any 𝑎 > 0.

Proof. Let 𝑧𝑛 = 𝑟𝑛 − 𝑠𝑛 , so that 𝑧𝑛 → 0. Because 𝑟𝑛 and 𝑠𝑛 are monotone, we know
lim 𝑎𝑟𝑛 and lim 𝑎𝑠𝑛 exist. And by the exercise above, we have 𝑎𝑧𝑛 → 1. Noting that
𝑟𝑛 = 𝑠𝑛 + 𝑧𝑛 and that the laws of exponents apply for rational exponents, we have

𝑎𝑟𝑛 = 𝑎𝑠𝑛+𝑧𝑛 = 𝑎𝑠𝑛𝑎𝑧𝑛

But as all quantities in question converge we can use the limit theorems to compute:

lim 𝑎𝑟𝑛 = lim 𝑎𝑠𝑛+𝑧𝑛
= lim 𝑎𝑠𝑛𝑎𝑧𝑛
= (lim 𝑎𝑠𝑛 )(lim 𝑎𝑧𝑛 )
= lim 𝑎𝑠𝑛

Thus, we can unambiguously define the value of 𝑎𝑥 as the limit of any monotone
sequence 𝑎𝑟𝑛 without specifying the sequence itself.

Definition 8.2. ## Irrational Powers Let 𝑎 > 0 and 𝑥 ∈ ℝ. Then we define 𝑎𝑥 as a
limit

𝑎𝑥 = lim 𝑎𝑟𝑛
For 𝑟𝑛 any monotone sequence of rational numbers converging to 𝑥 .

Perhaps upon reading this definition to yourself you wonder, is the restriction to
monotone sequences important, or just an artifact of our currently limited toolset?
Once we build more tools we will see the latter is the case; you will show on home-
work that arbitrary convergent sequences 𝑟𝑛 → 𝑥 can be used to unambiguously
define 𝑎𝑥 .

8.3. Applicaiton: Recursive Sequences

The monotone convergence theorem is particularly adept to working with recursive
sequences, as one may aim to prove such a sequence is monotone and bounded by
induction. This guarantees the limit exists, at which point we can rigorously give
that limiting value a name, and use limit theorems to find its value.
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8.3.1. The Golden Ratio

Consider the recursive sequence defined by 𝑠𝑛+1 = √1 + 𝑠𝑛 starting from 𝑠0 = 1:

𝑠0 = 1
𝑠1 = √1 + √1

𝑠2 = √1 + √1 + √1
…

Because such sequences follow a regular pattern, we can use a shorthand notation
with ellipsis for their terms. For example, in the original sequence above, writing the
first couple steps of the pattern followed by an ellipsis

√1 + √1 + √1 + …

we take to mean the sequence of terms 𝑠𝑛 where 𝑠𝑛+1 = √1 + 𝑠𝑛 itself. Thus, writing

lim√1 + √1 + ⋯ means the limit of this sequence, implicitly defined by this infinite
expression.

Exercise 8.2. Here are some other infinite expressions defined by recursive
sequences: can you give the recursion relation they satisfy?

√2√2
√2⋯

1
1 + 1

1+⋯

cos(cos(cos(⋯ cos(5)⋯)))

In all of these sequences it is not clear at all how to find their limit value from scratch,
or how we could possibly apply any of the limit theorems about field axioms and
inequalities. But, recursive sequences are set up for using induction, and monotone
convergence! We can build a sort of recipe for dealing with them:

Recursive Sequence Operation Manual:

• Prove its bounded, by induction.
• Prove its monotone, by induction.
• Use Monotone convergence to conclude its convergent.
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8. Monotone Convergence

• Use the recursive definition, and the limit theorems, to find an equation satis-
fied by the limit.

• Solve that equation, to find the limit.

A beautiful and interesting example of this operations manual is carried out below:

Proposition 8.2. The sequence √1 + √1 + ⋯ converges to the golden ratio.s

Proof. The infinite expression √1 + √1 + ⋯ defines the recursive sequence 𝑠𝑛+1 =
√1 + 𝑠𝑛 with 𝑠1 = 1.
Step 1: 𝑠𝑛 is monotone increasing, by induction First we show that 𝑠2 > 𝑠1. Using
the formula, 𝑠2 = √1 + √1 = √2, which is larger than 𝑠1 = 1. Next, we assume
for induction 𝑠𝑛 > 𝑠𝑛−1 and we use this to prove that 𝑠𝑛+1 > 𝑠𝑛 . Starting from our
induction hypothesis, we add one to both sides yielding 1+ 𝑠𝑛 > 1+ 𝑠𝑛−1 and then we
take the square root (which preserves the inequality, by Proposition 2.5) to get

√1 + 𝑠𝑛 > √1 + 𝑠𝑛−1
But now, we simply note that the term on the left is the definition of 𝑠𝑛+1 and the
term on the right is the definition of 𝑠𝑛 . Thus we have 𝑠𝑛+1 > 𝑠𝑛 as claimed, and our
induction proof works for all 𝑛.
Step 2: 𝑠𝑛 is bounded, by induction It is hard to guess an upper bound for 𝑠𝑛 without
doing a little calculation, but plugging the first few terms into a calculator shows them
to be less than 2, so we might try to prove ∀𝑛 𝑠𝑛 < 2. The base case is immediate as
𝑠1 = 1 < 2, so assume for induction 𝑠𝑛 < 2. Then 1+ 𝑠𝑛 < 3 and so √1 + 𝑠𝑛 < √1 + 2 =
√3, and √3 < 2 (as 3 < 22 = 4) so our induction has worked, and the entire sequence
is bounded above by 2.
Conclusion: 𝑠𝑛 converges! We have proven the sequence 𝑠𝑛 is both monotone in-
creasing and bounded above by 2. Thus the monotone convergence theorem assures
us that there exists some 𝐿 with 𝑠𝑛 → 𝐿. It only remains to figure out what number
this is!

Step 3: The Limit Theorems Because truncating the beginning of a sequence
does not change its limit, we see that lim 𝑠𝑛 = lim 𝑠𝑛+1 = 𝐿. But applying the limit
theorems to 𝑠𝑛+1 = √1 + 𝑠𝑛 , we see that as 𝑠𝑛 → 𝐿, it follows that 1 + 𝑠𝑛 → 1 + 𝐿 and
thus that √1 + 𝑠𝑛 → √1 + 𝐿. This gives us an equation that 𝐿 must satisfy!

√1 + 𝐿 = 𝐿
Simplifying this becomes 1 + 𝐿 = 𝐿2, which has solutions (1 ± √5)/2. This argument
only tells us so far that one of these numbers must be our limit 𝐿: to figure out which
we need to bring in more information. Noticing that only one of the two is positive,
and all the terms of our sequence are positive singles it out:
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√1 + √1 + √1 + ⋯ = 1 + √5
2 ≈ 1.618…

This number is known as the golden ratio.

Example 8.1. The final step of the proof above suggests a way one might find a
recursive sequence to use as a calculating tool: if we started with the golden ratio

𝜙 = 1 + √5
2

we could observe that 𝜙 solves the quadratic equation 1 + 𝐿 = 𝐿2, and hence 𝐿 =
√1 + 𝐿. This sets up a recursive sequence, as we can plug this relation into itself over
and over:

𝐿 = √1 + 𝐿 = √1 + √1 + 𝐿 = √1 + √1 + √1 + ⋯

Which immediately suggests the recursion 𝑠𝑛+1 = √1 + 𝑠𝑛 as a candidate for generat-
ing a sequence that would solve the original equation.

Exercise 8.3. Find a recursive sequence whose limit is the positive real root of 𝑥2 −
2𝑥 − 5. Then prove that your proposed sequence actually converges to this value.

Exercise 8.4. What number is this?

√1 − 2√1 − 2√1 − 2√⋯

8.3.2. √2
Recall the babylonian sequence converging to √2 was recursively defined, starting
from the side length 𝑥1 = 2 of a 2 × 1 rectangle and replacing it with the average
of the two sides (a rectangle closer to a square). As a formula this is the process
𝑥 ↦ (𝑥 + 2

𝑥 )/2 from which we product a recursive sequence

𝑥𝑛+1 =
𝑥𝑛 + 2

𝑥𝑛
2

Our goal here is to provide a proof of convergence using the strategy laid out above.
First, we aim to show that 𝑥𝑛 is monotone decreasing. To make the algebra simpler,
we first give a little lemma simplfying the condition:
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Exercise 8.5. Let 𝑥𝑛 be a sequence of positive numbers satisfying the babylonian
recurrence relation.
Show that 𝑥𝑛+1 < 𝑥𝑛 if and only if 2 < 𝑥2𝑛 .

Proposition 8.3. Starting from 𝑥0 = 2, the recursive procedure for 𝑥𝑛 defines a mono-
tone decreasing sequence.

Proof. We proceed by induction. For the base case we compute 𝑥1 = 2+ 2
2

2 = 3
2 so

𝑥1 < 𝑥0 as required. For the inductive step we assume 𝑥𝑛 < 𝑥𝑛−1 and aim to show
𝑥𝑛+1 < 𝑥𝑛 . By the exercise above, this is equivalent to assuming that 2 < 𝑥2𝑛−1 and
using this to prove that 2 < 𝑥2𝑛 .
Writing out the recursive definition of 𝑥𝑛 we see

𝑥2𝑛 = (
𝑥𝑛−1 + 2

𝑥𝑛−1
2 )

2

=
𝑥2𝑛−1 + 4 + 4

𝑥2𝑛−1
4

= (𝑥𝑛−12 )
2
+ 1 + ( 2

𝑥𝑛−1
)
2

The first term is > 1 by the inductive hypothesis, and so the first two terms sum
to greater than 2. Since the last term is a square its positive and can’t possibly make
things smaller, so the entire thing sums to something strictly larger than 2, as required.
Thus 𝑥𝑛 is monotone decreasing.

The next step in our process is to prove the sequence is bounded.

Exercise 8.6. Prove that the sequence with 𝑥0 = 2 satisfying the babylonian recur-
rence relation is bounded below by 1.

Now, since 𝑥𝑛 is monotone and bounded it converges to some limiting value 𝐿. Since
truncating the beginning of a sequence has no effect on the eventual limit, we know
lim 𝑥𝑛+1 = lim 𝑥𝑛 = 𝐿, but expanding the first term’s recursive definition, this implies
that

lim
𝑥𝑛 + 2

𝑥𝑛
2 = 𝐿

118



8.4. ★ The Number 𝑒

Since we know 𝑥𝑛 → 𝐿 and 𝐿 ≠ 0 (since its bounded below by 1), we can use the limit
laws to compute

lim
𝑥𝑛 + 2

𝑥𝑛
2 =

lim 𝑥𝑛 + 2
lim 𝑥𝑛

2 =
𝐿 + 2

𝐿
2

Thus, whatever the limiting value 𝐿 is it must satisfy the equation

𝐿 + 2
𝐿

2 = 𝐿

Multiplying by 2𝐿 to clear denominators we see

𝐿2 + 2 = 2𝐿2 ⟹ 2 = 𝐿2

We know 𝐿 is positive, and the only positive solution to this equation is 𝐿 = √2. So
we have another proof of the convergence of the babylonian procedure!

8.4. ★ The Number 𝑒
In this section we aim to study, and prove the convergence of the following sequence
of numbers

(1 + 1
𝑛)

𝑛

Wewill later see that the limit of this sequence is the number 𝑒 (indeed, many authors
take this sequence itself as the definition of 𝑒 as it is perhaps the first natural looking
sequence limiting to this special value. Wewill instead define 𝑒 in terms of exponential
functions to come, and then later show its value coincides with this limit).

We begin by proving 𝑎𝑛 is monotone as a prelude to applying monotone conver-
gence.

Example 8.2. The sequence 𝑎𝑛 = ( 𝑛+1
𝑛 )𝑛 is monotone increasing.

Proof. To show 𝑎𝑛 is increasing we will show that the ratio 𝑎𝑛
𝑎𝑛−1 is greater than 1.

Simplifying,

𝑎𝑛
𝑎𝑛−1

=
( 𝑛+1

𝑛 )𝑛

( 𝑛
𝑛−1)

𝑛−1 = (𝑛 + 1
𝑛 )

𝑛
(𝑛 − 1

𝑛 )
𝑛−1
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Multiplying by 𝑛−1
𝑛 and its inverse we can make the powers on each of these terms

the same, and combine them:

= (𝑛 + 1
𝑛 )

𝑛
(𝑛 − 1

𝑛 )
𝑛 𝑛
𝑛 − 1 = (𝑛

2 − 1
𝑛2 )

𝑛 𝑛
𝑛 − 1

Simplifying what is in parentheses, we notice that we are actually in a perfect situa-
tion to apply Bernoulli’s Inequality (Exercise 2.6) to help us estimate this term. Recall
this says that if 𝑟 is any number such that 1 + 𝑟 is positive, (1 + 𝑟)𝑛 ≥ 1 + 𝑛𝑟 . When
𝑛 ≥ 2 we can apply this to 𝑟 = − 1

𝑛2 , yielding

𝑎𝑛
𝑎𝑛−1

= (1 − 1
𝑛2 )

𝑛 𝑛
𝑛 − 1 ≥ (1 − 𝑛

𝑛2 )
𝑛

𝑛 − 1

= 𝑛 − 1
𝑛

𝑛
𝑛 − 1 = 1

Thus 𝑎𝑛
𝑎𝑛−1 ≥ 1, so 𝑎𝑛 ≥ 𝑎𝑛−1 and the sequence is monotone increasing for all 𝑛, as

claimed.

Next we need to show that 𝑎𝑛 is bounded above. Computing terms numerically, it
seems that 𝑎𝑛 is bounded above by 3, but of course no amount of computation can
substitute for a proof. And after a bit of trying, it seems hard to prove directly that it
actually is bounded above.

So instead, we will employ a bit of an ingenious trick. We will study a second se-
quence, which appears very similar to the first:

𝑏𝑛 = (𝑛 + 1
𝑛 )

𝑛+1

Indeed, this is just our sequence 𝑎𝑛 multiplied by one extra factor of 𝑛+1
𝑛 ! But this

extra factor changes its behavior a bit: computing the first few terms, we see that it
appears to be decreasing:

𝑏1 = (1 + 1)2 = 4, 𝑏2 = (1 + 1
2)

3
= 27

8 = 3.375, 𝑏3 = (1 + 1
3)

4
≈ 3.1604

Indeed, a proof that its decreasing can be constructed following an identical strategy
to 𝑎𝑛 in Example 8.2.

Exercise 8.7. The sequence 𝑏𝑛 = ( 𝑛+1
𝑛 )𝑛+1 is monotone decreasing.

Now that we understand the behavior of 𝑏𝑛 we can use it to prove that 𝑎𝑛 is bounded
above:
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Corollary 8.2. The sequence 𝑎𝑛 = (1 + 1
𝑛 )

𝑛
is convergent

Proof. Note that the sequence 𝑏𝑛 and 𝑎𝑛 are related by

𝑏𝑛 = (𝑛 + 1
𝑛 )

𝑛+1
= 𝑎𝑛 (𝑛 + 1

𝑛 )

Since 𝑛+1
𝑛 > 1 we see that 𝑏𝑛 > 𝑎𝑛 for all 𝑛. But 𝑏𝑛 is decreasing, so 𝑏𝑛 ≤ 𝑏1 = 22 = 4,

and so 𝑎𝑛 is bounded above by 4.

Note that we can also readily see that 𝑏𝑛 is itself convergent (though we did not ac-
tually need that fact for our analysis of 𝑎𝑛): we proved its monotone decreasing, and
its a sequence of positive terms - so its trivially bounded below by zero!

We can also see that 𝑎𝑛 and 𝑏𝑛 have the same limit, using the limit theorems. Since
1
𝑛 → 0, we know that 1 + 1

𝑛 → 1, and hence that

lim 𝑏𝑛 = lim [𝑎𝑛 (𝑛 + 1
𝑛 )]

= (lim 𝑎𝑛) ⋅ (lim 𝑛 + 1
𝑛 )

= lim 𝑎𝑛

As mentioned previously, we will later see that this limit is the number called 𝑒. But
believing for a moment that we should be interested in this particular limit, having
the two sequences 𝑎𝑛 and 𝑏𝑛 lying around actually proves quite practically useful for
estimating its value.

Since lim 𝑎𝑛 = 𝑒 = lim 𝑏𝑛 and 𝑎𝑛 < 𝑏𝑛 for all 𝑛, we see that the number 𝑒 is contained
in the interval 𝐼𝑛 = [𝑎𝑛 , 𝑏𝑛], and hence is the limit of the nested intervals:

Corollary 8.3.

{𝑒} = ⋂
𝑛≥1

[(1 + 1
𝑛)

𝑛
, (1 + 1

𝑛)
𝑛+1

]

Taking any finite 𝑛, this interval gives us both an upper and lower bound for 𝑒: for
example

𝑛 = 10 ⟹ 2.59374 ≤ 𝑒 ≤ 2.85311
𝑛 = 100 ⟹ 2.7048 ≤ 𝑒 ≤ 2.73186

𝑛 = 1, 000 ⟹ 2.71692 ≤ 𝑒 ≤ 2.71964
𝑛 = 1, 000, 000 ⟹ 2.71826 ≤ 𝑒 ≤ 2.71829

Thus, correct to four decimal places we know 𝑒 ≈ 2.7182
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8.5. Problems
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9. Subsequences

Highlights of this Chapter: We define the concept of subsequence,
and investigate examples where subsequences behavemuch simpler than
the overall sequence with the example of continued fractions. We then
investigate the relationship between the convergence of subsequences
and the convergence of a sequence as a whole. This leads to several nice
theorems:

• A continued fraction description of the golden ratio and √2
• Theorem: a sequence converges if it is a union of subsequences
converging to the same limit.

• Theorem: every bounded sequence contains a convergent subse-
quence.

Definition 9.1. A subsequence is a subset of a sequence which is itself a sequence. As
sequences are infinite ordered lists of real numbers, an equivalent definition is that a
subsequence is any infinite subset of a sequence.

We often denote an abstract subsequence like 𝑠𝑛𝑘 , meaning that we have kept only
the 𝑛𝑘 terms of the original, and discarded the rest.

Example 9.1 (Example Subsequences). In the sequence of all 𝑛-gons inscribed in a
circle, the collection studied by archimedes (CITE EALRIER CHAP) by doubling is
the subsequence

𝑃3⋅2𝑘 = (𝑃3⋅21 , 𝑃3⋅22 , 𝑃3⋅23 , 𝑃3⋅24 , …)
= (𝑃6, 𝑃12, 𝑃24, 𝑃48, …)

Archimedes began his estimation of 𝜋 using a simple idea: create a sequence of nested
intervals (upper and lower bounds) from inscribing and circumscribing 𝑛-gons. But
then he realized calculations would be much simpler if he focused only on a subse-
quence, namely that generated by side-doubling. We too will often run into situations
like Archimedes, where the overall behavior of a sequence is difficult to understand,
but we can pull out subsequences that are much easier to work with.
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9. Subsequences

9.1. Continued Fractions

In the previous section, we uncovered a beautiful formula for the golden ratio as the
limit of an infinite process of square roots. However, practically speaking (if youwere
interested in calculating the value of the golden ratio, as the ancient mathematicians
were) this series is useless. The golden ratio itself involves a square root, so if you
are seeking a method of approximations its fair to assume that you cannot evaluate
the square root function exactly. But what does our sequence of approximations look
like? To calculate the 𝑛𝑡ℎ term, you need to take 𝑛 square roots! The very terms
of our convergent sequence are actually much much more algebraically complicated
than their limiting value.

To be practical, we would like a sequence that (1) contains easy to compute terms, and
(2) converges to the number we seek to understand. By ?@thm-rational-sequence,
we know for any real number there exists a sequence of rationals that converges to
it, and so it’s natural to seek a method of producing such a thing.

One method is the continued fraction, which is best illustrated by example. We know
that the golden ratio 𝐿 satisfies the equation 𝐿2 = 𝐿 + 1, and dividing by 𝐿 this gives
us an equation satisfied by 𝐿 and 1/𝐿:

𝐿 = 1 + 1
𝐿

Just like we did above, we can use this self-referential equation to produce a series,
by plugging it into itself over and over. After one such substitution we get

𝐿 = 1 + 1
1 + 1

𝐿

And then after another such we get

𝐿 = 1 + 1
1 + 1

1+ 1
𝐿

Continuing this way over and over, we push the 𝐿 “off to infinity” on the right hand
side, and are left with an infinite expression for 𝐿, as a limit of a sequence of frac-
tions.

𝐿 = 1 + 1
1 + 1

1+ 1
1+ 1

1+ 1
1+ 1

1+ 1
1+ 1

1+⋯
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9.1. Continued Fractions

Of course, this ‘infinite manipulation’ is not itself rigorous, but we can interpret this
as a recursive sequence exactly as above. Setting 𝑠1 = 1, we have the rule 𝑠𝑛+1 = 1+ 1

𝑠𝑛 ,
and we wish to understand lim 𝑠𝑛 .

Example 9.2 (Continued Fraction of the Golden Ratio). The continued fration

1 + 1
1 + 1

1+ 1
1+ 1

1+ 1
1+ 1

1+ 1
1+ 1

1+⋯

defined by the recursive sequence 𝑠1 = 1, 𝑠𝑛+1 = 1 + 1
𝑠𝑛 limits to the golden ratio.

A continued fraction is a recursive sequence, so we can compute everything with the
starting value and a single simple rule. To get a feel for the sequence at hand, let’s
compute the first few terms:

𝑠1 = 1, 𝑠2 = 2, 𝑠3 = 3
2 , 𝑠4 = 5

3 , 𝑠5 = 8
5 , 𝑠6 = 13

8 , 𝑠6 = 21
13 , …

What’s one thing we notice about this sequence from its first few terms? Well - it
looks like the fractions are all ratios of Fibonacci numbers! This won’t actually be
relevant but it’s a good practice of induction with the sequence definition, so we
might as well confirm it:

Example 9.3 (Fibonacci Numbers and the Golden Ratio). Recall that the Fibonacci
numbers are defined by the recurrence relation 𝐹1 = 𝐹1 = 2 and 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 .
Show that the 𝑛𝑡ℎ convergent 𝑠𝑛 of the continued fraction for the golden ratio is the
ratio of the Fibonacci numbers 𝐹𝑛+1/𝐹𝑛 .

Proof. This is true for the first convergent which is 1, and 𝐹2/𝐹1 = 1/1 = 1. Assume
the 𝑛𝑡ℎ convergent is 𝑠𝑛 = 𝐹𝑛+1/𝐹𝑛 , and consider the 𝑛 + 1𝑠𝑡 : this is

𝑠𝑛+1 = 1 + 1
𝑠𝑛

= 1 + 1
𝐹𝑛+1
𝐹𝑛

= 1 + 𝐹𝑛
𝐹𝑛+1

= 𝐹𝑛+1 + 𝐹𝑛
𝐹𝑛+1

= 𝐹𝑛+2
𝐹𝑛+1

The more important thing we notice is that looking at the magnitude of the terms, it
is neither increasing or decreasing, but it appears the sequence is zig-zagging up and
down. Its straightforward to prove this is actually the case:

125



9. Subsequences

Example 9.4. If 𝑛 is odd, then 𝑠𝑛 < 𝑠𝑛+1. If 𝑛 is even, 𝑠𝑛 > 𝑠𝑛+1.

Proof. Again, we proceed by induction: we prove only the first case, and leave the
second as an exercise. Note first 𝑠1 = 1, 𝑠2 = 2 and 𝑠3 = 3

2 so 𝑠1 < 𝑠2 and 𝑠2 > 𝑠3: the
base case of each is true.

Now, assume that 𝑛 is odd, and 𝑠𝑛 < 𝑠𝑛+1. Computing from here

𝑠𝑛 < 𝑠𝑛+1 ⟹ 1
𝑠𝑛

> 1
𝑠𝑛+1

⟹ 1 + 1
𝑠𝑛

> 1 + 1
𝑠𝑛+1

The last line of this computation is the definition of 𝑠𝑛+1 > 𝑠𝑛+2,so we see the next
one is decreasing as claimed. And applying the recurrence once more:

𝑠𝑛+1 > 𝑠𝑛+2 ⟹ 1
𝑠𝑛+1

< 1
𝑠𝑛+2

⟹ 1 + 1
𝑠𝑛+1

< 1 + 1
𝑠𝑛+2

Where now the last line of the calculation is the definition of 𝑠𝑛+2 < 𝑠𝑛+3, fininshing
our induction step!

While the overall sequence isn’t monotone, it seems to be built of two different mono-
tone sequences, interleaved with one another! In particular the odd subsequence
𝑠1, 𝑠3, 𝑠5, … is monotone increasing, and the even subsequence 𝑠2, 𝑠4, 𝑠6, … is monotone
decreasing.

To study these subsequences separately, we first need to find a recurrence relation
that gives us 𝑠𝑛+2 in terms of 𝑠𝑛: applying this to either 𝑠1 or 𝑠2 will then produce the
entire even or odd subsequence.

𝑠𝑛+2 = 1 + 1
𝑠𝑛+1

= 1 + 1
1 + 1

𝑠𝑛

Example 9.5. The subsequence 𝑠1, 𝑠3, 𝑠5, 𝑠7, … is monotone increasing.

Proof. We prove this by induction. Starting from 𝑠1 = 1, we compute

𝑠3 = 1 + 1
1 + 1

1
= 1 + 1

2 = 3
2

So 𝑠1 < 𝑠3, completing the base case. Next, assume for induction that 𝑠𝑛+2 > 𝑠𝑛 . We
wish to show that 𝑠𝑛+4 > 𝑠𝑛+2. Calculating from our assumption:
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9.1. Continued Fractions

𝑠𝑛+2 > 𝑠𝑛 ⟹ 1
𝑠𝑛+2

< 1
𝑠𝑛

⟹ 1 + 1
𝑠𝑛+2

< 1 + 1
𝑠𝑛

⟹ 1
1 + 1

𝑠𝑛+2
> 1

1 + 1
𝑠𝑛

⟹ 1 + 1
1 + 1

𝑠𝑛+2
> 1 + 1

1 + 1
𝑠𝑛

⟹ 𝑠𝑛+4 > 𝑠𝑛+2

This completes the induction step, so the subsequence of odd terms is monotone in-
creasing as claimed!

A nearly identical argument applies to the even subsequence:

Exercise 9.1. The subsequence 𝑠2, 𝑠4, 𝑠6, 𝑠8, … is monotone decreasing.

Exercise 9.2. Let 𝑓 (𝑥) = 1 + 1
𝑥 . Show that if 𝑥 < 𝑦 then 𝑓 (𝑥) > 𝑓 (𝑦); that is, 𝑓

reverses the ordering of numbers. Use this to give a more streamlined proof that the
even and odd subsequences are both monotone, but the overall sequence zigzags.

Now that we know each sequene is monotone, we are in a position similar to the
previous chapter where we played two sequences off one another to learn about 𝑒.
The same trick works to show they are bounded.

Example 9.6. The odd subsequence of 𝑠𝑛 is bounded above, and the even subse-
quence is bounded below.

Proof. The even subsequece is monotone decreasing, but consists completely of pos-
itive terms. Thus, its bounded below by zero. Now we turn our attention to the odd
subsequence: if 𝑛 is odd, we know that 𝑠𝑛 is bounded above by 𝑠𝑛+1, but 𝑠𝑛+1 is a
member of the monotone decreasing even subsequence, so 𝑠𝑛+1 < 𝑠2 = 2. Thus, for
all odd 𝑛, 𝑠𝑛 is bounded above by 2.

Now we know by monotone convergence that both the even and odd subsequences
converge! Next, we show they converge to the same value:

Example 9.7. Both the even and odd subsequences converge to the same value.
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9. Subsequences

Proof. Let 𝑒𝑛 = 𝑠2𝑛 be the even subsequence and 𝑜𝑛 = 𝑠2𝑛−1 the odd subsequence, and
write lim 𝑒𝑛 = 𝐸 and lim 𝑜𝑛 = Θ. We wish to show 𝐸 = Θ.

Using the recurrence relation we see

𝑜𝑛+1 = 1 + 1
𝑒𝑛

𝑒𝑛 = 1 + 1
𝑜𝑛

and so, using the limit laws and the convergence of 𝑒𝑛 , 𝑜𝑛

Θ = 1 + 1
𝐸 𝐸 = 1 + 1

Θ
Therefore we see Θ−𝐸 = 1

𝐸 − 1
Θ , which after getting a common denominator implies

Θ − 𝐸 = Θ − 𝐸
Θ𝐸

So whatever number Θ − 𝐸 is, it has the property that it is unchanged when divided
by the number Θ𝐸. But the only number unchanged by multiplication and division
is zero! Thus

Θ − 𝐸 = 0

Now we know that not only the even and odd subsequences converge but that they
converge to the same limit! Its not too much more work to show that the entire
sequence converges.

Example 9.8. The sequence 𝑠𝑛 converges.

Proof. Call the common limit of the even and odd subsequences 𝐿. Let 𝜖 > 0 Since
𝑠2𝑛−1 → 𝐿 we know there is an 𝑁1 with 𝑛 > 𝑁1 implying |𝑠2𝑛−1 − 𝐿| < 𝜖. Similarly
since 𝑠2𝑛 → 𝐿 we can find an 𝑁2 where 𝑛 > 𝑁2 implies |𝑠2𝑛 − 𝐿| < 𝜖.
Set 𝑁 = max{𝑁1, 𝑁2}. Then if 𝑛 > 𝑁 we see both the even and odd subsequences are
within 𝜖 of 𝐿 by construction, and thus all terms of the sequence are within 𝜖 of 𝐿.
But this is the definition of convergence! Thus 𝑠𝑛 is convergent and lim 𝑠𝑛 = 𝐿.

Finally! Starting with a zigzag sequence where monotone convergene did not ap-
ply, we broke it into two subsequences, each of which were monotone, and each of
which we could prove converge. Then we showed these subsequences have the same
limit and hence the overall sequence converges. We made it! Now its quick work to
confirm the limit is what we expected from our construction: the golden ratio.

Example 9.9. The sequence 𝑠𝑛 converges to the golden ratio.
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9.1. Continued Fractions

Proof. Since throwing away the first term of the sequence does not change the limit,
we see lim 𝑠𝑛+1 = lim 𝑠𝑛 = 𝐿. Using the recurrence relation and the limit laws, this
implies

lim 𝑠𝑛+1 = lim 1 + 1
𝑠𝑛

= 1 + 1
𝐿

THus, the limit 𝐿 satisfies the equation 𝐿 = 1 + 1/𝐿 or 𝐿2 = 𝐿 + 1. This has two
solutions

1 ± √5
2

Only one of which is positive. Thus this must be the limit

1 + 1
1 + 1

1+ 1
1+ 1

1+ 1
1+ 1

1+ 1
1+ 1

1+⋯

= 1 + √5
2

s

We can apply this same process to discover another sequence of rational approxi-
mations to √2, by algebraic means (in contrast wtih the geomeric approach of the
babylonians). To start, we need to find a recursive formula that is satisfied by √2, and
involves a reciprocal: something like

√2 = Rational stuff + 1
Rational stuff and √2

We can get such a formula through some trickery: first, using the difference of squares
𝑎2−𝑏2 = (𝑎+𝑏)(𝑎−𝑏)we see that 1 = 2−1 = (√2+1)(√2−1), which can be re-written

√2 − 1 = 1
1 + √2

Now, substitute this into the obvious √2 = 1 + √2 − 1 to get

√2 = 1 + 1
1 + √2

This is a self-referential equation, meaning √2 appears on both sides.

Example 9.10 (Continued Fraction of √2). The continued fraction

1 + 1
2 + 1

2+ 1
2+ 1

2+ 1
2+⋯

converges to the square root of 2.

129



9. Subsequences

9.2. Subsequences and Convergence

Hopefully this exploration into continued fractions has shown the usefulness of look-
ing for easy-to-work-with subsequences, when theorems such as monotone conver-
gence don’t automatically apply. It is then our gaol to try and piece this information
back together: if we know the limits of various subsequences, what can we say about
the entire sequence?

First of all, a simple example shows its not enough to say “if the even and odd subse-
quences converge, then the sequence converges”.

Example 9.11. The sequence 𝑠𝑛 = (−1)𝑛 diverges, but its even and odd subsequences
form constant (thus convergent) subsequences:

𝑠2𝑛 = (−1)2𝑛 = 1, 1, 1, …
𝑠2𝑛+1 = (−1)2𝑛−1 = −1, −1, −1, …

Indeed, if you can find any two subsequences which limit to different values, then the
sequence itself must diverge. This is a useful thing to try yourself when developing
intuition.

Exercise 9.3. If a sequence 𝑠𝑛 has two subsequences which converge to different
values, then the overall sequence diverges.

Rephrased positively, this becomes the following

Proposition 9.1. If 𝑠𝑛 is a convergent sequence, then all of its subsequences converge,
and have the same limit.

This can be turned into a useful technique to prove two sequences 𝑎𝑛 , 𝑏𝑛 have the
same limit: interleave their terms 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎3, 𝑏3, ⋯ and try to prove the resulting
sequence converges. If it does, then we know all subsequences have the same limit,
and so both 𝑎𝑛 and 𝑏𝑛 converge to 𝐿.
WHAT ABOUT THE CONVERSE TO THIS? IN CONTINUED FRACTION SECTION,
SAW THAT EVEN AND ODD SUBSEQUENCES CONVERGING TO THE SAME
VALUE IMPLIED THE ENTIRE SEQUENCE CONVERGES.

Proposition 9.2. If 𝑠𝑛 is the union of two subsequences, each of which converge to the
same limit 𝐿, then 𝑠𝑛 is convergent with limit 𝐿.

Proof. GIVE PROOF (similar to even/odd)

This directly generalizes to 𝑁 subsequences:
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Theorem 9.1. Let 𝑠𝑛 be a sequence, and assume that 𝑠𝑛 is the union of 𝑁 subsequences,
all of which converge to the same limit 𝐿. Then 𝑠𝑛 is convergent, with limit 𝐿.

Sketch. One can prove this directly, but choosing useful notation is tedious. The
idea is as follows: for each of the 𝑁 sequences, let 𝑀1, 𝑀2, …𝑀𝑁 be the threshold
beyond which the subsequence is within 𝜖 of 𝐿 for some fixed 𝜖 > 0. Then set 𝑀 =
max{𝑀1, … ,𝑀𝑁 } and note that for all 𝑛 > 𝑀 each of the subsequences is within 𝜖 of
𝐿. Because the entire sequence is just the union of these 𝑁 subsequences, this means
that every term of the sequence is within 𝜖 of 𝐿. But this is precisely the definition of
𝑠𝑛 → 𝐿. So we are done.

9.3. Bolzano-Weierstrass

What about sequences that don’t converge? The theorem above says that it cannot
be true that all their subsequences converge, but Example 9.11 does show that a diver-
gent sequence can still contain convergent subsequences. A natural question then is
- do they always? Alas, a simple counterexample shows us that is too much to ask:

Example 9.12. The sequence 𝑠𝑛 = 𝑛2 diverges, and all subsequences of it diverge.

But the problem here is not serious, its simply that the original sequence is unbounded
and cannot possibly contain anything that converges. The perhaps surprising fact
that this is the only constraint preventing the existence of a convergent subsequence is
known as the Bolzano Weierstrass theorem.

Theorem 9.2 (Bolzano-Weierstrass). Every bounded sequence has a convergent subse-
quence

There are many ways to prove this, but a particularly elegant one uses (of course!)
the monotone convergence theorem.

At first this sounds suspicious: we must confront head on the issue we ran into above,
that not every sequence is monotone! However, the weaker property we actually
need is true: while not every sequence is monotone, every sequence contains a mono-
tone subsequence. There is a very clever argument for this, which needs one new
definition.

Definition 9.2 (Peak of a Sequence). Let 𝑠𝑛 be a sequence and 𝑁 ∈ ℕ. Then 𝑠𝑁 is a
peak if it is larger than all following terms of the sequence:

𝑠𝑁 ≥ 𝑠𝑚 ∀𝑚 > 𝑁

Theorem 9.3 (Monotone Subsequences). Every sequence contains a monotone subse-
quence
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Proof. Let 𝑠𝑛 be an arbitrary sequence. Then there are two options: either 𝑠𝑛 contains
infinitely many peaks or it does not.

If 𝑠𝑛 contains infinitely many peaks, we can build the subsequence of all peaks. This
is monotone decreasing: if 𝑝1 is the first peak, then its greater than or equal to all
subsequent terms 𝑠𝑛 , and so its greater than or equal to the second peak 𝑝2. (But,
nothing here is special about 1 and 2, this holds for the 𝑛𝑡ℎ and 𝑛 + 1𝑠𝑡 peak without
change).

Otherwise, if 𝑠𝑛 contains only finitely many peaks, we will construct a monotone
increasing subsequence as follows. Since there are finitely many peaks there must be
a last peak, say this occurs at position 𝑁 . Then 𝑠𝑁+1 is not a peak, and we will take
this as the first term of our new sequence (let’s call it 𝑞1). Because its not a peak, by
definition there is some term farther down the sequence which is larger than 𝑠𝑁+1 -
say this happens at index 𝑁2 and call it 𝑞2. But 𝑞2 is also not a peak (as there were
only finitely many, and we are past all of them), so there’s a term even farther down
- say at index 𝑁3 which is larger: call it 𝑞3. Now we have 𝑞1 < 𝑞2 < 𝑞3, and we can
continue this procedure inductively to build a monotone increasing subsequence for
all 𝑛.

Now, given that every sequence has a monotone subsequence, we know that every
bounded sequence has amonotone and bounded subsequence. Such things converge by
MCT, so we know every sequence has a convergent subsequence! This is the Bolzano
Weierstrass Theorem.

We will use this often in whats to come to produce examples of convergent subse-
quences where it might otherwise be difficult to do so. Here’s a first example of such
an argument

Proposition 9.3 (Analyzing All Convergent Subsequences). If 𝑠𝑛 is a bounded se-
quence such that every convergent subsequence converges to the same value, then 𝑠𝑛
converges.

Proof. Assume that every convergent (proper) subsequence of 𝑠𝑛 converges to 𝐿, but
that 𝑠𝑛 itself does not. Then fixing some 𝜖 > 0 for each 𝑛 = 1, 2, 3, … we can find an 𝑘
such that |𝑠𝑛𝑘−𝐿| > 𝜖. This is an infinite sequence of terms all of which are farther than
𝜖 from 𝐿, and is bounded as 𝑠𝑛 itself was bounded. Thus, by the Bolzano Weierstrass
theorem there is a subsequence of this that converges. Its limit cannot be 𝐿 because all
terms in the sequence are more than 𝜖 away from 𝐿, so we’ve found a subsequence of
the original sequence that converges to a different value, contradicting the original
assumption.

In addition to applications like the above, in time will come to appreciate it as one
of the most elegant tools available to us. There will come many times (soon, when
dealing with functions) where we can easily produce a sequence of points satisfying
some property, but to make progress we need a convergent sequence of such points.
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The BW theorem assures us that we don’t have to worry - we can always make one
by just throwing out some terms, so long as the sequence we have is bounded.

9.4. ♦ Limsup and Liminf

When a sequence doesn’t converge

Definition 9.3 (Limsup and Liminf). Let 𝑠𝑛 be a bounded sequence, and for each
𝑁 ∈ ℕ define 𝑢𝑁 = sup𝑛≥𝑁 {𝑠𝑛}. Then we define the limit superior of 𝑠𝑛 as

lim sup 𝑠𝑛 ∶= lim 𝑢𝑁 = lim𝑁→∞ sup
𝑛≥𝑁

{𝑠𝑛}

Similarly, with ℓ𝑁 = inf𝑛≥𝑁 {𝑠𝑛} we define the limit inferior of 𝑠𝑛 to be

lim inf 𝑠𝑛 ∶= lim ℓ𝑁 = lim𝑁→∞ inf𝑛≥𝑁 {𝑠𝑛}

Proposition 9.4 (Existence of Limsup, Liminf). Let 𝑠𝑛 be a bounded sequence. Prove
that lim sup 𝑠𝑛 and lim inf 𝑠𝑛 both exist

Proof. We verify for the limsup case, and leave the analgoous liminf as an exercise.
For each 𝑁 let 𝑢𝑁 = sup𝑛≥𝑁 {𝑠𝑛} and notice that 𝑢𝑁 is a monotone decreasing se-
quence as we are taking the supremum over smaller and smaller sets (Exercise 3.4).
Its easy to construct a lower bound for 𝑢𝑁 : since 𝑠𝑛 is bounded wemay take any lower
bound 𝐿 and note for any 𝑁 this is a lower bound for the tail {𝑠𝑛 ∣ 𝑛 > 𝑁 }. As the
supremum is an upper bound and all lower bounds are ≤ all upper bounds we see
𝐿 ≤ sup𝑛>𝑁 {𝑠𝑛} = 𝑢𝑁 . Thus 𝑢𝑁 is a monotone decreasing sequence that is bounded
below, which converges by the Monotone Convergence Theorem.

One use of these quantities is to bound the possible values of subsequential limits:

Exercise 9.4 (Bounding Subsequential Limits). Let 𝑠𝑛 be any bounded sequence and
𝑠𝑛𝑘 a convergent subsequence with limit 𝐿. Then

lim inf 𝑠𝑛 ≤ 𝐿 ≤ lim sup 𝑠𝑛

Proposition 9.5. A sequence 𝑠𝑛 converges if and only if

lim sup 𝑠𝑛 = lim inf 𝑠𝑛

Proof. Let ℒ be the set of all limits of all convergent subsequences of 𝑠𝑛 . By ?@prp-
limsup-liminf-bounds each 𝐿 ∈ ℒ lies between lim inf 𝑠𝑛 and lim sup 𝑠𝑛 , so if these
are equal then ℒ = {𝐿} is a singleton. Thus, every convergent subsequence of 𝑠𝑛
converges to the same value, and by Proposition 9.3 this shows 𝑠𝑛 itself converges to
the same limit.
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One may also give a proof using the squeeze theorem:

Proof. For any 𝑁 we have ℓ𝑁 = inf𝑛≥𝑁 𝑠𝑛 ≤ 𝑠𝑁 ≤ sup𝑛≥𝑁 𝑠𝑛 = 𝑢𝑁 . But lim ℓ𝑁 =
lim inf 𝑠𝑛 = lim sup 𝑠𝑛 = lim 𝑢𝑁 by assumption, so the squeeze theorem (Theorem 7.1)
implies 𝑠𝑁 also converges, and has the same limit.

It is often useful to broaden our use of lim sup and lim inf to the extended reals
ℝ ∪ {±∞}. Here its true that every sequence has a limsup and liminf: either the se-
quence is bounded and they exist as proven above, or the sequence is unbounded
with lim sup, lim inf = ±∞. This slight generalization makes certain theorems easier
to state, as one can use lim sup and lim inf without first checking they exist.

Exercise 9.5 (Subsequences & Limsup, Liminf). Let 𝑠𝑛 be a bounded sequence. Then
there exists a subsequence which converges to the limsup and a subsequence which
converges to the liminf.

9.5. Problems

Exercise 9.6. For any fixed 𝑛, prove that the following continued fraction exists, and
find its vallue. 1

𝑛 + 1
𝑛+ 1

𝑛+ 1
𝑛+ 1

𝑛+ 1
𝑛+ 1

𝑛+ 1
𝑛+⋯

Exercise 9.7 (Continued Fractions for Roots). Let 𝑝 be any prime number, find the
continued fraction for √𝑝.

Knowing such sequences is extremely useful for computation, in the age before com-
puters: if 𝑛 is a composite number we can find √𝑛 by multiplying together the square
roots of its prime factorization

Exercise 9.8. Find a rational approximation to √6 by calculating the first three terms
in the continued fraction expansions for √2 and √3.

We could also find a continued fraction directly for cases like this, with a little more
care:

Exercise 9.9. Find the continued fraction expansion for √𝑝𝑞 if 𝑝 and 𝑞 are primes.
What happens to your procedure when 𝑝 = 𝑞?

134
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9.5.1. Limsup and Liminf

Exercise 9.10. Let 𝑎𝑛 , 𝑏𝑛 be bounded sequences. Prove that

lim sup(𝑎𝑛 + 𝑏𝑛) ≤ lim sup 𝑎𝑛 + lim sup 𝑏𝑛
lim inf 𝑎𝑛 + lim inf 𝑏𝑛 ≤ lim inf(𝑎𝑛 + 𝑏𝑛)

Provide counterexamples to show that equality does not always hold.

Exercise 9.11. Let 𝑎𝑛 be convergent and 𝑏𝑛 be an arbitrary bounded sequence. Show
that

lim sup(𝑎𝑛 + 𝑏𝑛) = lim 𝑎𝑛 + lim sup 𝑏𝑛
lim inf(𝑎𝑛 + 𝑏𝑛) = lim 𝑎𝑛 + lim inf 𝑏𝑛

Exercise 9.12. Let 𝑎𝑛 be convergent and 𝑏𝑛 be an arbitrary bounded sequence. Show
that

lim sup(𝑎𝑛𝑏𝑛) = (lim 𝑎𝑛)(lim sup 𝑏𝑛)
lim inf(𝑎𝑛𝑏𝑛) = (lim 𝑎𝑛)(lim inf 𝑏𝑛)

INFINITY AND LIMSUP LIMINF

9.5.2. ★ An Alternative Proof of Bolzano-Weierstrass

An alternative argument for the BW theorem proceeds via the nested interval prop-
erty. Here’s an outline of how this works

• If 𝑠𝑛 is bounded then there is some 𝑎, 𝑏 with 𝑎 ≤ 𝑠𝑛 ≤ 𝑏 for all 𝑛. Call this interval
𝐼0, and inductively build a sequence of nested closed intervals as follows

• At each stage 𝐼𝑘 = [𝑎𝑘 , 𝑏𝑘], bisect the interval with the midpoint 𝑚𝑘 = 𝑎𝑘+𝑏𝑘
2 .

This divides 𝐼𝑘 into two sub-intervals, and since 𝐼𝑘 contains infinitely many
points of the sequence, one of these two halves must still contain infinitely
many points. Choose this as the interval 𝐼𝑘+1.

• Now, this sequence of nested intervals has nonempty intersection by theNested
Interval Property. So, let 𝐿 ∈ ℝ be a point in the intersection.

• Now, we just need to build a subsequence of 𝑠𝑛 which converges to 𝐿. We build
it inductively as follows: let the first term be 𝑠1, and then for each 𝑘 choose
some point 𝑠𝑛𝑘 ∈ 𝐼𝑘 that is distinct from all previously chosen points (we can do
this because there are infinitely many points available in 𝐼𝑘 and we have only
used finitely many so far in our subsequence).
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• This new sequence is trapped between 𝑎𝑘 and 𝑏𝑘 , which both converge to 𝐿.
Thus it converges by the squeeze theorem!

Exercise 9.13. In this problem, you are to check themain steps of this proof to ensure
it works. Namely, given the above situation prove that

• If 𝐼𝑘 = [𝑎𝑘 , 𝑏𝑘], the sequences 𝑎𝑘 and 𝑏𝑘 of endpoints converge. Hint: Monotone
Convergence

• lim 𝑎𝑘 = lim 𝑏𝑘 , so the Squeeze theorem really does apply *Hint: use that at each
stage we are bisecting the intervals: can you find a formula for the sequence
𝑏𝑘 − 𝑎𝑘 , and prove this converges to zero?

Exercise 9.14 (Simultaneous Bolzano Weierstrass). Given two bounded sequences
𝑥𝑛 , 𝑦𝑛 there is a subsequence 𝑛𝑘 of indices such that both 𝑥𝑛𝑘 and 𝑦𝑛𝑘 converge. Prove
this, and then use induction to prove that for any finite number of bounded sequences,
one can choose a subsequence of indices so they all converge.
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10. Cauchy Sequences

10.1. Definition

One reasonably ambitious sounding goal in the study of sequences is to find a nice
criterion to determine exactly when a sequence converges or not. We made partial
progress towards this in the previous two chapters, and our goal in this chapter is
to provide an alternative complete characterization, by a single simple property. But
what could such a property be? One (good!) thought is the following

When a sequence converges, terms eventually get close to some limit 𝐿.
Thus the terms of the sequence eventually get close to one another.

This condition is certainly necessary: if the terms of a sequence do not get close
together, then they cannot get close to any limit! But is it sufficiently precise to
actually work? For that we need to turn it into a mathematical definition: perhaps

For all 𝜖 > 0 there is an 𝑁 where if 𝑛 > 𝑁 then |𝑎𝑛 − 𝑎𝑛+1| < 𝜖
Unfortunately this doesn’t quite seem to work: perhaps surprisingly, it is possible for
consecutive terms of a sequence to all get within 𝜖 of one another, but for the overall
sequence to diverge.

Example 10.1 (|𝑎𝑛 − 𝑎𝑛+1| small but 𝑎𝑛 diverges!). Consider the sequence 𝑎𝑛 = √𝑛.
Then for all 𝜖 > 0 there is an𝑁 where 𝑛 > 𝑁 implies |√𝑛−√𝑛 + 1| < 𝜖, but nonetheless
𝑎𝑛 diverges (to infinity).

Proof. We can estimate the difference between consecutive terms with some algebra:

√𝑛 + 1 − √𝑛 = (√𝑛 + 1 − √𝑛) √𝑛 + 1 + √𝑛
√𝑛 + 1 + √𝑛

= (𝑛 + 1) − 𝑛
√𝑛 + 1 + √𝑛

= 1
√𝑛 + 1 + √𝑛

< 1
√𝑛
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10. Cauchy Sequences

Thus for any 𝜖 > 0 we can just take 𝑁 = 1
𝜖2 and see that if 𝑛 > 𝑁 we have

|𝑎𝑛+1 − 𝑎𝑛 | < 1
√𝑛

< 1
√𝑁

= 1
√

1
𝜖2

= 𝜖

Nowever, 𝑎𝑛 is not converging to any finite number, as for any 𝑀 > 0, if 𝑛 > 𝑀2 then
𝑎𝑛 = √𝑛 > 𝑀 , so 𝑎𝑛 → ∞ by Definition 6.4

Example 10.2 (|𝑎𝑛 − 𝑎𝑛+1| small but 𝑎𝑛 diverges, again!). Perhaps the most famous
example with this property is the harmonic series

𝑎𝑛 = 1 + 1
2 + 1

3 + ⋯ + 1
𝑛

Here it is clear that 𝑎𝑛 − 𝑎𝑛+1 = 1
𝑛+1 and we know this can be made smaller than

any 𝜖 > 0. However, as we will prove in CITE, this sequence nonetheless diverges to
infinity.

So, we need to ask for a stronger condition. What went wrong? Well, even though
we forced 𝑎𝑛 to be close to 𝑎𝑛+1 for all 𝑛, the small differences between consecutive
terms could still manage to add up to big differences between terms: even if 𝑎𝑛 was
within 0.01 of 𝑎𝑛+1 for all 𝑛, its totally possible that 𝑎𝑛+100,000 could differ from 𝑎𝑛 by
(0.01)(10, 000) = 100! So, to strengthen our definition we might try to impose that
all terms of the sequence eventually stay close together :

Definition 10.1 (Cauchy Sequence). A sequence 𝑠𝑛 is Cauchy if for all 𝜖 > 0 there is
a threshold past which any two terms of the sequence differ from one another by at
most 𝜖. As a logic sentence,

∀𝜖 > 0 ∃𝑁 ∀𝑚, 𝑛 > 𝑁 |𝑠𝑛 − 𝑠𝑚 | < 𝜖

Example 10.3 (Cauchy Sequences: An Example). The sequence 𝑠𝑛 = 1
𝑛 is cauchy:

we can see this because for any 𝑛, 𝑚

|1𝑛 − 1
𝑚 | < |1𝑛 − 0| = 1

𝑛
And we already know that for any 𝜖 we can choose 𝑁 with 𝑛 > 𝑁 implying 1/𝑛 < 𝜖.

Example 10.4 (Cauchy Sequences: A Nonexample). The sequence 𝑠𝑛 =
1, 0, 1, 0, 1, 0… is not Cauchy, as the difference between any two consecutive
terms is 1. Thus for 𝜖 = 1/2 there is no 𝑁 where past that 𝑁 , every 𝑠𝑛 is within 1/2
of each other.
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10.2. ★ Properties

A good way to get used to a new definition is to use it. This definition looks very sim-
ilar to the limit definition, which means we can often formulate analogous theorems
and proofs to things we’ve seen before:

Note the proofs in this section are not logically required as the next section will render
them superfluous: once we know Cauchy and convergent are equivalent, these all
follow as immediate corollaries of the limit laws! Nonetheless it is instructive to see
their direct proofs:

Proposition 10.1 (Cauchy Implies Bounded). If 𝑠𝑛 is Cauchy then its bounded: there
exists a 𝐵 such that |𝑠𝑛 | < 𝐵 for all 𝑛 ∈ ℕ.

Very similar to proof for convergent seqs Proposition 7.2 in style, where we show
after some 𝑁 all the terms are bounded by some particular number, and then take
the max of this and the (finitely many!) previous terms to get a bound on the entire
sequence.

Proof. Set 𝜖 = 1. Since 𝑎𝑛 is Cauchywe know there is some𝑁 beyondwhich |𝑎𝑛−𝑎𝑚 | <
1 for all 𝑛, 𝑚 > 𝑁 . In particular, this means every |a_n-a_{N+1}|<1$ so

𝑎𝑁+1 − 1 < 𝑎𝑛 < 𝑎𝑁+1 + 1
Thus for the (infinitely many terms!) after 𝑎𝑁 , we can bound all of them above by
𝑎𝑁+1 + 1 and below by 𝑎𝑁+1 − 1. To extend these to bounds for the whole sequence,
we just take the max or min with the (finitely many!) previous terms:

𝐿 = min{𝑎1, 𝑎2, … , 𝑎𝑁 , 𝑎𝑁+1 − 1}
𝑈 = max{𝑎1, 𝑎2, … , 𝑎𝑁 , 𝑎𝑁+1 + 1}

Now we have for all 𝑛, 𝐿 ≤ 𝑎𝑛 ≤ 𝑈 so {𝑎𝑛} is bounded.

Proposition 10.2 (Sums of Cauchy Sequences). If 𝑎𝑛 and 𝑏𝑛 are Cauchy sequences, so
is 𝑎𝑛 + 𝑏𝑛 .

Proof. Let 𝜖 > 0. Then choose 𝑁𝑎 and 𝑁𝑏 such that for all 𝑛, 𝑚 greater than 𝑁𝑎 , 𝑁𝑏
respectively, we have |𝑎𝑛 − 𝑎𝑚 | < 𝜖/2 and |𝑏𝑛 − 𝑏𝑚 | < 𝜖/2. Set 𝑁 = max{𝑁𝑎 , 𝑁𝑏} and
let 𝑛, 𝑚 > 𝑁 . Then each of the above two inequalities hold, and so by the triangle
inequality

|(𝑎𝑛 + 𝑏𝑛) − (𝑎𝑚 − 𝑏𝑚)| = |(𝑎𝑛 − 𝑎𝑚) + (𝑏𝑛 − 𝑏𝑚)|
≤ |𝑎𝑛 − 𝑎𝑚 | + |𝑏𝑛 − 𝑏𝑚 | < 𝜖

2 + 𝜖
2 = 𝜖

Thus, 𝑎𝑛 + 𝑏𝑛 is Cauchy as well.
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10. Cauchy Sequences

Exercise 10.1 (Constant Multiples of Cauchy Sequences). Let 𝑎𝑛 be Cauchy, and
𝑘 ∈ ℝ be constant. Then 𝑘𝑎𝑛 is Cauchy.

Proposition 10.3 (Products of Cauchy Sequences). Let 𝑎𝑛 , 𝑏𝑛 be Cauchy. Then 𝑠𝑛 =
𝑎𝑛𝑏𝑛 is a cauchy sequence.

First, some scratch work: we are going to want to work with the condition |𝑠𝑛 − 𝑠𝑚 | =
|𝑎𝑛𝑏𝑛 − 𝑎𝑚𝑏𝑚 |. But we only know things about the quantities |𝑎𝑛 − 𝑎𝑚 | and |𝑏𝑛 − 𝑏𝑚 |.
So, we need to do some algebra, involving adding zero in a clever way and applying
the triangle inequality:

|𝑎𝑛𝑏𝑛 − 𝑎𝑚𝑏𝑚 | = |𝑎𝑛𝑏𝑛 + (𝑎𝑛𝑏𝑚 − 𝑎𝑛𝑏𝑚) − 𝑎𝑚𝑏𝑚 |
= |(𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏𝑚) + (𝑎𝑛𝑏𝑚 − 𝑎𝑚𝑏𝑚)|
= |𝑎𝑛(𝑏𝑛 − 𝑏𝑚) + 𝑏𝑚(𝑎𝑛 − 𝑎𝑚)|
≤ |𝑎𝑛(𝑏𝑛 − 𝑏𝑚)| + |𝑏𝑚(𝑎𝑛 − 𝑎𝑚)|
= |𝑎𝑛 ||𝑏𝑛 − 𝑏𝑚 | + |𝑏𝑚 ||𝑎𝑛 − 𝑎𝑚 |

Because we know Cauchy sequences are bounded, we can get upper estimates for
both |𝑎𝑛 | and |𝑏𝑛 |. And then as we know that the sequences are Cauchy, we can make
|𝑎𝑛 − 𝑎𝑚 | and |𝑏𝑛 − 𝑏𝑚 | as small as we need, so that this overall term is small. We carry
this idea out precisely in the proof below.

Proof. Let 𝑎𝑛 and 𝑏𝑛 be Cauchy, and choose an 𝜖 > 0. Then each are bounded, so
we can choose some 𝑀𝑎 with |𝑎𝑛 | < 𝑀𝑎 and 𝑀𝑏 where |𝑏𝑛 | < 𝑀𝑏 for all 𝑛. To make
notation easier, set 𝑀 = max{𝑀𝑎 , 𝑀𝑏} so that we know both 𝑎𝑛 and 𝑏𝑛 are bounded
by the same constant 𝑀 .

Using that each is Cauchy, we can also get an 𝑁𝑎 and 𝑁𝑏 where if 𝑛, 𝑚 are greater than
these respectively, we know that

|𝑎𝑛 − 𝑎𝑚 | < 𝜖
2𝑀 |𝑏𝑛 − 𝑏𝑚 | < 𝜖

2𝑀
Then set 𝑁 = max{𝑁𝑎 , 𝑁𝑏}, and choose arbitrary 𝑛, 𝑚 > 𝑁 . Since in this case both of
the above hypotheses are satisfied, we know that

|𝑎𝑛 ||𝑏𝑛 − 𝑏𝑚 | ≤ 𝑀 𝜖
2𝑀 = 𝜖

2 |𝑏𝑚 ||𝑎𝑛 − 𝑎𝑚 | ≤ 𝑀 𝜖
2𝑀 = 𝜖

2
Together, this means their sum is less than 𝜖, and from our scratch work we see their
sum is already an upper bound for the quantity we are actually interested in:

|𝑎𝑛𝑏𝑛 − 𝑎𝑚𝑏𝑚 | ≤ |𝑎𝑛 ||𝑏𝑛 − 𝑏𝑚 | + |𝑏𝑚 ||𝑎𝑛 − 𝑎𝑚 | ≤ 𝜖
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Exercise 10.2 (Reciprocals of Cauchy Sequences). Let 𝑎𝑛 be a Cauchy sequence with
𝑎𝑛 ≠ 0 for all 𝑛, which does not converge to zero. Then the sequence of reciprocals
𝑠𝑛 = 1

𝑎𝑛 is Cauchy.

Just like for convergence, once we know the results products and reciprocals, quo-
tients follow as an immediate corollary:

Corollary 10.1 (Quotients of Cauchy Sequences). If 𝑎𝑛 and 𝑏𝑛 are Cauchy with 𝑏𝑛 ≠ 0
and lim 𝑏𝑛 ≠ 0 then the quotients 𝑎𝑛/𝑏𝑛 form a Cauchy sequence.

Exercise 10.3. Show the hypothesis 𝑏𝑛↛0 is necessary in Corollary 10.1 by giving
an example of two Cauchy sequences 𝑎𝑛 , 𝑏𝑛 where 𝑏𝑛 ≠ 0 for all 𝑛, yet 𝑎𝑛

𝑏𝑛 is not a
Cauchy sequence.

10.3. Convergence

Now we move on to the main act, where we prove convergence is equivalent to
Cauchy by showing an implication in both directions.

Exercise 10.4 (Convergent Implies Cauchy). If 𝑠𝑛 is a convergent sequence, then 𝑠𝑛
is Cauchy. Hint: The triangle inequality and |𝑎𝑛 − 𝑎𝑚 | for a sequence converging to 𝐿
can tell you….what?

More difficult, and more interesting, is the converse:

Proposition 10.4 (Cauchy Implies Convergent). If 𝑠𝑛 is a Cauchy sequence, then 𝑠𝑛 is
convergent.

Proof. Let 𝑠𝑛 be a Cauchy sequence. Then it is bounded, by Proposition 10.1, so by the
Bolzano Weierstrass theorem (?@thm-thm-bolzano-weierstrass) we can extract a
subsequence 𝑠𝑛𝑘 which converges to some real number 𝐿.
Now we have something to work with, and all we need to show is that the rest of the
sequence also converges to 𝐿. So, let’s fix an 𝜖 > 0. Since 𝑠𝑛𝑘 → 𝐿 there exists an 𝑁1
where if 𝑛𝑘 > 𝑁1 we know |𝑠𝑛𝑘 − 𝐿| < 𝜖/2. And, since 𝑠𝑛 is Cauchy, we know there is
an 𝑁2 where for any 𝑛, 𝑚 > 𝑁2 we know |𝑠𝑛 − 𝑠𝑚 | < 𝜖/2.
Let 𝑁 = max{𝑁1, 𝑁2}, and choose any 𝑛 > 𝑁 . If 𝑠𝑛 is in the subsequence, we are good
because 𝑛 > 𝑁1 and we know for such elements of the subsequence |𝑠𝑛 −𝐿| < 𝜖/2 < 𝜖.
But if 𝑠𝑛 is not in the subsequence, choose any 𝑚 such that 𝑚 > 𝑁 and 𝑠𝑚 is in the
subsequence, and apply the triangle inequality:

|𝑠𝑛 − 𝐿| = |𝑠𝑛 − 𝑠𝑚 + 𝑠 + 𝑚 − 𝐿| ≤ |𝑠𝑛 − 𝑠𝑚 | + |𝑠𝑚 − 𝐿| ≤ 𝜖
2 + 𝜖

2 = 𝜖
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Where the first inequality is because of the Cauchy condition, and the second is the
convergence of the subsequence.

Together these imply the main theorem we advertised.

Theorem 10.1 (Cauchy ⟺ Convergent). The conditions of being a Cauchy sequence
and a convergent sequence are logically equivalent.

10.4. Contraction Maps

The cauchy condition (that terms “bunch up”) appears in many natural situations,
which makes it a very useful equivalent to convergence. Here we investigate one
such instance, when sequences are generated by iterating certain functions.

Definition 10.2 (Contractive Sequence). A sequence 𝑠𝑛 is contractive if there is some
positive constant 𝑘 < 1 such that for all 𝑛

|𝑎𝑛+1 − 𝑎𝑛 | < 𝑘|𝑎𝑛 − 𝑎𝑛−1|

CONTRACTIVE SEQUENCES (pg 189 in Amazing):

Definition 10.3 (ContractionMap). A function 𝑓 is a contractionmap if there is some
positive constant 𝑘 < 1 such that for all 𝑥, 𝑦 in the domain of 𝑓 ,

|𝑓 (𝑥) − 𝑓 (𝑦)| < 𝑘|𝑥 − 𝑦|

Proposition 10.5. If 𝑓 is a contraction map, iterating 𝑓 starting at any point of the
domain produces a convergent sequence.

Proof. We prove the existence of a fixed point of 𝑓 by constructing a sequence that
converges to it. Start by choosing any 𝑥0 ∈ ℝ and set 𝛿 = |𝑓 (𝑥0) − 𝑥0|. We can define
a sequence 𝑥𝑛 by iterating 𝑓 : 𝑥𝑛+1 ∶= 𝑓 (𝑥𝑛). Our goal is to show that 𝑥𝑛 is Cauchy by
bounding |𝑥𝑚 − 𝑥𝑛 | appropriately. As a starting point, note that as 𝑓 is a contraction
map we can choose a positive 𝑘 < 1 where |𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝑘|𝑥 − 𝑦| for all 𝑥, 𝑦 and
compute

|𝑥𝑛+1 − 𝑥𝑛 | = 𝑘|𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)|
≤ 𝑘2|𝑓 (𝑥𝑛−1) − 𝑓 (𝑥𝑛−2)|
≤ ⋯
≤ 𝑘𝑛 |𝑓 (𝑥0) − 𝑥0|
= 𝑘𝑛𝛿
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10.4. Contraction Maps

This is not the quantity we are really interested in however, wewish to bound |𝑥𝑚−𝑥𝑛 |.
Using the triangle inequality, we can replace this with 𝑛−𝑚 bounds of the form above:

|𝑥𝑚 − 𝑥𝑛 | = |𝑥𝑚 − 𝑥𝑚−1 + 𝑥𝑚−1 − 𝑥𝑚−2 + 𝑥𝑚−2 − ⋯ − 𝑥𝑛+1 + 𝑥𝑛+1 − 𝑥𝑛 |
≤ |𝑥𝑚 − 𝑥𝑚−1| + |𝑥𝑚−1 − 𝑥𝑚−2| + ⋯ + |𝑥𝑛+1 − 𝑥𝑛 |
≤ 𝑘𝑚−1𝛿 + 𝑘𝑚−2𝛿 + ⋯ + 𝑘𝑛𝛿

Simplifying this we can factor out the 𝛿 to get a sum

𝛿 (𝑘𝑚−1 + 𝑘𝑚−2 + ⋯ + 𝑘𝑛) = 𝛿
𝑚−1
∑
𝑗=𝑛

𝑘𝑗 = 𝛿𝑘𝑛
𝑚−𝑛−1
∑
𝑗=0

𝑘𝑗

The final sum here we may recognize as a geometric series (Exercise 1.6), where

𝑁
∑
𝑗=0

𝑘𝑗 = 1 − 𝑘𝑁+1
1 − 𝑘 ≤ 1

1 − 𝑘

Putting this all together, we have managed to bound |𝑥𝑚 − 𝑥𝑛 | by

|𝑥𝑚 − 𝑥𝑛 | ≤ 𝛿𝑘𝑛
𝑚−𝑛−1
∑
𝑗=0

𝑘𝑗 ≤ 𝛿𝑘𝑛 1
1 − 𝑘

The numbers 𝛿 and 1/(1 − 𝑘) are both constants, and as |𝑘| < 1 we know by Exam-
ple 6.8, 𝑘𝑛 → 0. Thus by the limit laws our bound 𝛿𝑘𝑛 1

1−𝑘 → 0, which means for every
𝜖 there is some 𝑁 where 𝑛 > 𝑁 implies this is less than 𝜖, and hence that |𝑥𝑚 −𝑥𝑛 | < 𝜖.
This means the sequence of 𝑥 ’s is Cauchy, and hence convergent. Thus there is some
𝑥 ∈ ℝ with 𝑥𝑛 → 𝑥 .

Thinking harder about the limit of this sequence proves a rather important theorem
in analysis:

Theorem 10.2 (The Contraction Mapping Theorem). Let 𝑓 ∶ ℝ → ℝ be a contraction
map. Then there is a unique real number 𝑥 such that 𝑓 (𝑥) = 𝑥 .
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10. Cauchy Sequences

Proof. Starting from any 𝑥0 in the domain, iterating 𝑓 produces a sequence converg-
ing to some limit point 𝑥 . Since lim 𝑥𝑛 = lim 𝑥𝑛+1 = lim 𝑓 (𝑥𝑛) we see this same point
𝑥 is also the limit of the sequence 𝑓 (𝑥𝑛), so it suffices to prove that 𝑓 (𝑥𝑛) → 𝑓 (𝑥).
Then since 𝑓 is a contraction map, there’s a 𝑘 < 1 where |𝑓 (𝑥𝑛) − 𝑓 (𝑥)| ≤ 𝑘|𝑥𝑛 − 𝑥|.
This second sequence converges to 0 by assumption, so 𝑓 (𝑥𝑛) → 𝑓 (𝑥) as required
(Exercise 6.14). Finally by uniqueness of limits (Theorem 6.1) since 𝑓 (𝑥𝑛) → 𝑥 and
𝑓 (𝑥𝑛) → 𝑓 (𝑥) we conclude 𝑥 = 𝑓 (𝑥) is a fixed point.

Finally, we check uniqueness. Assume there are two fixed points 𝑥, 𝑦 with 𝑥 = 𝑓 (𝑥)
and 𝑦 = 𝑓 (𝑦). We apply the condition that 𝑓 is a contraction map to |𝑥 − 𝑦| to get

|𝑥 − 𝑦| ≤ 𝑘|𝑥 − 𝑦|
Since 𝑘 is strictly less than 1, the only solution to this is that |𝑥 − 𝑦| = 0, so 𝑥 = 𝑦 and
there is only one fixed point after all.

10.4.1. Applications

Applicaitons: the babylonian procedure for square root of 2 is a contraction map!
Others??

Can we show archimedes’ approximates of 𝜋 are a Cauchy sequence? Archimedes
has a recursion process…how does this work?

10.5. Problems

Exercise 10.5. Is the sequence 𝑠𝑛 = 1 − (−1)𝑛
𝑛 cauchy nor not? Prove your claim.

Exercise 10.6. Let 𝑠𝑛 be a periodic sequence (meaning after some period 𝑃 we have
𝑠𝑛 = 𝑠𝑃+𝑛 for all 𝑛). Prove that if 𝑠𝑛 is Cauchy then it is constant. Hint: what’s the
contrapositive?

Exercise 10.7. Prove directly from the definition of Cauchy: if 𝑠𝑛 is Cauchy and 𝑠𝑛𝑘
is a subsequence whose limit is 𝐿 then 𝑠𝑛 → 𝐿.
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11. ♦ Limits of Limits

So far we have looked at sequences which depend on a single index 𝑛. But there are
many natural situations in mathematics where two or more indices come into play.
We take a brief look at these here as the subtleties that arise when trying to compute
their limits

Definition 11.1 (Double Sequence). A double sequence is an assignment of a value
𝑎𝑚𝑛 for 𝑚, 𝑛 ∈ ℕ.

For example, 𝑎𝑚𝑛 = 1
𝑚+𝑛2 is a double sequence. We can visualize a double sequence

by writing not a list of numbers, but a 2 dimensional array. How should we define
the limit of such an array?

Definition 11.2 (Limit of a Double Sequence).

Example 11.1.

Definition 11.3 (Iterated Limit).

Do we want to include information on double sequences 𝑎𝑚,𝑛 and taking limits in 𝑛,
𝑚 or both?

lim𝑛 lim𝑚
𝑛

𝑛 + 𝑚 = lim𝑛 (lim𝑚
𝑛

𝑛 + 𝑚) = lim𝑛 0 = 0

lim𝑚 lim𝑛
𝑛

𝑛 + 𝑚 = lim𝑚 (lim𝑛
𝑛

𝑛 + 𝑚) = lim𝑚 1 = 1
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Part III.

Series
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• In Chapter 12 we define infinite series and inifnite products, and study some
basic examples.

• In Chapter 13 we develop theorems (known as convergence tests) to help us
determine when a series converges, even if we cannot find its value.

• In Chapter 14 we look at limits of infinite series, a special case of the iterated
limits studied previously.

• In Chapter 15 we take a brief look at some advanced techniques for working
with infinite series, including summation by parts and double summation

• In Chapter 16 we explore the vast differences between conditionally convergent
series and absolutely convergent series.
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12. First Examples

Highlights of this Chapter: We define infinite series and infinite products,
and relate them through via exponential functions and logarithms, reduc-
ing the theory to the study of one or the other. We then introduce two
classes of series that we can essentially compute by hand: telescoping
sums, and the geometric series.

We return from our excursion into the study of functions back to sequences for a
short bit, and discuss two particular types of recursive sequences which prove to be
extremely useful across mathematics: infinite series, and infinite products. Most of
the material in this section and the following could easily have been covered much
earlier - the reason we have postponed them is that the most striking applications of
sequences and series involve not numbers but whole functions, and now that we have
that technology available we will be able to present the theory in its fullest.

Definition 12.1 (Series). A series 𝑠𝑛 is a recursive sequence defined in terms of an-
other sequence 𝑎𝑛 by the recurrence relation 𝑠𝑛+1 = 𝑠𝑛 + 𝑎𝑛 . Thus, the first terms of a
series are

𝑠0 = 𝑎0, 𝑠1 + 𝑎0 + 𝑎1 𝑠2 = 𝑎0 + 𝑎1 + 𝑎2 …
We use summation notation to denote the terms of a series:

𝑠𝑛 =0 +𝑎1 + ⋯ + 𝑎𝑛 =
𝑛
∑
𝑘=0

𝑎𝑘

Remark 12.1. It is important to carefully distinguish between the sequence 𝑎𝑛 of terms
being added up, and the sequence 𝑠𝑛 of partial sums.

When a series converges, we often denote its limit using summation notation as well.
The traditional ‘calculus notation’ sets 𝑛 to infinity as the upper index; and another
common notation is to list just the subset of integers over which we sum in as the
lower bound: all of the following are acceptable

lim 𝑠𝑛 = lim
𝑛
∑
𝑘=0

𝑎𝑘 =
∞
∑
𝑘=0

𝑎𝑘 = ∑
𝑘≥0

𝑎𝑘
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12. First Examples

There are many important infinite series in mathematics: one that we encountered
earlier is the Basel series first summed by Euler.

∑
𝑛≥1

1
𝑛2 = 𝜋2

6

When the sequences 𝑎𝑛 consists of functions of 𝑥 , we may define an infinite series
function for each 𝑥 at which it converges. These describe some of the most important
functions in mathematics, such as the Riemann zeta function

𝜁 (𝑠) = ∑
𝑛≥1

1
𝑛𝑠

One of our big accomplishments to come in this class is to prove that exponential
functions can be computed via infinite series, and in particular, the standard exponen-
tial of base 𝑒 has a very simple expression

exp(𝑥) = ∑
𝑛≥0

𝑥𝑛
𝑛!

Remark 12.2. Because the sum of any finitely many terms of a series is a finite num-
ber, we can remove any finite collection without changing whether or not the series
converges. In particular, when proving convergence we are free to ignore the first
finitely many terms when convenient.

Because of this, we often will just write∑𝑎𝑛 when discussing a series, without giving
any lower summation bound.

The other infinite algebraic expression we can conjure up is infinite products:

Definition 12.2 (Infinite Products). An infinite product 𝑝𝑛 is a recursive sequence
defined in terms of another sequence 𝑎𝑛 by the recurrence relation 𝑝𝑛+1 = 𝑝𝑛𝑎𝑛 . Thus,
the first terms of a series are

𝑠0 = 𝑎0, 𝑠1 + 𝑎0𝑎1 𝑠2 = 𝑎0𝑎1𝑎2 …

We use product notation to denote the terms of a series:_

𝑠𝑛 =0 𝑎1 ⋯𝑎𝑛 =
𝑛

∏
𝑘=0

𝑎𝑘

Again, like for series, when such a sequence converges there are multiple common
ways to write its limit:
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lim 𝑝𝑛 = lim
𝑛

∏
𝑘=0

𝑝𝑘 =
∞
∏
𝑘=0

𝑝𝑘 = ∏
𝑘≥0

𝑝𝑘

The first infinite product to occur in the mathematics literature is Viete’s Product for
𝜋

2
𝜋 = √2

2
√2 + √2

2 ⋯

This product is derived from Archimedes’ side-doubling procedure for the areas of
circumscribed 𝑛-gons; hence the collections of nested roots!

Another early and famous example being Wallis’ infinite product for 2/𝜋 , which in-
stead is derived from Euler’s infinite product for the sine function.

𝜋
2 = ∏

𝑛≥1
4𝑛2

4𝑛2 − 1

= 2
1
2
3
4
3
4
5
6
5
6
7
8
7
8
9
10
9

10
11

12
11

12
13

14
13

14
15 ⋯

In 1976, the computer scientist N. Pippenger discovered amodification ofWallis’ prod-
uct which converges to 𝑒:

𝑒
2 = (21)

1
2 (23

4
3)

1
4 (45

6
5
6
7
8
7)

1
8 (89

10
9

10
11

12
11

12
13

14
13

14
15

16
15)

1
16 ⋯

Pippenger wrote up his result as a paper…but due to the relatively ancient tradition of
mathematics he was adding to - he decided to write it in Latin! The paper appears as
“Formula nova pro numero cujus logarithmus hyperbolicus unitas est”. in IBM Research
Report RC 6217. I am still trying to track down a copy of this! So if any of you are
better at the internet than me, I would be very grateful if you could locate it.

Alluded to above, one of the most famous functions described by an infinite product
is the sine function, which Euler expanded in his proof of the Basel sum

sin 𝜋𝑥
𝜋𝑥 = ∏

𝑛≥1
(1 − 𝑥2

𝑛2 )

AAswell as our friend the Riemann zeta function from above, which can be written as
a product over all the primes! (Alluding to its deep connection to number theory)

𝜁 (𝑠) = ∏
𝑝 prime

1
1 − 𝑝−𝑠
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12. First Examples

Perhaps in a calculus class you remember seeing many formulas for the convergence
of series (we will prove them here in short order), but did not see many infinite prod-
ucts. The reason for this is that it is enough to study one class of these recursive
sequences, once we really understand exponential functions and logarithms: we can
use these to convert between the two (see CITE AHEAD). Because of this we too
will focus most of our theoretical attention on series, though interesting products of
historical significance will make several appearances.

12.1. Properties

WRITE THIS SECTION

Tails of series

Associative Property (pg 199 Amazing)

Arithmetic of Series (limit laws)

12.2. Telescoping

Definition 12.3 (Telescoping Series). A telescoping series is a series ∑𝑎𝑛 where
the terms themselves can be written as differences of consecutive terms of another
sequence, for example if 𝑎𝑛 = 𝑡𝑛 − 𝑡𝑛−1.

Telescoping series are the epitome of a math problem that looks difficult, but is se-
cretly easy. Once you can express the terms as differences, everything but the first
and last cancels out! For example:

Once a series has been identified as telescoping, often proving its convergence is
straightforward: you get a direct formula for the partial sums, and then all that re-
mains is to calculate the limit of a sequence.

Example 12.1. The sum ∑𝑘≥1
1
𝑘 − 1

𝑘+1 telescopes. Writing out a partial sum 𝑠𝑛 ,
everything collapses so 𝑠𝑛 = 1 − 1

𝑛+1 .

Nowwe no longer have a series to deal with, as we’ve found the partial sums! All that
remains is the sequence 𝑠𝑛 = 1 − 1

𝑛+1 . And this limit can be computed immediately
from the limit laws:

𝑠 = lim 𝑠𝑛 = 1 − lim 1
𝑛 + 1 = 1

Of course, sometimes a bit of algebra needs to be done to reveal that a series is tele-
scoping:
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12.3. Geometric Series

Exercise 12.1. Show that the following series is telescoping, and then find its sum

∑
𝑛≥1

4
𝑛2 + 𝑛

Hint: factor the denominator, and do a partial fractions decomposition!

A telescoping product is defined analogously

Definition 12.4 (Telescoping Product). A telescoping product is a product ∏𝑎𝑛
where the terms themselves can be written as ratios of consecutive terms of another
sequence, for example 𝑎𝑛 = 𝑡𝑛

𝑡𝑛−1 .

Exercise 12.2. Prove that if 𝑝𝑛 is a telescoping product, then 𝑠𝑛 = 𝐿(𝑝𝑛) is a telescop-
ing series.

12.3. Geometric Series

Definition 12.5. A series ∑𝑎𝑛 is geometric if all consecutive terms share a common
ratio: that is, there is some 𝑟 ∈ ℝ with 𝑎𝑛/𝑎𝑛−1 = 𝑟 for all 𝑛.

In this case we can see inductively that the terms of the series are all of the form 𝑎𝑟𝑛 .
Thus, often we factor out the 𝑎 and consider just series like ∑𝑟𝑛 .

Exercise 12.3 (Geometric Partial Sums). For any real 𝑟 , the partial sum of the geo-
metric series is:

1 + 𝑟 + 𝑟2 + ⋯ + 𝑟𝑛 =
𝑛
∑
𝑘=0

𝑟𝑛 = 1 − 𝑟𝑛+1
1 − 𝑟

Like telescoping series, now that we have explicitly computed the partial sums, we
can find the exact value by just taking a limit.

Theorem 12.1. If |𝑟 | < 1 then ∑𝑟𝑛 converges, and

∞
∑
𝑘=0

𝑟𝑘 = 1
1 − 𝑟

Proof. By the partial sum formula, we have

∑
𝑛≥0

𝑟𝑛 = lim
𝑛
∑
𝑘=0

𝑟𝑛 = lim 1 − 𝑟𝑛+1
1 − 𝑟
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12. First Examples

Since |𝑟 | < 1, we know that 𝑟𝑛 → 0, and so 𝑟𝑛+1 = 𝑟𝑟𝑛 → 0 by the limit theorems (or
by truncating the first term of the sequence). Again by the limit theorems, we may
then calculate

lim 1 − 𝑟𝑛+11 − 𝑟
=

1 − lim 𝑟𝑛+1
1 − 𝑟 = 1 − 0

1 − 𝑟 = 1
1 − 𝑟

Remark 12.3. Its often useful to commit to memory the formula also for when the
sum starts at 1: ∞

∑
𝑘=1

𝑟𝑘 = 𝑟
1 − 𝑟

Exercise 12.4. Prove that for all |𝑟 | ≥ 1, the geometric series ∑𝑟𝑛 diverges. Hint: use
the formula for the partial sums and the limit theorems, which reduces this to the study
of the sequence 𝑟𝑛+1.

Because this holds for all values of 𝑟 between −1 and 1, this gives us our first taste
of a function defined as an infinite series. For any 𝑥 ∈ (−1, 1) we may define the
function

𝑓 (𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛 + ⋯
and the argument above shows that 𝑓 (𝑥) = 1/(1−𝑥). Thus, we have two expressions
of the same function: one in terms of an infinite sum, and one in terms of familiar
algebraic operations. This sort of thing will prove extremely useful in the future,
where switching between these two viewpoints can often help us overcome difficult
problems.

1
1 − 𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + ⋯

12.3.1. Quadrature of the Parabola

We may now revisit Archimedes’ other famous argument - discovering the area of
the parabola.

Theorem 12.2. The area of the segment bounded by a parabola and a chord is 4/3𝑟𝑑 s
the area of the largest inscribed triangle.

After first describing how to find the largest inscribed triangle (using a calculation
of the tangent lines to a parabola), Archimedes notes that this triangle divides the
remaining region into two more parabolic regions. And, he could fill these with their
largest triangles as well!

These two triangles then divide the remaining region of the parabola into four new
parabolic regions, each of which has their own largest triangle, and so on.
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12.3. Geometric Series

Figure 12.1.: Archimedes’ infinite construction of the parabolic segment from trian-
gles

The key geometric step to Archimedes argument is to realize that the total area of
triangles added at each stage is proportional to the area of triangles added at the
previous stage:

Proposition 12.1 (Area of the 𝑛𝑡ℎ stage). The total area of the triangles in each stage
is 1/4 the total area of triangles in the previous stage.

That is, if 𝑎𝑛 is the area in the 𝑛𝑡ℎ stage, Archimedes is saying that 𝑎𝑛+1 = 1
4𝑎𝑛 . From

here, the calculation step of the argument can be made rigorous with the real analysis
of infinite series.

Exercise 12.5. Archimedes has defined 𝑎𝑛 as a recursive sequence above. Use this
to get an explicit formula for 𝑎𝑛 in terms of 𝑇 , the original area of the first triangle.
Now, let 𝐴𝑛 be the total area of the triangles up to the 𝑛𝑡ℎ stage. Show that this gives
a geometric series, whose sum is 4/3𝑇 .

There is a final part to this argument, that takes some more real-analysis work: since
each of these triangles is a subset of the original parabola, the overall shape con-
structed from their union is also a subset, and so the area of the limit is less than or
equal to the area of the parabola. But why is it equal? This requires us to show that
area missed by each finite stage converges to zero.

Archimedes carefully works out the geometry to prove that this sequence of errors
𝐸𝑛 must go to zero. Thus, as the area𝐴𝑃 of the parabola at each stage is𝐴𝑃 = 𝐴𝑛+𝐸𝑛 ,
and since both 𝐴𝑛 and 𝐸𝑛 converge we can use the limit theorems:

𝐴𝑃 = lim(𝐴𝑛 + 𝐸𝑛) = lim𝐴𝑛 + lim 𝐸𝑛 = 4
3𝑇 + 0 = 4

3𝑇
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12. First Examples

Exercise 12.6 (Parabola Error (Challenge)). Try to sketch an argument for why 𝐸𝑛
goes to zero. It’s hard to write down a formula directly, as this describes the area of
a shape with a curved side, and if we knew how to do that we would have sovled the
entire probelm directly!

Instead, can you prove that if 𝑝 is any point inside the original parabola segment,
that 𝑝 must be contained in the 𝑛𝑡ℎ stage of triangles for some 𝑛? Then, since at some
finite stage every point can be removed from 𝐸𝑛 , the limit of 𝐸𝑛 is empty, which has
area zero.

12.3.2. The Koch Fractal

The Koch Snowflake is a fractal, defined as the limit of an infinite process starting
from a single equilateral triangle. To go from one level to the next, every line segment
of the previous level is divided into thirds, and themiddle third replacedwith the other
two sides of an equilateral triangle built on that side.

Figure 12.2.: The Koch subdivision rule: replace the middle third of every line seg-
ment with the other two sides of an equilateral triangle.

Doing this to every line segment quickly turns the triangle into a spiky snowflake like
shape, hence the name. Denote by 𝐾𝑛 the result of the 𝑛𝑡ℎ level of this procedure.
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12.3. Geometric Series

Figure 12.3.: The first six stages 𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4 and 𝐾5 of the Koch snowflake pro-
cedure. 𝐾∞ is the fractal itself.

Say the initial triangle at level 0 has perimeter 𝑃 , and area 𝐴. Then we can define
the numbers 𝑃𝑛 to be the perimeter of the 𝑛𝑡ℎ level, and 𝐴𝑛 to be the area of the 𝑛𝑡ℎ
level..

Exercise 12.7 (The Koch Snowflake Length). What are the perimeters 𝑃1, 𝑃2 and 𝑃3
of the first iterations? From this conjecture (and then prove by induction) a formula
for the perimeter 𝑃𝑛 and prove that 𝑃𝑛 diverges. Thus, the limit cannot be assigned a
length!

Next we turn to the area: recall that the area of an equilateral triangle can be given
in terms of its side length as 𝐴 = √32𝑠2

Exercise 12.8 (The Koch SnowflakeArea). What are the areas𝐴1, 𝐴2 and𝐴3 in terms
of the original area 𝐴? Find an infinite series that represents the area of the 𝑛𝑡ℎ stage
𝐴𝑛 , and prove that your formula is correct by induction.

Now, use what we know about geometric series to prove that this converges: in the
limit, the Koch snowflake has a finite area even though its perimeter diverges!
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12. First Examples

12.4. Summing Reciprocals

WRITE THIS SECTION

Prove harmonic series diverges

Telescoping Series (pg 197 Amazing) Including using parital fraction decomposition
to prove.

Prove 1/𝑛2 converges.

12.5. Problems

160



13. Convergence Tests

Highlights of this Chapter: Finding the value of a series explicitly is dif-
ficult, so we develop some theory to determine convergence without ex-
plicitly finding the limit. Our main tool is comparison, which is built
using the Monotone convergence theorem; and in particular comparison
with a geometric series - the Ratio Test. Along the way to developing
this theory we study a few important special series:

• We prove the harmonic series ∑ 1
𝑛 diverges.

• In contrast, we prove that the sum of reciprocal squares ∑ 1
𝑛2 con-

verges. (Later we will show its value is 𝜋2/6).

In this section, we build up some technology to prove the convergence (and diver-
gence) of series, without explicitly being able to compute the limit of partial sums.
Such results will prove incredibly useful, as in the future we will encounter many
theorems of the form if ∑𝑎𝑛 converges, then… and we will need to a method of prov-
ing convergence to continue.

For sequences, after some work we were able to find a definition equivalent to the
original notion of convergence, which did not mention the precise value of the limit.
This is exactly the sort of thing we seek for our investigation into series, so we carry
it over directly here:

Definition 13.1 (Cauchy Criterion). A series 𝑠𝑛 = ∑𝑎𝑛 satisfies the Cauchy criterion
if for every 𝜖 > 0 there is an 𝑁 such that for any 𝑛, 𝑚 > 𝑁 we have

|
𝑛
∑
𝑚

𝑎𝑘 | < 𝜖

Exercise 13.1. Prove a series satisfies the Cauchy criterion if and only if its sequence
of partial sums is a Cauchy sequence.

Because we know that being convergent and cauchy are equivalent, this means that
all series that satisfy the Cauchy criterion are convergent, and conversely if a series
does not, then it must diverge. We use this second observation to construct an easy-
to-apply test for divergence:
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13. Convergence Tests

Corollary 13.1 (Divergence Test). If a series ∑𝑎𝑛 converges, then lim 𝑎𝑛 = 0. Equiva-
lently, if 𝑎𝑛↛0 then ∑𝑎𝑛 diverges.

Proof. Let’s apply the cauchy condition to the single value 𝑚. This says for all 𝜖 > 0
there is some 𝑁 where for 𝑚 > 𝑁 we have

|
𝑚
∑
𝑘=𝑚

𝑎𝑘 | = |𝑎𝑚 | < 𝜖

But making |𝑎𝑚 | < 𝜖 for all 𝑚 > 𝑁 is exactly the definition of 𝑎𝑚 → 0.

This is useful mostly to immediately rule out the possibility that certain series con-
verge. For instance it tells us that ∑(1+ 1

𝑛 ) must diverge as the terms approach 1, not
zero. But, when the terms approach zero its not very helpful: there are many series
with 𝑎𝑛 → 0 which do converge, and many which diverge. To distinguish between
these, we need to build up some more powerful tools.

13.1. Comparison

One of the very most useful convergence tests for a series is comparison. This lets
us show that a series we care about (that may be hard to compute with) converges or
diverges by comparing it to a simpler series - much like the squeeze theorem did for
us with sequences. This theorem gives less information than the squeeze theorem (it
doesn’t give us the exact value of the series we are interested in) but it is also easier to
use (it only requires a bound, not an upper and lower bound with the same limit).

Theorem 13.1 (Comparison For Series). Let ∑𝑎𝑛 and ∑𝑏𝑛 be two series of nonnega-
tive terms, with 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 .

• If ∑𝑏𝑛 converges, then ∑𝑎𝑛 converges.
• If ∑𝑎𝑛 diverges, then ∑𝑏𝑛 diverges.

The proof is just a rehashing of our old friend, Monotone Convergence.

Proof. We prove the first of the two claims, and leave the second as an exercise. If
𝑥𝑛 ≥ 0 then the series 𝑠𝑛 = ∑𝑛

𝑘=0 𝑥𝑘 is monotone increasing (as by definition 𝑠𝑛 =
𝑠𝑛−1 + 𝑥𝑛 and 𝑥𝑛 ≥ 0 we see 𝑠𝑛 ≥ 𝑠𝑛−1 for all 𝑛).
Thus. ∑𝑎𝑛 and ∑𝑏𝑛 are monotone sequences. If ∑𝑏𝑛 converges, we know by the
Monotone Convergence Theorem that it its limit 𝛽 is the supremum of the partial
sums, so for all 𝑛

𝑛
∑
𝑘=0

𝑏𝑘 ≤ 𝛽
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13.1. Comparison

But, since 𝑎𝑘 ≤ 𝑏𝑘 for all 𝑘, we see the same is true of the partial sums

𝑛
∑
𝑘=0

𝑎𝑘 ≤
𝑛
∑
𝑘=0

𝑏𝑘

Stringing these inequalities together, we see that ∑𝑎𝑘 is bounded above by 𝛽 . Since
it is monotone (as the sum of nonnegative terms) as well, Monotone convergence
assures us that it converges, as claimed.

Exercise 13.2. Let ∑𝑎𝑛 and ∑𝑏𝑛 be two series of nonnegative terms, with 0 ≤ 𝑎𝑛 ≤
𝑏𝑛 . Prove that if ∑𝑎𝑛 diverges, then ∑𝑏𝑛 diverges.

13.1.1. Summing Reciprocals

The comparison test is incredibly useful: some of the most famous series it lets us
understand are left as exercises below.

Exercise 13.3. Show the harmonic series ∑ 1
𝑛 diverges, by comparing it with the

partial sums of
1, 1/2, 1/4, 1/4, 1/8, 1/8, 1/8, 1/8, 1/16, ...

Exercise 13.4. Prove that ∑ 1
𝑛2 converges. *Hint: compare with 1/((𝑛 − 1)𝑛), which

telescopes.

Exercise 13.5. Prove that for 𝑠 ≥ 2 that ∑ 1
𝑛𝑠 converges.

13.1.2. Absolute & Conditional Convergence

Below we will develop several theorems that apply exclusively to series of positive
terms. That may seem at first to be a significant obstacle, as many series involve both
addition and subtraction! So, we take some time here to assuage such worries, and
provide a means of probing a general series using information about its nonnegative
counterpart.

Definition 13.2 (Absolute Convergence). A series ∑𝑎𝑛 converges absolutely if the
associated series of absolute values ∑ |𝑎𝑛 | is convergent.

Of course, such a definition is only useful if facts about the nonnegative series imply
facts about the original. Happily, that is the case.

Theorem 13.2 (Absolute Convergence Implies Convergence). Every absolutely con-
vergent series is a convergent series.
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13. Convergence Tests

Proof. Let∑𝑎𝑛 be absolutely convergent. Then∑ |𝑎𝑛 | converges, and its partial sums
satisfy the Cauchy criterion. This means for any 𝜖 we can find an 𝑁 where

|𝑎𝑛 | + |𝑎𝑛+1| + ⋯ + |𝑎𝑚 | < 𝜖

But, by the triangle inequality we know that

|𝑎𝑛 + 𝑎𝑛+1 + ⋯ + 𝑎𝑛 | ≤ |𝑎𝑛 | + |𝑎𝑛+1| + ⋯ + |𝑎𝑚 |
Thus, our original series ∑𝑎𝑘 satisfies the Cauchy Criterion, as

|
𝑛
∑
𝑘=𝑚

𝑎𝑘 | < 𝜖

And, since Cauchy is equivalent to convergence, this implies ∑𝑎𝑘 is a convergent
series.

Definition 13.3. A series converges conditionally if it converges, but is not absolutely
convergent.

Such series caused much trouble in the foundations of analysis, as they can exhibit
rather strange behavior. We met one such series in the introduction, the alternating
sum of 1/𝑛 which seemed to converge to different values depending on the order we
added its terms. Here we begin an investigation into such phenomena.

13.2. Ratio & Root Tests

Give tests in terms of limits, then point out these may not always exist so need limsup.
Give the (optional) if and only if version using limsup.

Emphasize in proofs of the ratio and root tests that we are doing comparison.

The ratio test will be most important to us.

But we do need the root test to prove the Cauchy Hadamard theorem. (And, the fact
that it does not rely on consecutive terms, but looks at each term one at a time)

13.3. Alternating Series

Definition 13.4 (Alternating Series). An alternating series is a series of the form
∑(−1)𝑛𝑏𝑛 for 𝑎𝑛 a nonnegative series. That is, every term switches from positive to
negative.
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13.3. Alternating Series

Theorem 13.3 (Alternating Series Test). If ∑(−1)𝑛𝑎𝑛 is alternating, then it converges
if 𝑎𝑛 decreases monotonically with limit zero.

Before jumping in, its helpful to take a look at a few partial sums to start. For example,
𝑠4:

𝑠4 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 = (𝑎0 − 𝑎1) + (𝑎2 − 𝑎3) + 𝑎4
Grouping the terms of this finite sum like so shows that 𝑠4 is a sumof positive numbers
(since 𝑎𝑛 is decreasing, so 𝑎𝑛 − 𝑎𝑛−1 ≥ 0): thus 𝑠4 ≥ 0.

𝑠4 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 = 𝑎0 − (𝑎1 − 𝑎2) − (𝑎3 − 𝑎4)
This grouping shows 𝑠4 is equal to 𝑎0 minus a bunch of nonnegative terms: thus
𝑠4 ≤ 𝑎0. This extends directly

Exercise 13.6. Let 𝑠𝑛 = ∑𝑛
𝑘=0(−1)𝑘𝑎𝑘 be an alternating series with 𝑎𝑛 → 0 monoton-

ically. Prove by induction that

• All the partial sums 𝑠𝑛 are nonnegative.
• All partial sums are bounded above by the first term 𝑎0.

Corollary 13.2. Starting the sum at 𝑁 instead of 0, the same argument shows that
|∑𝑛

𝑘=𝑁 (−1)𝑘𝑎𝑘 | ≤ |𝑎𝑁 | for all 𝑛 ≥ 𝑁 .

What other patterns can we notice? Increasing from 𝑠4 to 𝑠6 we see

𝑠6 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 − 𝑎5 + 𝑎6
= 𝑠4 − 𝑎5 + 𝑎6 = 𝑠4 − (𝑎5 − 𝑎6)

Thus 𝑠6 ≤ 𝑠4. A similar look at 𝑠3 and 𝑠5 shows

𝑠5 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 − 𝑎5 = 𝑠3 + (𝑎4 − 𝑎5)
So 𝑠5 ≥ 𝑠3! This is a sort of pattern we’ve seen before, where it’s helpful to look at
the even versus odd subsequences individually:

Exercise 13.7. Let 𝑠𝑛 = ∑𝑛
𝑘=0(−1)𝑘𝑎𝑘 be an alternating series, and prove by induction

that

• The even subsequence is monotone decreasing
• The odd subsequence is monotone increasing

Because each of these subsequences is monotone and bounded (by the previous exer-
cise) they converge via monotone convergence. Now, all we need to see is they con-
verge to the same limit to assure convergence of the entire series, by Theorem 9.1.
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13. Convergence Tests

Proposition 13.1. Let 𝑠𝑛 = ∑𝑛
𝑘=0(−1)𝑘𝑎𝑘 be an alternating series with 𝑎𝑛 → 0 mono-

tonically. Then 𝑠𝑛 converges.

Proof. Let 𝑒𝑛 = 𝑠2𝑛 and 𝑜𝑛 = 𝑠2𝑛+1 be the even and odd subsequences respectively,
and note that 𝑜𝑛 = 𝑒𝑛 − 𝑎2𝑛+1. Then, since we know the subsequence 𝑎2𝑛+1 converges
to zero (as 𝑎𝑛 → 0, so all subsequences have the same limit) we can apply the limit
theorems and see

lim 𝑜𝑛 = lim 𝑒𝑛 − 𝑎2𝑛+1 = lim 𝑒𝑛 − lim 𝑎2𝑛+1 = lim 𝑒𝑛
So, the odd and even subsequences do have the same limit, as required.

First we look at the main example of a conditionally convergent series.

Example 13.1. ∑ (−1)𝑛
𝑛 is conditionally convergent:

• It converges, by the alternating series test.
• But it is not absolutely convergent, as ∑ 1

𝑛 diverges by EXR

This series is famous from the introduction to our course, where we saw that its
value when summed is the natural logarithm of 2, but that this value changes when
we reorder the terms! This is a general behavior of conditionally convergent series;
and one hint of this is that the sum of their positive and negative terms separately
each diverges to ±∞.

Theorem 13.4. If ∑𝑎𝑘 is conditionally convergent, let 𝑝𝑘 be the subsequence of all
positive terms of 𝑎𝑘 and 𝑛𝑘 be the subsequence of all negative terms. Prove that

∑𝑝𝑘 → ∞ ∑𝑛𝑘 → −∞

For an absolutely convergent series, this cannot happen, and the sums of all the pos-
itive terms converges, as does the sum of all the negative terms.

Exercise 13.8. Prove that if ∑𝑎𝑛 is absolutely convergent, then its subseries of pos-
itive terms and its subseries of negative terms both converge.

13.4. Additional

Cauchy Condensation Test? (Find good applications, first) Pg 209
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14. Limits of Sums

Highlights of this Chapter: we consider the delicate problem of switching
the order a limit and an infinite sum. We prove a theorem - the Domi-
nated Convergence Theorem for Sums - that provides a condition under
which this interchange is allowed, and explore a couple consequences for
double summations. This Dominated Convergence Theorem is the first
of several analogous theorems that will play an important role in what
follows.

The fact that an infinite series is defined as a limit - precisely the limit of partial
sums - has been of great utility so far, as all of our techniques for dealing with series
fundamentally rest on limit theorems for sequences!

∑
𝑘≥0

𝑎𝑘 ∶= lim𝑁→∞

𝑁
∑
𝑘=0

𝑎𝑘

But once we start to deal with multiple series at a time, this can present newfound
difficulties. Indeed, it’s rather common in practice to end up with an infinite sequence
of infinite series.

𝑠𝑛 = ∑
𝑘≥0

𝑎𝑛,𝑘 𝑠 = lim𝑛 𝑠𝑛 = lim𝑛 lim𝑁

𝑁
∑
𝑘=0

𝑎𝑘,𝑛

There’s an intuitive urge to just switch the order of the limits - equivalently, to “pull
the limit inside the sum”. But such an operation is not always justified. Its easy to
come up with examples of limits that cannot be switched:

Example 14.1.

1 = 1
2 + 1

2
= 1

4 + 1
4 + 1

4 + 1
4

= 1
8 + 1

8 + 1
8 + 1

8 + 1
8 + 1

8 + 1
8 + 1

8
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14. Limits of Sums

Taking the termwise limit and adding them up gives

1 = 0 + 0 + 0 + ⋯ + 0 = 0

This is nonsense! And the nonsense arises from implicitly exchanging two limits. To
make this precise, one may define for each 𝑛 the series

𝑎𝑛(𝑘) = {1/2
𝑛 0 ≤ 𝑘 < 2𝑛

0 else

Then each of the rows above is the sum 1 = ∑𝑘≥0 𝑎𝑛(𝑘) for 𝑛 = 2, 3, 4. Since this is
constant it is true that the limit is 1, but it is not true that the limit of the sums is the
sum of the limits, which is zero.

1 = lim𝑛 ∑
𝑘≥0

𝑎𝑛(𝑘) ≠ ∑
𝑘≥0

lim 𝑎𝑛(𝑘) = 0

So, its hopefully clear that to be able to use series in realistic contexts, we are in
desperate need of a theorem which tells us when we can interchange limits and sum-
mations.

TO DO:

Give examples of what goes wrong! Pictures (with sums as bar-graphs) of what is
going on in these examples: we need to prevent area from “leaking out to infinity”

14.1. Dominated Convergence

Because limit interchange is so fundamental to analysis, there are many theorems of
this sort, of varying strengths and complexities. The one we will visit here is usually
called Tannery’s theorem (named for Jules Tannery, an analyst at the end of the 1800s).
With the luxury of hindsight, we now realize Tannery’s theorem is a particularly
special case of a much more general result called Dominated Convergence, of which
we will meet other special cases in the chapters to come. As such, I will call it by its
more descriptive and general name throughout.

First, let’s set the stage precisely. For each 𝑛, we have an infinite series 𝑠𝑛 , and we
are interested in the limit lim𝑛 𝑠𝑛 (here, we will always write subscripts on the limit
as multiple variables are involved!) For each fixed 𝑛, the series 𝑠𝑛 is an infinite sum,
over some summation index 𝑘:

𝑠𝑛 = ∑
𝑘≥0

𝑎𝑘(𝑛)
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14.1. Dominated Convergence

Where for each 𝑘 we write the term as 𝑎𝑘(𝑛) to remember that it also depends on 𝑛
(the notation 𝑎𝑘,𝑛 is also perfectly acceptable). We seek a theorem that gives us the
conditions on which we can take the term-wise limit, that is when

lim𝑛 ∑
𝑘≥0

𝑎𝑘(𝑛) = ∑
𝑘≥0

lim𝑛 𝑎𝑘(𝑛)

Dominated convergence assures us that such a switch is justified so long as the entire
process - all of the 𝑎𝑘(𝑛)s are bounded by a convergent series.

Theorem 14.1 (Dominated Convergence for Series). For each 𝑘 let 𝑎𝑘(𝑛) be a function
of 𝑛, and assume the following:

• For each 𝑘, 𝑎𝑘(𝑛) is convergent.
• For each 𝑛, ∑𝑘 𝑎𝑘(𝑛) is convergent.
• There is an 𝑀𝑘 with |𝑎𝑘(𝑛)| ≤ 𝑀𝑘 for all 𝑛.
• ∑𝑀𝑘 is convergent.

Then ∑𝑘 lim𝑛 𝑎𝑘(𝑛) is convergent, and

lim𝑛 ∑
𝑘

𝑎𝑘(𝑛) = ∑
𝑘

lim𝑛 𝑎𝑘(𝑛)

Proof. First, we show that∑𝑘 𝑎𝑘 converges. Since for all 𝑛, |𝑎𝑘(𝑛)| ≤ 𝑀𝑘 we know this
remains true in the limit, so lim𝑛 |𝑎𝑘(𝑛)| = |𝑎𝑘 | < 𝑀𝑘 . Thus, by comparison we see
∑𝑘 |𝑎𝑘 | converges, and hence so does ∑𝑘 𝑎𝑘 .

Now, the main event. Let 𝜖 > 0. To show that lim𝑛 ∑𝑘 𝑎𝑘(𝑛) = ∑𝑘 𝑎𝑘 we will show
that there there is some 𝑁 beyond which these two sums always differ by less than 𝜖.

Since ∑𝑘 𝑀𝑘 converges, by the Cauchy criterion there is some 𝐿 where

∑
𝑘≥𝐿

𝑀𝑘 < 𝜖
3

For arbitrary 𝑛, we compute
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14. Limits of Sums

|∑
𝑘≥0

𝑎𝑘(𝑛) − ∑
𝑘≥0

𝑎𝑘 | = |∑
𝑘<𝐿

(𝑎𝑘(𝑛) − 𝑎𝑘) + ∑
𝑘≥𝐿

𝑎𝑘(𝑛) + ∑
𝑘≥𝐿

𝑎𝑘 |

≤ |∑
𝑘<𝐿

(𝑎𝑘(𝑛) − 𝑎𝑘)| + |∑
𝑘≥𝐿

𝑎𝑘(𝑛)| + |∑
𝑘≥𝐿

𝑎𝑘 |

≤ ∑
𝑘<𝐿

|𝑎𝑘(𝑛) − 𝑎𝑘 | + ∑
𝑘<𝐿

|𝑎𝑘(𝑛)| + ∑
𝑘≥𝐿

|𝑎𝑘 |

≤ ∑
𝑘<𝐿

|𝑎𝑘(𝑛) − 𝑎𝑘 | + 2∑
𝑘>𝐿

𝑀𝑘

< ∑
𝑘<𝐿

|𝑎𝑘(𝑛) − 𝑎𝑘 | + 2𝜖
3

That is, for an arbitrary 𝑛 we can bound the difference essentially in terms of the first
𝐿 terms: the rest are uniformly less than 2𝜖/3. But for each of these 𝐿 terms, we know
that 𝑎𝑘(𝑛) → 𝑎𝑘 so we can find an 𝑁 making that difference as small as we like. Let’s
choose 𝑁𝑘 such that |𝑎𝑘(𝑛) − 𝑎𝑘 | < 𝜖/3𝐿 for each 𝑘 < 𝐿 and then take

𝑁 = max{𝑁0, 𝑁1, …𝑁𝐿−1}

Now, for any 𝑛 > 𝑁 we are guaranteed that |a_k(n)-a_k|<�/3L$ and thus that

∑
𝑘<𝐿

|𝑎𝑘(𝑛) − 𝑎𝑘 | < 𝐿 𝜖
3𝐿 = 𝜖

3

Combining with the above, we now have for all 𝑛 > 𝑁 ,

|∑
𝑘≥0

𝑎𝑘(𝑛) − ∑
𝑘≥0

𝑎𝑘 | < 𝜖

as required.

There is a natural version of this theorem for products as well (though we will not
need it in this course, I will state it here anyway)

Theorem 14.2 (★ Dominated Convergence for Products). For each 𝑘 let 𝑎𝑘(𝑛) be a
function of 𝑛, and assume the following:

• For each 𝑘, 𝑎𝑘(𝑛) is convergent.
• For each 𝑛, ∏𝑘≥0 𝑎𝑘(𝑛) is convergent.
• There is an 𝑀𝑘 with |𝑎𝑘(𝑛)| ≤ 𝑀𝑘 for all 𝑛.
• ∑𝑀𝑘 is convergent.
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14.2. Applications

Then ∏𝑘≥0 lim𝑛(1 + 𝑎𝑘(𝑛)) is convergent, and

lim𝑛 ∏
𝑘≥0

(1 + 𝑎𝑘(𝑛)) = ∏
𝑘≥0

(1 + lim𝑛 𝑎𝑘(𝑛))

14.2. Applications

Exercise 14.1. Use Dominated Convergence to prove that

1
2 = lim𝑛 [ 1 + 2𝑛

2𝑛 ⋅ 3 + 4 + 1 + 2𝑛
2𝑛 ⋅ 32 + 42 + 1 + 2𝑛

2𝑛 ⋅ 33 + 43 + ⋯]

• Write in summation notation, and give a formula for the terms 𝑎𝑘(𝑛)
• Show that lim𝑛 𝑎𝑘(𝑛) = 1

3𝑘
• Show that for all 𝑛, |𝑎𝑘(𝑛)| ≤ 2

3𝑘
Use these facts to show that the hypotheses of dominated convergence hold true, and
then use the theorem to help you take the limit.

TO DO: MORE EXAMPLES
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15. ♦ Advanced Techniques

Double Sums (Pringsheim, Pg 471) CAUCHY DOUBLE SUMMATION FORMULA

15.1. Summation by Parts

Summation by parts

Abels Summation Lemma

Applicaiton: integer power sums (423)

Summation by Curves (pg 473 in Amazing)

15.2. Double Sums

Another useful application of dominated convergence is to switching the order of a
double sum. A double sequence is a map ℕ × ℕ → ℝ, where we write 𝑎𝑚,𝑛 for the
value 𝑎(𝑚, 𝑛). Such sequences like 𝑛/(𝑛 + 𝑚) occured in our original example about
switching limits above.

Given a double sequence, one may want to define an double sum

∑
𝑚,𝑛≥0

𝑎𝑚,𝑛

But, how should one do this? Because we have two indices, there are two possible
orders we could attempt to compute this sum:

∑
𝑛≥0

∑
𝑚≥0

𝑎𝑚,𝑛 or ∑
𝑚≥0

∑
𝑛≥0

𝑎𝑚,𝑛

173



15. ♦ Advanced Techniques

Definition 15.1 (Double Sum). Given a double sequence 𝑎𝑚,𝑛 its double sum
∑𝑚,𝑛≥0 𝑎𝑚,𝑛 is defined if both orders of iterated summation converge, and are equal.
In this case, the value of the double sum is defined to be their common value:

∑
𝑚,𝑛≥0

𝑎𝑚,𝑛 ∶= ∑
𝑛≥0

∑
𝑚≥0

𝑎𝑚,𝑛 = ∑
𝑚≥0

∑
𝑛≥0

𝑎𝑚,𝑛

We should be worried from previous experience that in general these two things need
not be equal, so the double sum may not exist! Indeed, we can make this worry
precise, by seeing that to relate one to the other is really an exchange of order of
limits:

∑
𝑚≥0

= lim𝑀 ∑
0≤𝑚≤𝑀

∑
𝑛≥0

= lim𝑁 ∑
0≤𝑛≤𝑁

And so, expanding the above with these definitions (and using the limit laws to pull
a limit out of a finite sum) we see

∑
𝑛≥0

∑
𝑚≥0

𝑎𝑚,𝑛 = lim𝑁 ∑
0≤𝑛≤𝑁

(lim𝑀 ∑
0≤𝑚≤𝑀

𝑎𝑚,𝑛)

= lim𝑁 lim𝑀 ( ∑
0≤𝑛≤𝑁

∑
0≤𝑚≤𝑀

𝑎𝑚,𝑛) = lim𝑁 lim𝑀 ∑
0≤𝑚≤𝑀
0≤𝑛≤𝑁

𝑎𝑚,𝑛

Where in the final line we have put both indices under a single sum to indicate that
it is a finite sum, and the order does not matter. Doing the same with the other order
yields the exact same finite sum, but with the order of limits reversed:

∑
𝑚≥0

∑
𝑛≥0

𝑎𝑚,𝑛 = lim𝑀 lim𝑁 ∑
0≤𝑚≤𝑀
0≤𝑛≤𝑁

𝑎𝑚,𝑛

Because this is an exchange-of-limits-problem, we can hope to provide conditions
under which it is allowed using Tannery’s theorem.

Theorem 15.1. Let 𝑎𝑚,𝑛 be a double sequence, and assume that either

∑
𝑚≥0

∑
𝑛≥0

|𝑎𝑚,𝑛 | or ∑
𝑛≥0

∑
𝑚≥0

|𝑎𝑚,𝑛 |

converges. Then the double sum also converges

∑
𝑚,𝑛≥0

𝑎𝑚,𝑛

(meaning either both orders of iterated sum converge, and are equal)
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15.3. Products of Series

Exercise 15.1 (Cauchy’s Double Summation Formula). Use Dominated Convergence
to prove the double summation formula (Theorem 15.1): without loss of generality,
assume that ∑𝑚≥0 ∑𝑛≥0 |𝑎𝑚,𝑛 | converges, and use this to show that both orders of
iterated sum converge and are equal

∑
𝑚≥0

∑
𝑛≥0

𝑎𝑚,𝑛 = ∑
𝑛≥0

∑
𝑚≥0

𝑎𝑚,𝑛

Hint: Assuming∑𝑚≥0 ∑𝑛≥0 |𝑎𝑚,𝑛 | converges, set𝑀𝑚 = ∑𝑛≥0 |𝑎𝑚,𝑛 | and show the various
hypotheses of Dominated convergence apply

Exercise 15.2 (Applying the Double Sum). Since switching the order of limits in-
volves commuting terms that are arbitrarily far apart, techniques like double summa-
tion allow one to prove many identities that are rather difficult to show directly. We
will make a crucial use of this soon, in understanding exponential functions. But here
is a first example:

For any 𝑘 ∈ ℕ, prove the following equality of infinite sums:

𝑧1+𝑘
1 − 𝑧 + (𝑧2)1+𝑘

1 − 𝑧2 + (𝑧3)1+𝑘
1 − 𝑧3 + ⋯ = 𝑧1+𝑘

1 − 𝑧1+𝑘 + 𝑧2+𝑘
𝑧2+𝑘 + 𝑧3+𝑘

1 − 𝑧3+𝑘 + ⋯

Hint: first write each side as a summation:

∑
𝑛≥1

𝑧𝑛(𝑘+1)
1 − 𝑧𝑛 = ∑

𝑚≥1
𝑧𝑚+𝑘

1 − 𝑧𝑚+𝑘

*Then setting 𝑎𝑚,𝑛 = 𝑧𝑛(𝑚+𝑘), show that Cauchy summation applies to the double sum
∑𝑚,𝑛 ≥ 0𝑎𝑚,𝑛 and compute the sum in each order, arriving that the claimed equality.

15.3. Products of Series
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16. ★ Rearrangement

Riemann Rearrangement (non-abs convergent can re-arrange to converge to any
value)

Dirchlet Rearrangement (absolutely convergent series in any order gives same
limit)
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Part IV.

Functions
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• In Chapter 17 we give the definition of continuity and
• In Chapter 18 we look at basic properties of continuous functions and their
arithmetic.

• In Chapter 19 we prove some foundational theorems about continuous func-
tions, including the extreme value theorem and intermediate value theorem.

• In Chapter 20 we introduce the theory of power series
• In Chapter 21 we give rigorous definitions of the familiar exponential, logarith-

mic and trigonometric functions
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17. Defining Continuity

Highlights of this Chapter: we formalize the concept of continuity, one
of the foundational definitions in the analysis of functions. We provide
an equivalent definition built out of sequences, and use it to prove ‘con-
tinuity analogs’ of the limit theorems. Finally, we prove that continuous
functions are determined by their values on a dense set, an oft-useful re-
sult allowing one to reduce various arguments to considerations about
rational numbers.

What does continuity mean? In pre-calculus classes, we often first hear something
like “you can draw the graph without picking up your pencil”. This is a good guide to
start with for a formal definition: its clearly capturing some property that is easy to
check by visual inspection! But it’s not precise: terms like “you” and “pencil”, as well
as modal phrases like “can draw” are nowhere to be found in the axioms of ordered
fields! How can we say the same thing, using words we have access to?

17.1. Continuity

First, a function is an input-output machine, so we should rephrase things in terms of
inputs and outputs. When a graph makes a jump (where you’d have to pick up your
pencil), the output changes a lot even when the input barely does. Thus, not having
to pick up your pencil means you change the input by a little bit, the output changes
by a little bit.

This is totally something we can make precise! A good start is by giving names to
things: we want to say for any change in the input smaller than some 𝛿 , we know the
output cant change that much: maybe its maximum is some other small change 𝜖:

Definition 17.1 (Continuity with 𝜖 − 𝛿). A function 𝑓 is continuous at a point 𝑎 in
its domain if for every 𝜖 > 0 there is some threshold 𝛿 where if 𝑥 is within 𝛿 of 𝑎, then
𝑓 (𝑥) is within 𝜖 of 𝑓 (𝑎). As a logic sentence:

∀𝜖 > 0 ∃𝛿 > 0 ∀𝑥 |𝑥 − 𝑎| < 𝛿 ⟹ |𝑓 (𝑥) − 𝑓 (𝑎)| < 𝜖

A function is continuous on a set 𝑋 ⊂ ℝ if it is continuous at 𝑎 for each 𝑎 ∈ ℝ. A
function is continuous if it is continuous on its domain.
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17. Defining Continuity

17.1.1. Using this Definition

This definition looks a lot like the sequence definition, at least in terms of the order
of the quantifiers. And so we can work with it the same way: playing the “𝜖-𝛿 game”
instead of the 𝜖-𝑁 game.

Example 17.1. Any constant function 𝑓 (𝑥) = 𝑐 is continuous at every real number
𝑎.

Example 17.2. The function 𝑦 = 𝑥 is continuous at every real number 𝑎.

This generalizes directly to functions like 𝑓 (𝑥) = 2𝑥 + 1, where now for a fixed 𝜖 we
may wish to take 𝛿 = 𝜖/2 after some scratch work:

Exercise 17.1. Show that linear functions 𝑦 = 𝑚𝑥 + 𝑏 are continuous at every 𝑎 ∈ ℝ.

Like any definition, its good after seeing a few examples to also turn and look at
non-examples:

Example 17.3. The step function

ℎ(𝑥) = {0 𝑥 ≤ 0
1 𝑥 > 0

is discontinuous at 0, but is continuous at all other real numbers.

Thus, a function with a jump in it is discontinuous right at the jump, as we expect.
This shows its possible for a function to be discontinuous at a single point, but things
can get much stranger!

Example 17.4. The characteristic function of the rational numbers is discontinuous
everywhere.

𝑏(𝑥) = {1 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ

We saw above a function that is discontinuous at a single point, and then one that is
discontinuous everywhere. What’s harder to imagine, is a function that is continuous
at a single point. Try thinking about what this might mean!

Exercise 17.2. Show that the following function is continuous at 0 and discontinuous
everywhere else:

𝑔(𝑥) = {𝑥 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ
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17.1. Continuity

While the 𝜖 − 𝛿 definition is nice in that it looks like the sequence definition, we still
end up having to play the 𝜖 game with every argument. Indeed, while some functions
are well-suited these, for other relatively simple looking arguments, picking the right
𝛿 actually turns out to be a bit of work!

Exercise 17.3. Prove that 𝑓 (𝑥) = 𝑥2 is a continuous function using the 𝜖 − 𝛿 defini-
tion.

To avoid having to do such hard work on a regular basis, we will seek to broaden our
theoretical toolkit.

17.1.2. Using Sequences

We spent a lot of time working with sequences so far, so it would be nice if we could
leverage some of that knowledge as more than just analogy. And indeed we can! In
this section, we introduce an alternative definition of continuity, and prove that it is
equivalent to our original.

Definition 17.2 (Continuity). Let 𝑓 be a real valued function with domain𝐷 ⊂ ℝ and
𝑎 ∈ 𝐷 a point. Then 𝑓 is continuous at 𝑎 if for every convergent sequence {𝑥𝑛} ⊂ 𝐷
with 𝑥𝑛 → 𝑎, the limit can be taken either before or after applying 𝑓 :

lim 𝑓 (𝑥𝑛) = 𝑓 (lim 𝑥𝑛) = 𝑓 (𝑎)
A function is continuous on a set 𝑆 ⊂ 𝐷 if it is continuous at each point of 𝑆.

Thus, we can think of continuity as the condition that allows us to “pull the limit
inside of 𝑓 ”. It is immediate from the definition that constant functions are continuous
at every point of their domain, as is the function 𝑓 (𝑥) = 𝑥 .

Example 17.5. The function 𝑓 (𝑥) = 𝑥2 is continuous on the entire real line.

Proof. Let 𝑎 ∈ ℝ be arbitrary, and let 𝑥𝑛 be an arbitrary sequence converging to 𝑎.
Then by the limit theorem for products, we see that since 𝑥𝑛 → 𝑎, it follows that
𝑥2𝑛 → 𝑎2. Thus, if 𝑓 (𝑥) = 𝑥2 we have

lim 𝑓 (𝑥𝑛) = lim 𝑥2𝑛 = 𝑎2 = 𝑓 (𝑎) = 𝑓 (lim 𝑥𝑛)
So, 𝑓 is continuous at 𝑥 = 𝑎. Since 𝑎 was an arbitrary real number, 𝑓 is continuous
on the entire real line.

Theorem 17.1 (Equivalence of Definitions). Let 𝑓 be a real function, and 𝑎 a point of
its domain. Then 𝑓 is continuous by the sequence definition if and only if it is continuous
by the 𝜖-𝛿 definition.
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17. Defining Continuity

This theorem is an equivalence of definitions or an if-and-only-if result, so the proof
requires two parts: first we show that continuity implies sequence continuity, and
then we show the converse.

Continuity Implies Sequence Continuity. Let 𝑓 be continuous at 𝑎, and 𝑥𝑛 an arbitrary
sequence converging to 𝑎. We wish to show the sequence 𝑓 (𝑥𝑛) converges to 𝑓 (𝑎).
Choosing an 𝜖 > 0, we use the assumed continuity to get a 𝛿 > 0 where |𝑥 − 𝑎| < 𝛿
implies that |𝑓 (𝑥) − 𝑓 (𝑎)| < 𝜖.
But since 𝑥𝑛 → 𝑎, we know there must be some 𝑁 such that for 𝑛 > 𝑁 we have
|𝑥𝑛 − 𝑎| < 𝛿 : thus for this same 𝑁 we have |𝑓 (𝑥𝑛) − 𝑓 (𝑎)| < 𝜖.
Putting this all together, this is just the definition of convergence for the sequence
𝑓 (𝑥𝑛) to 𝑓 (𝑎): starting with 𝜖 > 0 we got an 𝑁 which for 𝑛 > 𝑁 we can guarantee
|𝑓 (𝑥𝑛) − 𝑓 (𝑎)| < 𝜖. So we are done.

Sequence Continuity Implies Continuity. Here we prove the contrapositive: that if 𝑓
is not continuous at 𝑎 then it is also not sequence continuous there.

If 𝑓 is not continuous at 𝑎 then there is some 𝜖 where for every 𝛿 > 0 we can find
points within 𝛿 of 𝑎 where 𝑓 (𝑥) is more than 𝜖 away from 𝑓 (𝑎). From this we need
to somehow produce a sequence, so we will take a sequence of such 𝛿 ’s and for each
pick some such bad point 𝑥 .
For example, if we let 𝛿 = 1/𝑛 then call 𝑥𝑛 the point with |𝑥𝑛 − 𝑎| < 1/𝑛 but |𝑓 (𝑥𝑛) −
𝑓 (𝑎)| > 𝜖. Doing this for all 𝑛 produces a sequence where

𝑎 − 1
𝑛 < 𝑥𝑛 < 𝑎 + 1

𝑛
And so by the squeeze theorem we see that 𝑥𝑛 converges, and its limit is 𝑎. But we
also know (by our choices of 𝑥𝑛) that for every element of this sequence |f(x_n)-f(a)|>�$,
so there’s no way that 𝑓 (𝑥𝑛) converges to 𝑓 (𝑎).
Thus, we’ve shown by example that our function is not sequence continuous at 𝑎, as
required.

When working with this definition of continuity, its important to remember that we
need to check 𝑓 (lim 𝑥) = lim 𝑓 (𝑥𝑛) for all sequences 𝑥𝑛 → 𝑎. If it fails for any indi-
vidual sequence, that is enough to show the function is not continuous at that point.
Thuswhen proving continuitywewill always start with let 𝑥𝑛 be an arbitrary sequence
converging to 𝑎, and make use of convergence theorems to help us (since we cannot
know the particular sequence), whereas for proving discontinuity all we need to do
is produce a specific example sequence that fails.
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17.2. ♦ Uniform Continuity

17.2. ♦ Uniform Continuity

Give definition of uniform delta.

Definition 17.3 (Uniform Continuity: 𝜖 − 𝛿). A function 𝑓 is uniformly continuous
on a domain 𝐷 ⊂ ℝ if for every 𝜖 there exists a 𝛿 such that for any 𝑥, 𝑦 ∈ 𝐷 with
|𝑥 − 𝑦| < 𝛿 , it follows that |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖.

Here’s an example showing how to use the definition, proving 𝑥2 is uniformly con-
tinuous on an interval.

Example 17.6. 𝑓 (𝑥) = 𝑥2 is uniformly continuous on the interval [1, 3].
Here’s some scratch work: let 𝜖 > 0. Then at any 𝑎 we see that |𝑓 (𝑥) − 𝑓 (𝑎)| =
|𝑥2 − 𝑎2| = |𝑥 + 𝑎||𝑥 − 𝑎|. If |𝑥 − 𝑎| < 𝛿 and we want |𝑓 (𝑥) − 𝑓 (𝑎)| < 𝜖, this tells us that
we want

|𝑥 + 𝑎|𝛿 < 𝜖
We don’t knowwhat 𝑥 and 𝑎 are, but we do know they are points in the interval [1, 3]!
So, the smallest 𝑥 + 𝑎 could be is 1 + 1 = 2, and the biggest is 3 + 3 = 6. This means
that

|𝑥 + 𝑎|𝛿 ≤ 6𝛿
So, if we can make 6𝛿 < 𝜖, we are good! This is totally possible: just set 𝛿 = 𝜖/6.
Below is the rigorous proof.

Proof. Let 𝜖 > 0, and set 𝛿 = 𝜖/6. Note that for any 𝑎 ∈ [1, 3] and any 𝑥 within 𝛿 of 𝑎,
we know 𝑎 ≤ 3 and 𝑥 ≤ 3 so 𝑥 + 𝑎 ≤ 6. But this implies that

|𝑥2 − 𝑎2| = |𝑥 + 𝑎||𝑥 − 𝑎| ≤ 6|𝑥 − 𝑎| < 6𝛿 < 6 𝜖6 = 𝜖

And so 𝑓 is uniformly continuous, as this single choice of 𝛿 works for every point
𝑎 ∈ [1, 3].

There is also a sequence version of the definition:

Definition 17.4 (Uniform Continuity: Sequences). A function 𝑓 is uniformly con-
tinuous if for every pair of sequences 𝑢𝑛 , 𝑣𝑛 in the domain with lim 𝑢𝑛 − 𝑣𝑛 = 0, then
lim 𝑓 (𝑢𝑛) − 𝑓 (𝑣𝑛) = 0.

Exercise 17.4. Prove the sequence definition and the 𝜖 − 𝛿 definition of uniform
continuity are equivalent.

Uniform continuity is stricter than regular continuity: there are functions which are
continuous but are not uniformly continuous:
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17. Defining Continuity

Example 17.7. The function 𝑓 (𝑥) = 1/𝑥 is continuous, but not uniformly continuous
on (0, 1). Looking at the sequence 1/𝑛 we see 𝑓 (1/𝑛) = 1/(1/𝑛) = 𝑛. So, consider
the two sequences 𝑠𝑛 = 1/(𝑛 + 1) and 𝑡𝑛 = 1/𝑛. These have 𝑠𝑛 − 𝑡𝑛 → 0 by the limit
theorems (as each individually goes to zero) yet 𝑓 (𝑠𝑛) − 𝑓 (𝑡𝑛) = (𝑛 + 1) − 𝑛 = 1 is a
constant sequence not converging to zero.

The sequence 1/𝑛 used in this example provides a hint of one way to detect uniformly
continuous functions: 1/𝑛 is Cauchy but 𝑓 (1/𝑛)was not, and we were able to use this
to show 𝑓 was not uniformly continuous.

Theorem 17.2 (Uniformly Continuity Preserves Cauchy Sequences). If 𝑓 is
uniformly continuous and 𝑥𝑛 is cauchy, then 𝑓 (𝑥𝑛) is cauchy.

Proof. Let 𝑥𝑛 be an arbitrary Cauchy sequence in the domain of 𝑓 , and choose arbi-
trary 𝜖 > 0. Then by uniform continuity there is a 𝛿 such that for |𝑥 − 𝑦| < 𝛿 we
know |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖. Since 𝑥𝑛 is Cauchy, given this 𝛿 we can find an 𝑁 such that
𝑛, 𝑚 > 𝑁 implies |𝑥𝑛 − 𝑥𝑚 | < 𝛿 , and hence |𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑚)| < 𝜖. But this is precisely
the definition of {𝑓 (𝑥𝑛)} being a Cauchy sequence, so we are done.

Great way to check if a function is not uniformly continuous: can you find a cauchy
seq taken to a non-cauchy sequence?

Example (PICTURE) functions like sin(1/𝑥) are also not uniformly continuous on
(0, 1) even though it is bounded.

WARNING: does not work in reverse: the function 𝑥 ↦ 𝑥2 takes Cauchy sequences
to cauchy seqs but is not uniformly continuous.

Definition 17.5 (Cauchy Continuous Functions). A real valued function 𝑓 on a do-
main 𝐷 ⊂ ℝ is Cauchy Continuous if for every cauchy sequence {𝑑𝑛} in 𝐷, the se-
quence 𝑓 (𝑑𝑛) is also Cauchy.

17.3. Function Limits

Sometimes we need to understand the behavior of a function near a point, without
actually being able to compute the function’s value at that point (perhaps, that point
is outside the functions’ domain).

Definition 17.6 (Limits of Functions). Let 𝑓 ∶ 𝐷 → ℝ and 𝑎 be a limit point of 𝐷.
Then we write lim𝑥→𝑎 𝑓 (𝑥) = 𝐿 if for every 𝜖 > 0 there is a 𝛿 > 0 such that if 𝑥 ∈ 𝐷
and |𝑥 − 𝑎| < 𝛿 then |𝑓 (𝑥) − 𝐿| < 𝜖.

One can alternatively phrase this in terms of sequences:
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17.3. Function Limits

Exercise 17.5. Prove the following definition is equivalent to lim𝑥→𝑎 𝑓 (𝑥) = 𝐿:
Given any sequence {𝑥𝑛} in 𝐷 with 𝑥𝑛 ≠ 𝑎 for all 𝑛, 𝑥𝑛 → 𝑎 implies that 𝑓 (𝑥𝑛) → 𝐿.

Example 17.8.

lim𝑥→2
𝑥2 − 4
𝑥 − 2

Let 𝑥𝑛 be any sequence converging to 2, for which 𝑥𝑛 ≠ 2 for all 𝑛. Then since 𝑥𝑛 ≠ 2
the denominator of (𝑥2 − 4)/(𝑥 − 2) is never zero, and we can simplify with algebra:

𝑥2𝑛 − 4
𝑥𝑛 − 2 = (𝑥𝑛 + 2)(𝑥𝑛 − 2)

𝑥𝑛 − 2 = 𝑥𝑛 + 2

Thus, for all 𝑛 we have

lim
𝑥2𝑛 − 4
𝑥𝑛 − 2 = lim 𝑥𝑛 + 2 = lim(𝑥𝑛) + 2 = 4

Since 𝑥𝑛 was arbitrary, this holds for all sequences and

lim𝑥→2
𝑥2 − 4
𝑥 − 2 = 4

We will be most interested in taking the limit of functions in cases where things are
not actually define at 𝑎 like the example above: the most important example being
the derivative, defined as the limit 𝑓 ′(𝑎) = lim𝑥→𝑎(𝑓 (𝑥) − 𝑓 (𝑎))/(𝑥 − 𝑎). However a
good sanity check with a new definition is to see it performs as expected in known
situations

Theorem 17.3 (Limits of Continuous Functions). If 𝑓 is continuous at 𝑎, then
lim𝑥→𝑎 𝑓 (𝑥) = 𝑓 (𝑎).

Proof. Let 𝑥𝑛 be a sequence converging to 𝑎, but not equal to 𝑎 at any term. Since
𝑓 is continuous at 𝑎, we know the sequence 𝑓 (𝑥𝑛) converges to 𝑓 (𝑎). Thus by the
sequence definition of function limits lim𝑥→𝑎 𝑓 (𝑥) = 𝑓 (𝑎).

As an exercise, re-prove this result using the 𝜖 − 𝛿 definition. Given the similarity of
the limit definition to that of continuity, its useful to rephrase continuity in terms of
function limits.

Theorem 17.4. 𝑓 is continuous at 𝑎 if and only if lim𝑥→𝑎 𝑓 (𝑥) = 𝑓 (𝑎).
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17. Defining Continuity

17.3.1. One-Sided Limits

The definition of function limit requires understanding all sequences limiting to 𝑎 but
not equal to 𝑎. In applications, its often important to consider more restricted limits,
looking only at what happens when we approach 𝑎 from above or from below.

Definition 17.7 (Left- and Right-Sided Limits). Let 𝑓 be a function

Similarly to above, these definitions have sequence counterparts (prove this, as an
exercise):

Definition 17.8. Let 𝑓 be a function. Then lim𝑥→𝑎+ 𝑓 (𝑥) = 𝐿 if for every sequence
𝑥𝑛 → 𝑎 with 𝑥𝑛 > 𝑎 we have 𝑓 (𝑥𝑛) → 𝐿. Similarly lim𝑥→𝑎− 𝑓 (𝑥) = 𝐿 if for every
𝑥𝑛 → 𝑎 with 𝑥𝑛 < 𝑎 we have 𝑓 (𝑥𝑛) → 𝐿.

Proposition 17.1 (Limit Exists when Both Sides Agree). Let 𝑓 be a function defined
on an interval containing 𝑎 (but perhaps not at 𝑎). Then lim𝑥→𝑎 𝑓 (𝑥) exists if and only
if both lim𝑥→𝑎+ 𝑓 and lim𝑥→𝑎− 𝑓 both exist, and in this case is equal to their common
value.

Exercise 17.6 (The Pasting Lemma). Let 𝑓 , 𝑔 be two continuous functions and 𝑎 ∈ ℝ
is a point such that 𝑓 (𝑎) = 𝑔(𝑎). Prove that the piecewise function below is continu-
ous at 𝑎.

ℎ(𝑥) = {𝑓 (𝑥) 𝑥 ≤ 𝑎
𝑔(𝑥) 𝑥 > 𝑎

Exercise 17.7 (One Sided Limits of Monotone Functions). Let 𝑓 be a bounded mono-
tone function on the interval (𝑎, 𝑏). Then both of the one sided limits exist

lim
𝑥→𝑎+

𝑓 (𝑥) lim𝑥→𝑏− 𝑓 (𝑥)

Hint: show they are the inf and sup of {𝑓 (𝑥) ∣ 𝑥 ∈ (𝑎, 𝑏)}

This proves useful in many cases where we know only that our function is mono-
tone, but cannot compute its values. For us, the most important application is Propo-
sition 27.1 where we show exponential functions are differentiable, when we have
only assumed they are continuous.

Theorem 17.5 (Dominated Convergence for Function Limits). For each 𝑘, let 𝑓𝑘(𝑥)
be a function of 𝑥 on a domain 𝐷. For a fixed 𝑎 ∈ ℝ, assume there is some interval 𝐼 ⊂ 𝐷
containing 𝑎 such that:

• For each 𝑘, lim𝑥→𝑎 𝑓𝑘(𝑥) exists.
• ∑𝑘 𝑓𝑘(𝑥) is convergent for each 𝑥 ∈ 𝐼 .
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17.4. Problems

• There is an 𝑀𝑘 with |𝑓𝑘(𝑥)| ≤ 𝑀𝑘 for all 𝑥 ∈ 𝐼 .
• ∑𝑀𝑘 is convergent.

Then, the sum ∑𝑘 lim𝑥→𝑎 𝑓𝑘(𝑥) is convergent and

lim𝑥→𝑎∑𝑘
𝑓𝑘(𝑥) = ∑

𝑘
lim𝑥→𝑎 𝑓𝑘(𝑥)

Proof. Let 𝑥𝑛 ⊂ 𝐼 be an arbitrary sequence with 𝑥𝑛 → 𝑎 and 𝑥𝑛 ≠ 𝑎. We as-
sumed lim𝑥→𝑎 𝑓𝑘(𝑥) exists. As 𝑥𝑛 → 𝑎, it follows by definition that lim𝑛 𝑓𝑘(𝑥𝑛) =
lim𝑥→𝑎 𝑓𝑘(𝑥), so this limit also exists, and so (1) holds. Additionally for each fixed 𝑛,
∑𝑘 𝑓𝑘(𝑥𝑛) is convergent, as 𝑥𝑛 ∈ 𝐼 and we assumed convergence for each 𝑥 ∈ 𝐼 .
As we assumed 𝑀𝑘 bounds |𝑓𝑘(𝑥)| for all 𝑥 ∈ 𝐼 it also does so for all 𝑥𝑛 in our se-
quence, so (3) and (4) are satisfied for the original dominated convergence, ?@thm-
tannerys-thm-series. Thus, we may conclude that the series ∑𝑘 lim𝑛 𝑓𝑘(𝑥𝑛) is con-
vergent, and that

lim𝑛 ∑
𝑘

𝑓𝑘(𝑥𝑛) = ∑
𝑘

lim𝑛 𝑓𝑘(𝑥𝑛) = ∑
𝑘

lim𝑥→𝑎 𝑓𝑘(𝑥)

Because 𝑥𝑛 was arbitrary, this applies for all sequences 𝑥𝑛 → 𝑎 with 𝑥𝑛 ≠ 𝑎. Thus, the
overall limit lim𝑥→𝑎 ∑𝑘 𝑓𝑘(𝑥) exists, and is equal to this common value

lim𝑥→𝑎∑𝑘
𝑓𝑘(𝑥) = ∑

𝑘
lim𝑥→𝑎 𝑓𝑘(𝑥)

17.4. Problems

Exercise 17.8. Prove that the function 𝑓 (𝑥) = |𝑥| is continuous at 𝑥 = 0. Then use
the fact that 𝑓 (𝑥) = 𝑥 for 𝑥 > 0 and 𝑓 (𝑥) = −𝑥 for 𝑥 < 0 (which are linear functions)
to conclude that |𝑥 | is continuous at every real number.

Exercise 17.9. Show the absolute value 𝑓 (𝑥) = |𝑥| is a continuous function on the
entire real line, using the sequence definition of continuity.

Exercise 17.10. Prove that 𝑓 (𝑥) = 𝑥2 is not uniformly continuous on the entire real
line, using either the 𝜖 − 𝛿 definition or the sequence definition.

Exercise 17.11. Recall that a function 𝑓 is a contractionmap if there exists a 𝑘 ∈ (0, 1)
with |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝑘|𝑥 − 𝑦| for all 𝑥, 𝑦 . Prove that contraction maps are continuous.
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17. Defining Continuity

Exercise 17.12. The function

sgn(𝑥) =
⎧
⎨
⎩

−1 𝑥 < 0
0 𝑥 = 0
1 𝑥 > 0

is discontinuous at 𝑥 = 0, but continuous at every other real number.

Exercise 17.13. Show the function

𝜒ℚ(𝑥) = {1 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ

is discontinuous at every single real number.

Exercise 17.14.

𝑓 (𝑥) =
⎧
⎨
⎩

0 𝑥 < 0
17 𝑥 = 0
𝑥 𝑥 > 0

Then lim𝑥→0 𝑓 (𝑥) = 0

Exercise 17.15.

𝑓 (𝑥) =
⎧
⎨
⎩

0 𝑥 < 0
17 𝑥 = 0
𝑥2 + 1 𝑥 > 0

Then lim𝑥→0 𝑓 (𝑥) does not exist.
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18. Working with Continuity

18.1. Building Continuous Functions

Because we have an equivalent characterization of continuity in terms of sequence
convergence, andwe havemany theorems about this, we can use our characterization
to rephrase these as results about continuity.

Proposition 18.1 (Continuity of Constant Multiples). If 𝑓 is continuous at 𝑎 ∈ ℝ and
𝑘 ∈ ℝ is a constant, then the function 𝑘𝑓 ∶ 𝑥 ↦ 𝑘𝑓 (𝑥) is continuous at 𝑎.

Proof. Let 𝑎 ∈ ℝ be arbitrary, and 𝑥𝑛 a sequence converging to 𝑎. Then by the limit
theorem for multiples, 𝑘𝑥𝑛 → 𝑘𝑎. Rephrasing this in terms of the function 𝑓 (𝑥) = 𝑘𝑥 ,
this just says that lim 𝑓 (𝑥𝑛) = 𝑓 (lim 𝑥𝑛) so 𝑓 is continuous at 𝑎.

Theorem 18.1 (Continuity and the Field Operations). Let 𝑓 , 𝑔 be functions which are
continuous at a point 𝑎. Then the functions 𝑓 (𝑥) + 𝑔(𝑥), 𝑓 (𝑥) − 𝑔(𝑥) and 𝑓 (𝑥)𝑔(𝑥) are
all continuous at 𝑎. Furthermore if 𝑔(𝑎) ≠ 0 then 𝑓 (𝑥)/𝑔(𝑥) is also continuous at 𝑎.

Proof. Let 𝑓 , 𝑔 be any two continuous functions and let 𝑎 ∈ ℝ be a point in their
domains. Let 𝑥𝑛 be any sequence converging to 𝑎. Since 𝑓 is continuous we know
that lim 𝑓 (𝑥𝑛) = 𝑓 (lim 𝑥𝑛) = 𝑓 (𝑎) and similarly by the continuity of 𝑔, lim 𝑔(𝑥𝑛) =
𝑓 (lim 𝑥𝑛) = 𝑔(𝑎). Thus by the limit theorem for sums, the sequence 𝑓 (𝑥𝑛) + 𝑔(𝑥𝑛) is
convergent, with

lim (𝑓 (𝑥𝑛) + 𝑔(𝑥𝑛)) = lim 𝑓 (𝑥𝑛) + lim 𝑔(𝑥𝑛) = 𝑓 (𝑎) + 𝑔(𝑎)
So, 𝑓 + 𝑔 is continuous at 𝑎. Since 𝑎 was arbitrary, we see that 𝑓 + 𝑔 is continuous at
every point of its domain. The same argument applies for subtraction, multiplication,
and division using the respective limit theorems for sequences.

Exercise 18.1. Prove the remaining cases

One of the most important operations for functions is that of composition: if 𝑓 ∶ ℝ →
ℝ and 𝑔 ∶ ℝ → ℝ then the function 𝑔 ∘ 𝑓 ∶ ℝ → ℝ is defined as 𝑔 ∘ 𝑓 (𝑥) ∶= 𝑔 (𝑓 (𝑥)).
More generally, so long as the domain of 𝑔 is a subset of the range of 𝑓 , the composi-
tion 𝑔 ∘ 𝑓 is well defined.
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Theorem 18.2 (Continuity of Compositions). Let 𝑓 , 𝑔 be functions such that 𝑓 is con-
tinuous at 𝑎, and 𝑔 is continuous at 𝑓 (𝑎). Then the composition 𝑔 ∘ 𝑓 (𝑥) ∶= 𝑔(𝑓 (𝑥)) is
continuous at 𝑎.

Proof. Let 𝑥𝑛 be an arbitrary sequence converging to 𝑎 ∈ ℝ: we wish to show that
lim 𝑔(𝑓 (𝑥𝑛)) = 𝑔(𝑓 (lim 𝑥𝑛)) = 𝑔(𝑓 (𝑎)). Since 𝑓 is continuous at 𝑥 = 𝑎 we see imme-
diately that 𝑓 (𝑥𝑛) is a convergent sequence with 𝑓 (𝑥𝑛) → 𝑓 (𝑎). And now, since 𝑔
is assumed to be continuous at 𝑥 = 𝑓 (𝑎) and 𝑓 (𝑥𝑛) is a sequence converging to this
point, we know 𝑔(𝑓 (𝑥𝑛)) = 𝑔(𝑓 (𝑎)) as required.

Exercise 18.2. Let 𝑓 (𝑥) be a continuous function, and assume that 𝑓 (𝑥)2 is a constant
function. Prove that 𝑓 (𝑥) is constant.
Give an example of an 𝑓 (𝑥) where 𝑓 (𝑥)2 is constant, but 𝑓 is not.

Theorem 18.3 (Continuity of Roots). The function 𝑅(𝑥) = √𝑥 is continuous on [0, ∞).

Proof. Actually we already proved this, before we had the terminology! Re-read
?@exr-limit-of-root: it shows that if 𝑥𝑛 → 𝑎 is a convergent sequence with 𝑥𝑛 ≥ 0
and 𝑎 ≥ 0, then √𝑥𝑛 → √𝑎. So lim√𝑥𝑛 = √lim 𝑥𝑛 , and √𝑥 is continuous at the arbitrary
nonnegative real 𝑎.

The same is true for 𝑛𝑡ℎ roots, though we do not stop to prove it here, you may wish
to for practice! This is a special case of a more general result on the continuity of
inverse functions (as the square root is the inverse of 𝑥2)

Theorem 18.4 (Continuity of Inverse Functions). Let 𝑓 ∶ 𝐴 → 𝐵 be a continuous
function for 𝐴, 𝐵 ⊂ ℝ and 𝑔 ∶ 𝐵 → 𝐴 be its inverse. If 𝑓 is continuous, so is 𝑔.

Proof. WRITE PROOF

18.2. Basic Continuous Functions

Example 18.1 (Continuity of 𝑥𝑛).

Exercise 18.3 (Continuity of Polynomials). Prove that every polynomial is a contin-
uous function on the entire real line. Hint: induction on the degree of the polynomial!

Exercise 18.4 (Continuity of Rational Functions). A rational function is a quotient
of polynomials 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥). Prove that every rational function is continuous,
on every point of its domain.

Exercise 18.5. If 𝑓 is continuous at a point 𝑎, then |𝑓 | is continuous there.
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18.3. Discontinuous Monsters

Hint: either use the reverse triangle inequality (?@exr-reverse-triangle-inequality)
or use that its a composition

Exercise 18.6 (Continuity of Max/Min). Prove that if 𝑓 , 𝑔 are continuous functions
then so are max{𝑓 (𝑥), 𝑔(𝑥)} and min{𝑓 (𝑥), 𝑔(𝑥)}.

Hint: use that the max and min can be expressed in terms of absolute values

18.3. Discontinuous Monsters

Example 18.2. The characteristic function of the rational numbers is discontinuous
everywhere.

𝑏(𝑥) = {1 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ

We saw above a function that is discontinuous at a single point, and then one that is
discontinuous everywhere. What’s harder to imagine, is a function that is continuous
at a single point. Try thinking about what this might mean!

Exercise 18.7. Show that the following function is continuous at 0 and discontinuous
everywhere else:

𝑔(𝑥) = {𝑥 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ

Exercise 18.8. Construct a function that is continuous at non-integer points, but
discontinuous at the integers

Functions can have even stranger behavior

Proposition 18.2. The Thomae function

𝜏 (𝑥) = {
1
𝑞 𝑥 ∈ ℚ and 𝑝

𝑞 is lowest terms.

0 𝑥 ∉ ℚ

is continuous at the irrational numbers, and discontinuous at every rational.
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18.4. ♦ Uniform Continuity

Proposition 18.3 (Constant Multiples of Uniformly Continuous Functions). Let 𝑓 be
uniformly continuous, and 𝑘 ∈ ℝ. Then 𝑘𝑓 is uniformly continuous.

Proof. If 𝑘 = 0 then 𝑘𝑓 is the constant zero function, so we ignore that case. For 𝑘 ≠ 0,
let 𝜖 ≥ 0 consider 𝜖/|𝑘| and take the corresponding uniform 𝛿 for 𝑓 . For |𝑥 − 𝑦| < 𝛿
we see |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖/|𝑘|, and so

|𝑘𝑓 (𝑦) − 𝑘𝑓 (𝑥)| < |𝑘||𝑓 (𝑦) − 𝑓 (𝑥)| ≤ |𝑘| 𝜖|𝑘| = 𝜖

Exercise 18.9 (Sums of Uniformly Continuous Functions). Let 𝑓 and 𝑔 be uniformly
continuous. Then 𝑓 + 𝑔 is uniformly continuous.

From these it follows that 𝑓 −𝑔 is uniformly continuous (as its equal to 𝑓 +(−1)𝑔) and
𝑎𝑓 + 𝑏𝑔 are for any 𝑎, 𝑏 ∈ ℝ are uniformly continuous as well. It might be tempting
to believe, after seeing the above proofs that all of the limit laws should have analogs
for uniform continuity, just as they did for continuity. But this is not true!

Example 18.3 (Reciprocals need not be Uniformly Continuous). The function 𝑦 = 𝑥
is uniformly continuous and nonzero on (0, 1) but its reciprocal 𝑓 (𝑥) = 1/𝑥 is not.

Proof. Fx any 𝛿 > 0, and note that given any 1/𝑛 < 𝛿 we have

1
𝑛 − 1

𝑛 + 1 = 1
𝑛(𝑛 + 1) < 1

𝑛 < 𝛿

but applying 𝑓 ,
𝑓 ( 1

𝑛 + 1) − 𝑓 (1𝑛) = 𝑛 + 1 − 𝑛 = 1
Thus, fixing any 𝜖 < 1 there can’t be a uniform 𝛿 , as its always possible to find points
separated by less than 𝛿 mapped to points separated by a distance of 1.

This generalizes directly to reciprocals: if 𝑓 is uniformly continuous then 1/𝑓 need
not be

Exercise 18.10. Let 𝑓 be uniformly continuous and bounded away from zero: 𝑓 (𝑥) ≥
𝑏 > 0 for all 𝑥 in the domain. Prove that 1/𝑓 is uniformly continuous.

What about products? Again we need a boundedness assumption:
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Exercise 18.11 (Uniform Continuity and Products). Let 𝑓 and 𝑔 be uniformly con-
tinuous bounded functions with the same domain. Then 𝑓 (𝑥)𝑔(𝑥) is uniformly con-
tinuous.

Proof. Since 𝑓 , 𝑔 are bounded we chan choose an 𝑀 > 0 with |𝑓 (𝑥)| < 𝑀 and |𝑔(𝑥)| <
𝑀 for all 𝑥 in the domain. Let 𝜖 > 0 be arbitrary, and using uniform continuity for
𝑓 , 𝑔 choose 𝛿𝑓 such that |𝑥 − 𝑦| < 𝛿𝑓 implies |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖/2𝑀 and an analogous
𝛿𝑔 for 𝑔. Set 𝛿 = min{𝛿𝑓 , 𝛿𝑔} and for any 𝑥, 𝑦 with |𝑥 − 𝑦| < 𝛿 we compute

|𝑓 (𝑦)𝑔(𝑦) − 𝑓 (𝑥)𝑔(𝑥)| = |𝑓 (𝑦)𝑔(𝑦) − 𝑓 (𝑦)𝑔(𝑥) + 𝑓 (𝑦)𝑔(𝑥) − 𝑓 (𝑥)𝑔(𝑥)|
≤ |𝑓 (𝑦)𝑔(𝑦)−𝑓 (𝑦)𝑔(𝑥)|+|𝑓 (𝑦)𝑔(𝑥)−𝑓 (𝑥)𝑔(𝑥)| = |𝑓 (𝑦)||𝑔(𝑦)−𝑔(𝑥)|+|𝑔(𝑥)||𝑓 (𝑦)−𝑓 (𝑥)|
As both |𝑓 | and |𝑔| are bounded by 𝑀 , this is less than or equal to 𝑀(|𝑔(𝑦) − 𝑔(𝑥)| +
|𝑓 (𝑦) − 𝑓 (𝑥)|), and each of these terms is less than 𝜖/2𝑀 by hypothesis, so

|𝑓 (𝑦)𝑔(𝑦) − 𝑓 (𝑥)𝑔(𝑥)| ≤ 𝑀 ( 𝜖
2𝑀 + 𝜖

2𝑀 ) = 𝜖

as required.

Exercise 18.12. Show that this boundedness assumption is necessary by giving an
example of two uniformly continuous functions whose product is not uniformly con-
tinuous.

Proposition 18.4 (Composition of Uniformly Continuous). Let 𝑓 and 𝑔 be uniformly
continuous functions. Then the composition 𝑓 ∘ 𝑔(𝑥) = 𝑓 (𝑔(𝑥)) is uniformly continuous.

Proof. Choose 𝜖 > 0 and let 𝛿𝑓 be a uniform delta for 𝑓 (𝑥). Use this to select a uniform
𝛿𝑔 for 𝑔, such that whenever |𝑥 − 𝑦| < 𝛿𝑔 , we have |𝑔(𝑥) − 𝑔(𝑦)| < 𝛿𝑓 . This turns out
to be the right uniform value for the composition 𝑓 ∘ 𝑔, as |𝑔(𝑥) − 𝑔(𝑦)| < 𝛿𝑓 ⟹
|𝑓 (𝑔(𝑥)) − 𝑓 (𝑔(𝑦))| < 𝜖.

Like reciprocals, inverses pose a problem:

Exercise 18.13 (Inverses and Uniform Continuity). Give an example of a uniformly
continuous function whose inverse is not uniformly continuous.
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19. Continuous Functions

Highlights of this Chapter: we prove two foundational results about con-
tinuous functions whose proofs have several steps in common:

• Continuous Functions are determined by their values on dense sets.
• The Extreme Value Theorem: a continuous function achieves a max
and min on any closed interval.

• The Intermediate Value Theorem: a continuous function must take
every value between 𝑓 (𝑎) and 𝑓 (𝑏) on the interval [𝑎, 𝑏].

Just like we have seen various ‘proof styles’ for sequences (recurrent themes in proofs,
like ‘an 𝜖/2 argument’) one of the biggest takeaways of this section is a proof tech-
nique for working with continuous functions. It has three steps, summarized be-
low:

• Use whatever information you have to start, to construct a sequence of points.
• Use Bolzano Weierstrass to find a convergent subsequence.
• Apply 𝑓 to that sequence and use continuity to know the result is also conver-
gent.

This is to vague on its own to be useful, but in reading the proofs of the boundedness
theorem, the extreme value theorem, and the intermediate value theorem below, look
out for these three recurrent steps.

19.1. Dense Sets

Functions determined by values on dense set

Lemma 19.1. If 𝑓 is a continuous function such that 𝑓 (𝑟) = 0 for every rational number
𝑟 , then 𝑓 = 0 is the zero function.

Proof. Let 𝑓 be such a function, and 𝑎 ∈ ℝ any real number. Then there is a sequence
𝑟𝑛 of rational numbers converging to 𝑎. Given that 𝑓 is zero on all rationals, we see
that 𝑓 (𝑟𝑛) = 0 for all 𝑛. Thus 𝑓 (𝑟𝑛) is the constant zero sequence, and so its limit is
zero:

lim 𝑓 (𝑟𝑛) = lim 0 = 0
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But, since 𝑓 is assumed to be continuous, we know that we can move the limit inside
of 𝑓 :

0 = lim 𝑓 (𝑟𝑛) = 𝑓 (lim 𝑟𝑛) = 𝑓 (𝑎)
Thus 𝑓 (𝑎) = 0, and since 𝑎 was arbitrary, we see 𝑓 is the constant function equal to
zero at all real numbers.

Proposition 19.1 (Equal on Rationals ⟹ Equal). Let 𝑓 , 𝑔 be continuous functions
such that for all 𝑟 ∈ ℚ they are equal: 𝑓 (𝑟) = 𝑔(𝑟). Then in fact, 𝑓 = 𝑔: for all 𝑥 ∈ ℝ,
𝑓 (𝑥) = 𝑔(𝑥)

Proof. Since 𝑓 and 𝑔 are continuous, the function ℎ = 𝑓 − 𝑔 is continuous using
the theorems for field operations. And, since 𝑓 (𝑥) = 𝑔(𝑥) for all rational 𝑥 , we see
ℎ(𝑥) = 0 on the rationals. Thus, by ?@prp-zero-on-rationals, ℎ itself must be the
zero function on all of ℝ. Thus for every 𝑥 , ℎ(𝑥) = 𝑓 (𝑥) − 𝑔(𝑥) = 0, or rearranging,

∀𝑥, 𝑓 (𝑥) = 𝑔(𝑥)

This has a the pretty significant consequence that if we have a function and we know
it is continuous, then being able to calculate its values at the rational numbers is good
enough to completely determine the function on the real line. In particular, this can be
used to prove various uniqueness results: you can show a certain function is uniquely
defined if you can prove that its definition implies (1) continuity and (2) determines
the rational points (or more generally, the values on a dense set).

Theorem 19.1 (Equal on a Dense Set ⟹ Equal). Continuous functions are deter-
mined by their values on a dense subset of their domains: if 𝑓 , 𝑔 ∶ 𝑋 → ℝ and 𝐷 ⊂ 𝑋 is
dense with 𝑓 = 𝑔 on 𝐷, then 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋 .

Exercise 19.1. Prove this (following the ideas for the special case of rationals)

We will use this property in understanding exponential functions (where their value
at rational numbers are determined by powers and roots) and trigonometric functions
(whose values on certain dyadic multiples of 𝜋 are determined by the half-angle iden-
tities.)

There are many useful theorems of this type, that check a property of a function on
a dense set and use it to conclude the same property holds generally. We give two
more examples below, that prove useful in upcoming work

Proposition 19.2. If 𝑓 is continuous and monotone on a dense set, then it is monotone
on its entire domain.
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Proof. Assume for contradiction that 𝑓 is monotone increasing on a dense set𝐷 in the
domain of 𝑓 , but that it is not monotone increasing on the entire domain. This means
that there exists a pair 𝑥 < 𝑦 in the domain where 𝑓 (𝑥) > 𝑓 (𝑦), call the difference
𝑓 (𝑦) − 𝑓 (𝑥) = 𝐷 and set 𝜖 = 𝐷/3. Then by continuity of 𝑓 there is a 𝛿𝑥 about 𝑥 such
that |𝑥 − 𝑎| < 𝛿𝑥 implies |𝑓 (𝑥) − 𝑓 (𝑎)| < 𝜖, and similarly for a 𝛿𝑦 about 𝑦 .
We are going to use these 𝛿 neighborhoods to choose points in 𝑑𝑥 , 𝑑𝑦 ∈ 𝐷 near 𝑥 and
𝑦 , so we need to be careful: we wish to ensure 𝑑𝑥 < 𝑑𝑦 just as 𝑥 < 𝑦 , so we want our 𝛿
neighborhoods to not overlap. And since we got the values 𝛿𝑥 and 𝛿𝑦 from continuity
we don’t have any control over their size, so they might be rather large! But this is
no serious problem, we can easily shrink them if needed: if 𝛿 = |𝑦 − 𝑥| we can set 𝛿𝑥
to be the minimum of its original value and 𝛿/2, and same for 𝛿𝑦 .
Now, by the density of 𝐷 in the domain, there is a 𝑑𝑥 ∈ 𝐷 within 𝛿𝑥 of 𝑥 and a 𝑑𝑦 ∈ 𝐷
within 𝛿𝑦 of 𝑦 . Together with the above this implies that 𝑓 (𝑑𝑥 ) is at least 𝑓 (𝑥)− 𝜖 and
𝑓 (𝑑𝑦 ) is at most 𝑓 (𝑦) + 𝜖. But the distance between 𝑓 (𝑥) and 𝑓 (𝑦) was 𝐷 = 3𝜖, so
𝑓 (𝑑𝑥 ) − 𝑓 (𝑑𝑦 ) ≥ 𝜖 > 0 and hence 𝑓 (𝑑𝑥 ) > 𝑓 (𝑑𝑦 ). But this contradicts the fact that 𝑓 is
increasing on 𝐷 as 𝑑𝑥 < 𝑑𝑦 .

Exercise 19.2. Modify the above proof to show that if 𝑓 is continuous and strictly
increasing or strictly decreasing on a dense set, then it is strictly increasing/decreasing
everywhere on its domain.

Exercise 19.3. If 𝑓 is continuous and convex on a dense set, then it is convex on its
entire domain.

19.2. Extreme Values

Proposition 19.3 (Continuous on Closed Interval ⟹ Bounded). Let 𝑓 be a contin-
uous function on a closed interval [𝑎, 𝑏]. Then the image 𝑓 ([𝑎, 𝑏]) is bounded.

Proof. Assume for the sake of contradiction that 𝑓 is not bounded. Then for each
𝑛 ∈ ℕ there must be some 𝑥𝑛 ∈ [𝑎, 𝑏] where |𝑓 (𝑥𝑛)| > 𝑛. This sequence {𝑥𝑛} need
not be convergent, but it lies in the interval [𝑎, 𝑏] so it is bounded, and thus contains
a convergent subsequence 𝑥𝑛𝑘 by Bolzano Weierstrass. Say 𝑥𝑛𝑘 → 𝑥 . Then since
𝑎 ≤ 𝑥𝑛𝑘 ≤ 𝑏 for all 𝑘, by the inequalities of limits we see 𝑎 ≤ 𝑥 ≤ 𝑏 so the limit 𝑥 lies
in the interval [𝑎, 𝑏] as well.

But what is the value 𝑓 (𝑥)? Since 𝑓 is continuous and 𝑥𝑛𝑘 → 𝑥 we know that

𝑓 (𝑥𝑛𝑘 ) → 𝑓 (𝑥)

But for each 𝑘, 𝑥𝑛𝑘 has the property that 𝑓 (𝑥𝑛𝑘 ) > 𝑛𝑘 by definition. Thus, the sequence
𝑓 (𝑥𝑛𝑘 ) is not bounded, and cannot be convergent (since all convergent sequences are
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19. Continuous Functions

bounded). This is a contradiction, as it implies that 𝑓 (𝑥) is not defined, even though
we have assumed 𝑓 is defined on the entire interval [𝑎, 𝑏].
Thus, no such sequence 𝑥𝑛 is possible, and so there must be some 𝑛 where |𝑓 (𝑥)| < 𝑛
for all 𝑥 ∈ [𝑎, 𝑏]. That is, 𝑓 must be bounded on [𝑎, 𝑏].

Building off this result, one can prove that a continuous function actually achieves
its upper and lower bounds on any closed interval. This result will play a role sev-
eral times across the theory of functions and derivatives, so we give it a memorable
name: the extreme value theorem (as maxima and minima taken collectively are called
extrema).

Theorem 19.2 (Extreme Value Theorem). Let 𝑓 be a continuous function on a closed
interval [𝑎, 𝑏]. Then 𝑓 achieves a maximum and minimum value: that is, there exists a
point 𝑝 where 𝑓 (𝑝) ≥ 𝑓 (𝑥) for all 𝑥 ∈ [𝑎, 𝑏], and a 𝑞 where 𝑓 (𝑞) ≤ 𝑓 (𝑥) for all 𝑥 ∈ [𝑎, 𝑏].

Proof. We show 𝑓 achieves a maximum, and leave the minimum case as an exercise.
Let 𝑓 be continuous on [𝑎, 𝑏] and let 𝑅 = {𝑓 (𝑥) ∣ 𝑥 ∈ [𝑎, 𝑏]} be the set of outputs, or
the range of 𝑓 . Since 𝑓 is bounded we see that 𝑅 is a bounded subset of ℝ, and so by
completeness

𝑚 = inf𝑅 𝑀 = sup𝑅
must exist. Our goal is to find values 𝑥𝑚 , 𝑥𝑀 ∈ [𝑎, 𝑏] for which the infimum and
supremum are realized:

𝑓 (𝑥𝑚) = 𝑚 𝑓 (𝑥𝑀 ) = 𝑀

Here we show this holds for the supremum, the infimum is left as an exercise below.
Since 𝑀 is the supremum, for any 𝜖 > 0 we know that 𝑀 − 𝜖 is not an upper bound
for 𝑅 = {𝑓 (𝑥) ∣ 𝑥 ∈ [𝑎, 𝑏]}: thus there must be some 𝑥 where 𝑓 (𝑥) > 𝑀 − 𝜖. So letting
𝜖 = 1/𝑛 each 𝑛, let 𝑥𝑛 be a point where 𝑀 − 1

𝑛 < 𝑓 (𝑥𝑛) ≤ 𝑀 . As 𝑛 → ∞ we know

𝑀 − 1
𝑛 → 𝑀 and so by the squeeze theorem we see that 𝑓 (𝑥𝑛) → 𝑀 as well.

We don’t know that the points 𝑥𝑛 themselves converge, but we do know that this en-
tire sequence lies inside the closed interval [𝑎, 𝑏] so its bounded and Bolzano Weier-
strass lets us extract a convergent subsequence 𝑥𝑛𝑘 → 𝑥 . And as 𝑎 ≤ 𝑥𝑛𝑘 ≤ 𝑏 it follows
that the limit 𝑥 ∈ [𝑎, 𝑏] as well. Because subsequences of a convgent sequence con-
verge to the same limit, we know that 𝑓 (𝑥𝑛𝑘 ) is convergent, and still has limit 𝑀 . But
now we can finally use continuity!

Since 𝑓 is continuous, we know lim 𝑓 (𝑥𝑛) = 𝑓 (lim 𝑥𝑛), and so 𝑀 = 𝑓 (𝑥). Thus we
managed to find a point 𝑥 ∈ [𝑎, 𝑏] where 𝑓 (𝑥) is the supremum: 𝑓 (𝑥) is an upper
bound for all possible values of 𝑓 on [𝑎, 𝑏], which by definition means its the max
value! So 𝑓 achieves a maximum on [𝑎, 𝑏].

Exercise 19.4. Complete the proof by showing a continuous function on a closed
interval achieves a minimum.
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19.3. Intermediate Values

19.3. Intermediate Values

The intermediate value theorem is the rigorous version of “you can draw the graph
of a continuous function without picking up your pencil”.

One note: in the statement below we use the phrase 𝑦 is between 𝑓 (𝑎) and 𝑓 (𝑏) as a
shorthand to mean that either 𝑓 (𝑎) < 𝑦 < 𝑓 (𝑏) or 𝑓 (𝑏) < 𝑦 < 𝑓 (𝑎) (as we don’t know
if 𝑓 (𝑎) or 𝑓 (𝑏) is larger).

Theorem 19.3 (The Intermediate Value Theorem). Let 𝑓 be a continuous function on
the interval [𝑎, 𝑏], and let 𝑦 be any number between 𝑓 (𝑎) and 𝑓 (𝑏). Then there exists an
𝑥 between 𝑎 and 𝑏 such that 𝑦 = 𝑓 (𝑥).

Proof. Without loss of generality we will assume that 𝑓 (𝑎) < 𝑓 (𝑏) so that 𝑦 lies in
the interval [𝑓 (𝑎), 𝑓 (𝑏)] (the other case is analogous, we just instead must write the
interval [𝑓 (𝑏), 𝑓 (𝑎)]). We wish to find a point 𝑥 ∈ [𝑎, 𝑏] where 𝑓 (𝑥) = 𝑦 , so we start
by defining the set of points where 𝑓 (𝑥) is less than or equal to 𝑦 :

𝑆 = {𝑥 ∈ [𝑎, 𝑏] ∣ 𝑓 (𝑥) ≤ 𝑦}
This set is nonempty: 𝑎 ∈ 𝑆 as 𝑓 (𝑎) < 𝑦 by assumption. And its bounded above by 𝑏:
if 𝑥 ∈ 𝑆 then 𝑥 ∈ [𝑎, 𝑏] so 𝑥 ≤ 𝑏 by definition. Thus, the supremum 𝜎 = sup 𝑆 exists,
and 𝜎 ∈ [𝑎, 𝑏]. We will show that 𝑓 (𝜎) = 𝑦 , by showing both inequalities 𝑓 (𝜎) ≤ 𝑦
and 𝑓 (𝜎) ≥ 𝑦 .
First, we show ≤. Since 𝜎 is the supremeum, for each 𝑛 we know that 𝜎 − 1

𝑛 is not
an upper bound, and so there must be an point 𝑥𝑛 ∈ (𝜎 − 1/𝑛, 𝜎) where 𝑓 (𝑥𝑛) ≤ 𝑦 .
The squeeze theorem assures that 𝑥𝑛 → 𝜎 , and the continuity of 𝑓 assures that 𝑓 (𝑥𝑛)
converges (since 𝑥𝑛 does). But for all 𝑛 we know 𝑓 (𝑥𝑛) ≤ 𝑦 , so by the inequalities of
limits we also know lim 𝑓 (𝑥𝑛) = 𝑓 (𝜎) ≤ 𝑦 .
Next, we show ≥. First note that 𝜎 ≠ 𝑏 as 𝑓 (𝜎) ≤ 𝑦 but 𝑓 (𝑏) > 𝑦 . So, 𝜎 < 𝑏 and so
after truncating finitely many terms, the sequence 𝑥𝑛 = 𝜎 + 1/𝑛 lies strictly between
𝜎 and 𝑏. Since this sequence is greater than the upper bound 𝜎 , we know that none
of the 𝑥𝑛 are in 𝑆 and so 𝑓 (𝑥𝑛) > 𝑦 by definition, for all 𝑛. But as 𝑛 → ∞ the sequence
of 𝑥𝑛’s is squeezed to converge to 𝜎 , and so by continuity we know

𝑓 (𝜎) = 𝑓 (lim 𝑥𝑛) = lim 𝑓 (𝑥𝑛)
Applying the inequalities of limits this time yields the reverse: since for all 𝑛we know
𝑓 (𝑥𝑛) > 𝑦 , it follows that lim 𝑓 (𝑥𝑛) ≥ 𝑦 so 𝑓 (𝜎) ≥ 𝑦 .
Putting these togetherwe know that 𝑓 (𝜎) is some numberwhichmust simultaneously
by ≥ 𝑦 and ≤ 𝑦 . The only number satisfying both of these inequalities is 𝑦 itself, so

𝑓 (𝜎) = 𝑦
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Corollary 19.1. Continuous image of a closed interval is a closed interval.

Historically, the intermediate value theorem was one of the reasons for developing
much of analysis: mathematicians knew that whatever the correct formal definition of
continuity was, it should certainly imply this! So, our proof of the intermediate value
theorem (which embodies the intuitive notion of continuity) may be seen as evidence
that we have chosen good definitions of continuity and convergence: they work as
we expect!

Remark 19.1. It may seem at first that the intermediate value theorem is equivalent to
continuity: if a function satisfies the intermediate value property, then its continuous.
Try to prove it! Where do you get stuck?

Example 19.1. Consider the following function

𝑓 (𝑥) = {sin ( 1
𝑥 ) 𝑥 ≠ 0

0 𝑥 = 0

Then 𝑓 satisfies the conclusion of the intermediate value theorem on every closed
interval, but 𝑓 is not continuous at 0.

19.4. Hitting and Missing Points

Continuity is a strong constraint on a function, and the behavior of a continouus
function at one or more points can often be used to gain information about nearby
points. We begin with an often-useful example that does not require any deep theory:
if a continuous function is nonzero at a point, then it is actually nonzero in an entire
small interval around that point:

Proposition 19.4 (Nonzero on a Neighborhood). If 𝑓 is continuous, 𝑓 (𝑎) ≠ 0 then
there is a small open interval about 𝑎 where 𝑓 is nonzero.

Proof. Let 𝑓 (𝑎) = 𝑐 with 𝑐 > 0, and set 𝜖 = |𝑓 (𝑐)|/2. By continuity, there is some 𝛿
such that if |𝑥−𝑐| < 𝛿 we know |𝑓 (𝑥)−𝑓 (𝑐)| < 𝜖. Unpacking this, for all 𝑥 ∈ (𝑐−𝛿, 𝑐+𝛿)
we know

−𝜖 = −|𝑓 (𝑐)|
2 < 𝑓 (𝑥) − 𝑓 (𝑐) < |𝑓 (𝑐)|

2 = 𝜖

And thus

𝑓 (𝑐) − |𝑓 (𝑐)|
2 < 𝑓 (𝑥) < 𝑓 (𝑐) + |𝑓 (𝑐)|

2
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If 𝑓 (𝑐) is positive, then the lower bound here is 𝑓 (𝑐)/2 which is still positive, so 𝑓 (𝑥)
is always positive in the interval. And, if 𝑓 (𝑐) is negative, the upper bound here is
𝑓 (𝑐)/2 which is still negative: thus 𝑓 (𝑥) is always negative in the interval.

Exercise 19.5. If 𝑓 is continuous and 𝑓 (𝑥) ≥ 𝑎 for all 𝑥 in a dense subset of the
domain, then 𝑓 (𝑥) ≥ 𝑎 everywhere.

Given this, its natural to wonder about the functions that we know cross zero, instead
of ones we know stay away from zero. If a function is positive somewhere and nega-
tive somewhere else, must it be zero in-between? One cannot prove this easily from
the definition as above, but it yields immediately to the intermediate value theorem.

Proposition 19.5 (Positive to Negative implies Zero). If 𝑓 is a continuous function on
an interval and it is positive one endpoint and negative on the other, then 𝑓 has a zero
in-between.

This suggests a means of finding the zeros of a function, which narrows in on them
exponentially fast! Called “bisection”: find any two points where function changes
sign. Divide region in half, evaluate at midpoint. Keep interval with different sign
endpoints, repeat.

This argument is useful many places: here we give a classic fixed point theorem as an
example

Proposition 19.6 (A Fixed Point Theorem). If 𝑓 ∶ [0, 1] → [0, 1] is continuous then
there is some 𝑥 ∈ [0, 1] with 𝑓 (𝑥) = 𝑥 .

Proof. Consider the function 𝑔(𝑥) = 𝑓 (𝑥) − 𝑥 . Since 𝑓 (0) ≥ 0 we know 𝑔(0) =
𝑓 (0) − 0 ≥ 0, and as 𝑓 (1) ≤ 1 we similarly know that 𝑔(1) = 𝑓 (1) − 1 ≤ 0.

The intermediate value theorem can be used to prove many useful existence results
like these, giving the existence of a number satisfying a certain equation. It similarly
provides new, shorter proofs of the existence of square roots:

Example 19.2 (Existence of √2). The function 𝑓 (𝑥) = 𝑥2 is continuous on ℝ. But
𝑓 (1) = 1 which is less than 2 and 𝑓 (2) = 4 which is greater than 2. Thus, by the
intermediate value theorem there must be some 𝑠 ∈ [1, 2] such that 𝑓 (𝑠) = 𝑠2 = 2, so
𝑠 = √2.

This generalizes directly to the existence of square roots of all positive real num-
bers.

Proposition 19.7 (Existence of Square Roots). For every 𝑣 > 0 there exists a positive
𝑢 with 𝑢2 = 𝑣 : we call this the square root 𝑢 = √𝑣 .

205



19. Continuous Functions

Proof. Let 𝑣 > 0 and consider the function 𝑓 (𝑥) = 𝑥2−𝑣 . This function is continuous,
and at 𝑥 = 0 this function is negative, so all we need to do is find a point where the
function is positive to be able to apply the IVT. Note 𝑓 (𝑣+1) = (𝑣+1)2−𝑣 = 𝑣2+𝑣+1 is
positive: thus theremust be some point 𝑢 ∈ [0, 𝑣+1] such that 𝑢2 = 𝑣 , as required.

Exercise 19.6 (Existence of 𝑛𝑡ℎ roots.). For every 𝑥 ≥ 0 there exists a unique positive
number 𝑦 such that 𝑦𝑛 = 𝑥 .

Its worth mentioning one additional corollary of the interemediate value theorem
together with the extreme value theorem, which helps us understand the ranges of
continuous functions

Corollary 19.2. If 𝑓 is a continuous function and 𝐼 ⊂ ℝ is a closed interval, then 𝑓 (𝐼 )
is an interval.

Here we allow the degenerate case [𝑎, 𝑎] = {𝑎} to count as an interval, if 𝑓 is constant.

19.5. ♦ Uniform Continuity

19.5.1. Continuous Extension

Prove uniformly continuous on open interval implies can be extended to endpoints.
This is something that can’t be done with a merely continuous function: example =
topologist sine curve.

Theorem 19.4 (Extending Uniform Continuity to Endpoints). If 𝑓 ∶ (𝑎, 𝑏) → ℝ is
uniformly continuous, then there exists a continuous extension of ̃𝑓 of 𝑓 to [𝑎, 𝑏].

We could stop to prove this here, but in fact the same technique proves a more general
extension theorem of which this is a special case:

Theorem 19.5 (The Continuous Extension Theorem).

Proof. Proof sketch: 𝐷 dense in 𝑋 , define 𝑓 (𝑥) by lim 𝑓 (𝑑𝑛) for 𝑑𝑛 → 𝑥 . Need to check
(1) this defines a value, (2) its well defined, independent of sequence.

For (1): if 𝑑𝑛 → 𝑥 then 𝑑𝑛 is convergent, hence Cauchy. 𝑓 is uniformly continuous
so it takes Cauchy sequences to cauchy sequences. Thus 𝑓 (𝑥𝑛) is Cauchy, hence
convergent.

Next for (2): if 𝑐𝑛 , 𝑑𝑛 → 𝑥 are two such sequences, make the interleaved sequence
𝑐1, 𝑑1, 𝑐2, 𝑑2, 𝑐3, 𝑑3 ⋯. This converges to 𝑥 aswell so is Cauchy. Thus applying 𝑓 yields a
cauchy (hence convergent) sequence, and all subsequences have the same limit. Since
𝑐𝑛 and 𝑑𝑛 are subsequences, we see 𝑓 (𝑐𝑛) and 𝑓 (𝑑𝑛) converge to the same value.
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Note in the proof abovewe only used one property of uniformly continuous functions:
that they take cauchy sequences to cauchy sequences. So this actually applies more
generally, to Cauchy Continuous functions.

Corollary 19.3 (Continuous Extension of Cauchy Continuous Functions). If 𝑓 is
Cauchy continuous on a set 𝐷 which is dense in 𝑋 , then there exists a unique continuous
extension ̃𝑓 of 𝑓 to 𝑋 .

19.5.2. Continuous on a Closed Interval

The continuous extension theorems provide a first (of several) motivations for being
interested in this stronger notion of continuity. Hence its useful to develop some re-
sults for telling when a function which known a priori only to be continuous is in fact
uniformly continuous. The most useful of these provides a surprisingly simple con-
dition: so long as the domain is a closed interval, continuity and uniform continuity
are equivalent!

Theorem 19.6 (Continuous + Closed ⟹ Uniform). Let 𝑓 be a continuous function
defined on the closed interval [𝑎, 𝑏]. Then 𝑓 is in fact uniformly continuous on this
interval.

Proof. Assume for the sake of contradiction that 𝑓 is not uniformly continuous, and
fix 𝜖 > 0. Then there is no fixed 𝛿 that works, so for any proposed 𝛿 , there must be
some 𝑎 where it fails.

We can use this to produce a sequence: for 𝛿 = 1/𝑛 let 𝑎𝑛 ∈ 𝐼 be a point where this 𝛿
fails: there is some 𝑥𝑛 within 1/𝑛 of 𝑎𝑛 but |𝑓 (𝑥𝑛) − 𝑓 (𝑎𝑛)| > 𝜖.
Thus, in fact we have two sequences 𝑥𝑛 and 𝑎𝑛! We know very little about either
except that they are in a closed interval 𝐼 , so we can apply Bolzano Weierstrass to get
convergent subsequences (we have to be a bit careful here, see the exercise below).

We will call the subsequences 𝑋𝑛 and 𝐴𝑛 (with capital letters). Now that we know
they both converge, we can see that they also have the same limit: (as, by construction
|𝑋𝑛 − 𝐴𝑛 | < 1

𝑛 ). Call that limit 𝐿.
Then since 𝑓 is continuous at 𝐿, we know that

lim 𝑓 (𝑋𝑛) = 𝑓 (lim𝑋𝑛) = 𝑓 (𝐿) = 𝑓 (lim𝐴𝑛) = lim 𝑓 (𝐴𝑛)

Thus, lim 𝑓 (𝑋𝑛) − 𝑓 (𝐴𝑛) = 0. However this is impossible, since for all values of 𝑛 we
know |𝑓 (𝑋𝑛) − 𝑓 (𝐴𝑛)| > 𝜖! This is a contradiction, and thus there must have been
some uniform 𝛿 that worked all along.
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19. Continuous Functions

In proof, use that we can simultaneously apply bolzano weierstrass to two sequences:
this appears as an Exercise 9.14 back in the chapter on subsequences. If you didn’t
do it then, you should prove this for yourself now.

Exercise 19.7 (Periodic Continuous Functions are Uniformly Continuous). Let 𝑓 be
a periodic continuous function on ℝ. Then 𝑓 is uniformly continuous.

19.6. Problems
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20. Power Series

Highlights of this Chapter: we introduce the definition of a power series,
and testing for convergence via ratios.

Polynomials are finite sums of multiples of powers of 𝑥 . The natural infinite analog is
a power series, arising as the limit of a sequence of polynomials of increasing degree

Definition 20.1 (Power Series). A power series is a function defined as the limit of
a sequence of polynomials

𝑓 (𝑥) = ∑
𝑛≥0

𝑎𝑛𝑥𝑛

for a sequence 𝑎𝑛 of real numbers. For each 𝑥 , this defines an infinite series; the
domain of a power series is the subset 𝐷 ⊂ ℝ of 𝑥 values where the series converges.

The simplest power series are polynomials themselves, which have 𝑎𝑛 = 0 after some
finite 𝑁 . Perhaps the second simplest power series is the one with 𝑎𝑛 = 1 for all 𝑛:

𝑓 (𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + ⋯ + 𝑥𝑛 + ⋯

This is none other than the geometric series in 𝑥! So, it converges whenever the com-
mon ratio 𝑥 satisfies |𝑥| < 1: its domain is the interval (−1, 1).

Power series are an extremely versatile tool to reach beyond the arithmetic of poly-
nomials, while staying close to the fundamental operations of addition/subtraction
and multiplication/division. One of our main uses of them will be to provide efficient
means of computing important functions (exponentials, logs, trigonometric functions,
etc).

Definition 20.2 (Power Series Representation). Given a function 𝑓 (𝑥), a power series
representation of 𝑓 is a series 𝑠(𝑥) = ∑ 𝑎𝑛𝑥𝑛 such that 𝑠(𝑥) = 𝑓 (𝑥) whenever 𝑠(𝑥)
converges.
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20. Power Series

20.1. Convergence

The most important thing to understand about a power series is its domain: where
does it actually converge?

Definition 20.3 (Interval of Convergence). The domain of a power series, also called
its interval of convergence, is the set of all 𝑥 for which it converges.

Proposition 20.1. If a power series converges at 𝑢 then it converges at all 𝑣 ∈ (−𝑢, 𝑢).

Exercise 20.1. If a power series diverges at 𝑢 then it also diverges at all 𝑣 with |𝑣 | > |𝑢|.

Thus, the domain of a power series must be a set of the form (−𝑟, 𝑟), [−𝑟, 𝑟], [−𝑟, 𝑟)
or (−𝑟, 𝑟] Since it can often be difficult to determine exactly what happens at the
endpoints of the interval of convergence, where the series may converge either ab-
solutely, conditionally, or not at all. Thus speaking of the radius (and avoiding the
issue of convergence at endpoints) is often useful.

Definition 20.4 (Radius of Convergence). The radius of convergence of a power
series is the largest value of 𝑟 > 0 such that the series converges on (−𝑟, 𝑟).

Corollary 20.1 (Absolute Convergence of Power Series). Let 𝑓 (𝑥) = ∑ 𝑎𝑛𝑥𝑛 be a
power series with radius of convergence 𝑟 , and let 𝑢 ∈ (−𝑟, 𝑟). Then 𝑓 converges abso-
lutely at 𝑢.

Thus within the radius of convergence, absolute convergence means that the terms
of a power series can be re-arranged without changing the limiting value: infinite
addition is commutative here. (Note that this may not apply at the endpoints of the
interval of convergence.)

20.1.1. Finding the Radius of Convergence

Comparison has already taught us a lot about the convergence of series, but it can do a
lot more for us. Indeed, rewriting∑𝑎𝑛𝑥𝑛 as∑(𝑎1/𝑛𝑛 𝑥)𝑛 suggests a natural comparison
when 𝑎1/𝑛𝑛 converges:

Proposition 20.2. Let ∑𝑎𝑛𝑥𝑛 be a power series, and 𝛼 = lim 𝑛√|𝑎𝑛 |. Then the radius of
convergence is 𝑟 = 1/𝛼 (where 𝛼 = ∞ means 𝑟 = 0 and 𝛼 = 0 means convergence on all
of ℝ).

Proof. COMPARISON WITH GEOMETRIC SERIES
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20.2. Continuity

This test is clear and rather powerful - it applies to almost all series youwill encounter
in practice. But its not completely general as we assumed that lim 𝑛√|𝑎𝑛 | converged as
a hypothesis, and this may not be the case. Happily, the easy technical fix of replacing
lim with lim sup (which does always exist) provides a completely general theorem.

Theorem 20.1 (Finding the Radius of Convergence: Cauchy-Hadamard). Let∑𝑎𝑛𝑥𝑛
be a power series, and 𝛼 = lim sup 𝑛√|𝑎𝑛 |. Then the radius of convergence is 𝑟 = 1/𝛼
(where 𝛼 = ∞ means 𝑟 = 0 and 𝛼 = 0 means convergence on all of ℝ).

Exercise 20.2. Generalize the proof of Proposition 20.2 to prove the above theorem,
using the limsup.

This test is incredibly useful theoretically as it gives precise conditions on when a
power series converges or diverges. But for specific series, its rather difficult to apply
in practice: who wants to compute a sequence of 𝑛𝑡ℎ roots? So now, we seek a more
practical test for convergence that is easy to apply in specific cases without worrying
about total generality. And we find one in our other standardized comparison with
geometric series, the ratio test!

Theorem 20.2. Let ∑𝑎𝑛𝑥𝑛 be a power series, and assume the sequence of ratios 𝑎𝑛+1
𝑎𝑛

converges to some 𝛼 ∈ ℝ. Then the radius of convergence is 𝑟 = 1/𝛼 (where 𝛼 = ∞
means 𝑟 = 0 and 𝛼 = 0 means convergence on all of ℝ).

Proof. COMPARISON WITH A GEOMETRIC SERIES

One weakness is that it relies on consecutive ratios and these aren’t even always de-
fined: for example the series ∑𝑥2𝑛 has coefficients 1, 0, 1, 0, 1, 0, …. This however is
easy to fix: we can apply the ratio test to the nonzero terms of a power series and also
get a useful result:

Exercise 20.3. Let 𝑎𝑛 be the sequence of nonzero coefficients for a power series
∑𝑎𝑛𝑥𝑛𝑘 (where 𝑛𝑘 is an increasing sequence of powers, skipping any 𝑛 where the
coefficient would have been zero). Assume the sequence of ratios 𝑎𝑛+1

𝑎𝑛 converges to

some 𝛼 ∈ ℝ. Prove the radius of convergence is 𝑟 = 1/𝛼 (where 𝛼 = ∞ means 𝑟 = 0
and 𝛼 = 0 means convergence on all of ℝ).

20.2. Continuity

Theorem 20.3 (Continuity within Radius of Convergence). Let 𝑓 (𝑥) = ∑𝑘 𝑎𝑘𝑥𝑘 be a
power series with radius of convergence 𝑟 . Then if |𝑥 | < 𝑟 , 𝑓 is continuous at 𝑥 .
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20. Power Series

Proof. Without loss of generality take 𝑥 > 0, and let 𝑥𝑛 be an arbitrary sequence in
(−𝑟, 𝑟) converging to 𝑥 . We aim to show that 𝑓 (𝑥𝑛) → 𝑓 (𝑥).
As 𝑥 < 𝑟 choose some 𝑦 with 𝑥 < 𝑦 < 𝑟 (perhaps, 𝑦 = (𝑥 + 𝑟)/2). Since 𝑥𝑛 → 𝑥 there
is some 𝑁 past which 𝑥𝑛 is always less than 𝑦 (take 𝜖 = 𝑦 −𝑥 and apply the definition
of 𝑥𝑛 → 𝑥). As truncating the terms of the sequence before this does not change its
limit, we may without loss of generality assume that 𝑥𝑛 < 𝑦 for all 𝑛. Thus, we may
define 𝑀𝑘 = 𝑎𝑘𝑦𝑘 , and we are in a situation to verify the hypotheses of Dominated
Convergence:

• Since 𝑥𝑛 → 𝑥 , we have 𝑎𝑘𝑥𝑘𝑛 → 𝑎𝑘𝑥𝑘 by the limit theorems.
• For each 𝑛, 𝑓 (𝑥𝑛) = ∑𝑘 𝑎𝑘𝑥𝑘𝑛 is convergent as 𝑥𝑛 is within the radius of conver-
gence.

• 𝑀𝑘 = 𝑎𝑘𝑦𝑘 bounds 𝑎𝑘𝑥𝑘𝑛 for all 𝑛, as 0 < 𝑥𝑛 < 𝑦 .
• ∑𝑘 𝑀𝑘 converges as this is just 𝑓 (𝑦) and 𝑦 is within the radius of convergence.

Applying the theorem, we see

lim𝑛 𝑓 (𝑥𝑛) = lim𝑛 ∑
𝑘

𝑎𝑘𝑥𝑘𝑛 = ∑
𝑘

lim 𝑎𝑘𝑥𝑘𝑛 = ∑
𝑘

𝑎𝑘𝑥𝑘 = 𝑓 (𝑥)

Thus for arbitrary 𝑥𝑛 → 𝑥 we have 𝑓 (𝑥𝑛) → 𝑓 (𝑥), so 𝑓 is continuous at 𝑥 .

20.2.1. ♦ Behavior at Boundary

Prove Abels theorem (maybe using summation by parts?) Will re-prove in “Func-
tional Analysis” using uniform convergence.

Theorem 20.4. If a power series converges at an endpoint of its interval of convergence,
its continuous there.

This has many important corollaries for power series representations of continuous
functions: if ∑𝑎𝑛𝑥𝑛 represents 𝑓 (𝑥) on (−𝑟, 𝑟 and converges at 𝑟 then ∑𝑎𝑛𝑟𝑛 = 𝑓 (𝑟).
We will use this in later chapters to come up with beautiful formulas that converge
to 𝜋 , among other things.

20.3. Advanced

Product of Power Series

Composition and Division of Power Series (pg 499 in Amazing)

Abel Summability (p 464)
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20.4. ★ Plugging Everything into Power Series

20.4. ★ Plugging Everything into Power Series

Power series are an incredibly useful tool, both for computation and for creativity.
Since they are defined using only the operations of addition andmultiplication, power
series make sense in any mathematical domain where we (1) have an operation of +
and × and (2) have a notion of convergence.

20.5. Problems

20.5.1. Example Power Series

Power series provide us a means of describing functions via explicit formulas that we
have not been able to thus far, by allowing a limiting process in their definition. For
instance, we will soon see that the power series below is an exponential function.

Exercise 20.4. Show the power series ∑ 𝑥𝑛
𝑛! converges for all 𝑥 ∈ ℝ.

When a power series converges on a finite interval, its behavior at each endpoint
may require a different argument than the ratio test (as that will give 1, and tell you
nothing)

Example 20.1. Show the power series ∑ 𝑥𝑛
𝑛 has domain [−1, 1).

Exercise 20.5. Show the power series ∑ 𝑥𝑛
𝑛2 has domain [−1, 1].

When the radius of convergence is 0, the power series converges at a single point:

Exercise 20.6. Show the power series ∑𝑛!𝑥𝑛 diverges for all 𝑥 ≠ 0.

Exercise 20.7. Series ∑2𝑛𝑥𝑛 converges on [−1/2, 1/2). Hint: substitution 𝑦 = 2𝑥

Example 20.2. Where does ∑2𝑛𝑥3𝑛 converge? Trickier! Need to worry about the
exponents not being just 𝑛
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21. Elementary Functions

Highlights of this Chapter: we introduce the idea of defining functions
by a Functional Equation specifying how a function should behave in-
stead of specifying how to compute it. Following this approach, we give
rigorous definitions for exponentials logarithms and trigonometric func-
tions, and investigate some of their consequences. With these definitions
in hand, we are able to define the field of Elementary Functions, familiar
from calculus and the sciences.

At the heart of real analysis is the study of functions. But which functions should
we study? Polynomials are a natural class built from the field operations, and power
series are a natural thing to look at given polynomials and the concept of a limit. But
there are many,many other functions out there, and we should wonder which among
them are worthy of our attention. Looking to history as a guide, we see millennia of
use of trigonometric functions, and centuries of use of exponentials and logarithms.
Indeed these functions are not only important to the origins of analysis but also to
its modern development. In this chapter we will not focus on how to compute such
functions, but rather on the more pressing question of how to even define them: if
all we have available to us are the axioms of a complete ordered field how do we
rigorously capture aspects of circles in the plane (trigonometry) or continuous growth
(exponentials)? The key is the idea of a functional equation: something that will let
us define a function by how it behaves, instead of by directly specifying a formula to
compute it.

21.1. Exponentials & Logs

Definition 21.1 (The Law of Exponents). A function 𝐸∶ ℝ → ℝ satisfies the law of
exponents if for every 𝑥, 𝑦 ∈ ℝ

𝐸(𝑥 + 𝑦) = 𝐸(𝑥)𝐸(𝑦)
An exponential function is a continuous nonconstant solution to the law of exponents.

Definition 21.2 (The Law of Logarithms). A function 𝐿 satisfies the law of logarithms
if for every 𝑥, 𝑦 > 0,

𝐿(𝑥𝑦) = 𝐿(𝑥) + 𝐿(𝑦)
A logarithm is a continuous nonconstant solution to the law of logarithms.
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21. Elementary Functions

21.1.1. Properties of Exponentials

Example 21.1. If 𝐸 satisfies the law of exponents and evaluates to zero at any point,
then 𝐸 is the zero function.

Proof. Let 𝐸 be an exponential function and assume there is some 𝑧 ∈ ℝ such that
𝐸(𝑧) = 0. Then for any 𝑥 ∈ ℝ we may write 𝑥 = 𝑥 − 𝑧 + 𝑧 = (𝑥 − 𝑧) + 𝑧 = 𝑦 + 𝑧 for
𝑦 = 𝑥 − 𝑧 ∈ ℝ. Evaluating 𝐸(𝑥) using the law of exponents,

𝐸(𝑥) = 𝐸(𝑦 + 𝑧) = 𝐸(𝑦)𝐸(𝑧) = 𝐸(𝑦) ⋅ 0 = 0

Example 21.2. If 𝐸(𝑥) is an exponential and 𝑠 ≠ 0 is a real number, then 𝑥 ↦ 𝐸(𝑠𝑥)
is also an exponential function.

Exercise 21.1. If 𝐿(𝑥) is an logarithm and 𝑠 ≠ 0 is a real number, then 𝑥 ↦ 𝐿(𝑥)/𝑠 is
also an logarithm function.

Some of the most useful consequences of the law of exponents are a collection of
results that let us express exponentials as powers for certain inputs. The following
collection of propositions and exercises guide us through the most general case: that
if 𝑥 ∈ ℝ and 𝑟 is any rational number, we can compute 𝐸(𝑟𝑥) in terms of 𝐸(𝑥) as
𝐸(𝑟𝑥) = 𝐸(𝑥)𝑟 .

Proposition 21.1 (Exponentials on ℕ). Let 𝐸(𝑥) be any exponential function and 𝑛 ∈
ℕ. Then 𝐸(𝑛𝑥) = 𝐸(𝑥)𝑛 .

Exercise 21.2 (Exponentials onℤ). Let 𝐸(𝑥) be an exponential with base 𝑎 and 𝑛 ∈ ℤ.
Then 𝐸(𝑛𝑥) = 𝐸(𝑥)𝑛 .

Proposition 21.2 (Exponentials and 1/𝑛). Let 𝐸(𝑥) be an exponential with base 𝑎 and
𝑛 ∈ ℕ. Then 𝐸(𝑥/𝑛) = 𝐸(𝑥)1/𝑛 .

Exercise 21.3 (Exponentials on ℚ). Let 𝐸(𝑥) be an exponential with base 𝑎 and 𝑟 ∈ ℚ.
Then 𝐸(𝑟𝑥) = 𝐸(𝑥)𝑟 .

Corollary 21.1 (Exponentials that agree at a point). If 𝐸, 𝐹 are two exponential func-
tions which take the same value at any nonzero 𝑥 ∈ ℝ, then they are equal.

Proposition 21.3. Let 𝐸 be an exponential, then the range of 𝐸 is

Exercise 21.4 (Convexity of exponentials). Prove that exponential functions are con-
vex (Definition 5.8): their secant lines lie above their graphs.
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21.1. Exponentials & Logs

One can prove analogous results for logarithms, which we leave as an exercise:

Exercise 21.5. Let 𝐿(𝑥) be a logarithm and 𝑟 ∈ ℚ a rational number. Then 𝐿(𝑥 𝑟 ) =
𝑟𝐿(𝑥).

Corollary 21.2. For any 𝑥 > 0 and real 𝑎 ∈ ℝ, if 𝐿 is a logarithm 𝐿(𝑥𝑎) = 𝑎𝐿(𝑥).

Proof. Let 𝑎 ∈ ℝ and 𝑟𝑛 → 𝑎 be a sequence of rationals converging to 𝑎. By defini-
tion 𝑥𝑎 = lim 𝑥 𝑟𝑛 , and by Exercise 21.5, we know 𝐿(𝑥 𝑟𝑛 ) = 𝑟𝑛𝐿(𝑥). Using these and
continuity,

𝐿(𝑥𝑎) = 𝐿(lim 𝑥 𝑟𝑛 ) = lim 𝐿(𝑥 𝑟𝑛 ) = lim 𝑟𝑛𝐿(𝑥) = 𝑎𝐿(𝑥)

This implies something about the range of a logarithm: given any 𝑥 where 𝐿(𝑥) ≠ 0
the range must contain all multiples of 𝐿(𝑥), which is the entire real line!

Corollary 21.3. If 𝐿 is a logarithm function, its range is the entire real line ℝ.

21.1.2. Existence of Exponentials & Logs

The properties above showed us how to compute 𝐸 on rational multiples of a given
input 𝑥 as powers: we can use this to express the exponential function itself in terms
of powers of a fixed base.

Definition 21.3 (The Base of an Exponential). If 𝐸 is any exponential function, its
value at 1 is called its base.

Using this terminology, we can rephrase Exercise 21.3 to say that if 𝐸 is an exponential
of base 𝑎, and 𝑟 ∈ ℚ then

𝐸(𝑟) = 𝐸(1)𝑟 = 𝑎𝑟

So, on rational inputs, an exponential function is completely determined by its base
as powers of that base.

To prove the existence of an exponential function

Prove 𝑎𝑥 is uniformly continuous on the rational numbers, apply continuous exten-
sion.

Theorem 21.1 (The Existence of Exponentials). For any base 𝑎 > 0, the function
𝐸(𝑥) = 𝑎𝑥 , defined as the continuous extension of 𝑝/𝑞 ↦ 𝑎𝑝/𝑞 from ℚ to ℝ, is an
exponential function.
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21. Elementary Functions

Even better, this gives a complete classification of exponential functions

Proposition 21.4. Let 𝐸 be any exponential function. Then 𝐸(𝑥) = 𝑎𝑥 for some 𝑎 ∈ ℝ.

This is a big deal! Starting from the single property of the law of exponents we com-
pletely characterized the continuous nonconstant solutions, rigorously justifying the
existence of exponential functions. To do so we used several tools that we’ve devel-
oped over the course, from the density of rationals to the existence of rational powers,
limits, and continuous extension theorems. However, while we now rigorously know
of their existence, we are no closer to being able to compute specific values, such as 2𝜋 .
This will require further work developing a power series for exponentials, to come.
For now, we focus on the theoretical implications of their existence, and use this to
conclude the existence of logarithm functions.

Proposition 21.5. Let 𝐸 be an exponential function. Then 𝐸 is monotone, and hence
invertible.

Proof. We work in the case that the base is greater than 1: the remaining case is
similar, and left as an exercise. Since 𝐸 is continuous, by Proposition 19.2 its enough
to prove that 𝐸 is monotone on rational inputs. So let Let 𝑥 < 𝑦 be rational; we wish
to show that 𝐸(𝑦) > 𝐸(𝑥) or equivalently that 𝐸(𝑦)/𝐸(𝑥) > 1. Write 𝑦 = 𝑥 + 𝑧 for
𝑧 > 0, and observe 𝐸(𝑦) = 𝐸(𝑥 + 𝑧) = 𝐸(𝑥)𝐸(𝑧) so 𝐸(𝑦)/𝐸(𝑥) = 𝐸(𝑧) and thus it
suffices to prove that for 𝑧 > 0 that 𝐸(𝑧) > 1. Since 𝑥, 𝑦 ∈ ℚ so is 𝑧, so 𝑧 = 𝑝/𝑞 and
we only need to see 𝐸(𝑝/𝑞) > 1.
But 𝐸(𝑝/𝑞) = 𝐸(1)𝑝/𝑞 , and as 𝐸(1) > 1 (by assumption) it follows that 𝐸(1)𝑝 > 1 and
hence that (𝐸(1)𝑝)1/𝑞 > 1, so we are done. Thus 𝐸 is strictly monotone increasing, so
1-1, and invertible.

Theorem 21.2 (Exponentials and Logarithms are Inverses). Let 𝐸(𝑥) be an exponen-
tial function. Then its inverse function is a logarithm.

Proof. Let 𝐸 be an exponential function, and 𝐿 be its inverse. Because 𝐸 is continuous,
Theorem 18.4 implies that 𝐿 is also continuous and nonconstant, so we just need to
show 𝐿 satisfies the law of logarithms. Since the range of 𝐸 is (0, ∞) this means we
must check for any 𝑎, 𝑏 > 0 that 𝐿(𝑎𝑏) = 𝐿(𝑎) + 𝐿(𝑏).
With 𝑎, 𝑏 in the range fo 𝐸 we may find 𝑥, 𝑦 with 𝐸(𝑥) = 𝑎 and 𝐸(𝑦) = 𝑏, and (by the
definition of 𝐿 as the inverse) 𝐿(𝑎) = 𝑥 and 𝐿(𝑏) = 𝑦 . By the law of exponents for 𝐸
we see 𝑎𝑏 = 𝐸(𝑥)𝐸(𝑦) = 𝐸(𝑥 + 𝑦), and as 𝐿 and 𝐸 are inverses, 𝐿(𝐸(𝑥 + 𝑦)) = 𝑥 + 𝑦 .
Putting this all together gives what we need:

𝐿(𝑎𝑏) = 𝐿(𝐸(𝑥)𝐸(𝑦)) = 𝐿(𝐸(𝑥 + 𝑦)) = 𝑥 + 𝑦 = 𝐿(𝑎) + 𝐿(𝑏)
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21.2. Trigonometric Functions

This simple argument already tells us a lot: we see that many logarithm functions
must exist (the inverse of any exponential)! In light of this its natural to define the
base of a logarithm in terms of its corresponding exponential: if 𝐸 has base 𝑎 it sends
1 to 𝑎, so its inverse should send 𝑎 to 1.

Definition 21.4. The base of a logarithm 𝐿 is the real number 𝑎 such that 𝐿(𝑎) = 1.

We should check this definition makes sense: first since the range of every logarithm
is ℝ, there is always at least one input sent to 1. To uniquely pick out a base requires
there is only 1, which follows immediately if we can check that a logarithm is mono-
tone.

Exercise 21.6. Following the style of argument in Proposition 21.5, show that any
logarithm function 𝐿 is strictly monotone.

We already know that there exists one logarithm of every positive base, as the inverse
of the corresponding exponential. But could there be other, yet-undiscovered solu-
tions to the law of logarithms? In fact there are not; we can prove (using continuity
and density) that a logarithm function is completely determined by its base, giving a
complete classification of logarithms.

Exercise 21.7. If 𝐿, 𝐺 are two logarithm functions with the same base, then they are
equal everywhere

Corollary 21.4 (The Existence of Logarithms). Logarithm functions exist, and every
logarithm is the inverse of an exponential.

21.2. Trigonometric Functions

Motivation for functional Equation definition: a diagram with sine addi-
tion/subtraction.

Definition 21.5 (Angle Identities). A pair of two functions (𝑐, 𝑠) are trigonometric if
they are a continuous nonconstant solution to the angle identities

𝑠(𝑥 − 𝑦) = 𝑠(𝑥)𝑐(𝑦) − 𝑐(𝑥)𝑠(𝑦)

𝑐(𝑥 − 𝑦) = 𝑐(𝑥)𝑐(𝑦) + 𝑠(𝑥)𝑠(𝑦)

Given this definition of trigonometric functions modeling sine and cosine, we can
define the auxilliary trigonometric functions familiar from precalculus:
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21. Elementary Functions

Definition 21.6 (Other Trigonometric Functions). Given a trigonometric pair 𝑠, 𝑐 we
define the tangent function 𝑡(𝑥) = 𝑠(𝑥)/𝑐(𝑥), as well as the secant 1/𝑐(𝑥), cosecant
1/𝑠(𝑥) and cotangent 1/𝑡(𝑥).

Just like for exponentials and logs we don’t expect this to pick out a unique pair of
functions, but rather there many be many solutions to the angle identities (corre-
sponding to different units we could measure angles with)

Exercise 21.8. Prove that if 𝑠(𝑥), 𝑐(𝑥) are a trigonometric pair then so are 𝑠(𝑘𝑥), 𝑐(𝑘𝑥)
for any constant 𝑘 > 0.

21.2.1. Trigonometric Identities

A good warm-up to functional equations is using them to prove some identities! I’ll
do the first one for you

Lemma 21.1 (Values at Zero). If 𝑠, 𝑐 are trigonometric, then we can calculate their
values at 0:

𝑠(0) = 0 𝑐(0) = 1

Proof. Setting 𝑥 = 𝑦 in the first immediately gives the first claim

𝑠(0) = 𝑠(𝑥 − 𝑥) = 𝑠(𝑥)𝑐(𝑥) − 𝑐(𝑥)𝑠(𝑥) = 0

Evaluating the second functional equation also at 𝑥 = 𝑦
𝑐(0) = 𝑐(𝑥 − 𝑥) = 𝑐(𝑥)𝑐(𝑥) + 𝑠(𝑥)𝑠(𝑥) = 𝑐(𝑥)2 + 𝑠(𝑥)2

From this we can see that 𝑐(0) ≠ 0, as if it were, we would have 𝑐(𝑥)2+𝑠(𝑥)2 = 0: since
both 𝑐(𝑥)2 and 𝑠(𝑥)2 are nonnegative this implies each are zero, and so we would have
𝑐(𝑥) = 𝑠(𝑥) = 0 are constant, contradicting the definition. Now, plug in 0 to what
we’ve derived, and use that we know 𝑠(0) = 0

𝑐(0) = 𝑐(0)2 + 𝑠(0)2 = 𝑐(0)2

Finally, since 𝑐(0) is nonzero wemay divide by it, which gives 𝑐(0) = 1 as claimed.

An important corollary showed up during the proof here, when we observed that
𝑐(0) = 𝑐(𝑥)2 + 𝑠(𝑥)2: now that we know 𝑐(0) = 1, we see that (𝑐, 𝑠) satisfy the
Pythagorean identity!

Corollary 21.5 (Pythagorean Identity). If 𝑠, 𝑐 are trigonometric, then for every 𝑥 ∈ ℝ
𝑠(𝑥)2 + 𝑐(𝑥)2 = 1
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21.2. Trigonometric Functions

Continuing this way, we can prove many other trigonometric identities: for instance,
the double angle identity (which will be useful to us later)

Exercise 21.9 (Evenness and Oddness). If 𝑠, are trigonometric, then 𝑠 is odd and 𝑐 is
even:

𝑠(−𝑥) = −𝑠(𝑥) 𝑐(−𝑥) = 𝑐(𝑥)

Exercise 21.10 (Angle Sums). If 𝑠, 𝑐 are trigonometric, then for every 𝑥 ∈ ℝ
𝑠(𝑥 + 𝑦) = 𝑐(𝑥)𝑠(𝑦) + 𝑠(𝑥)𝑐(𝑦)

𝑐(𝑥 + 𝑦) = 𝑐(𝑥)𝑐(𝑦) − 𝑠(𝑥)𝑠(𝑦)

Setting 𝑥 = 𝑦 in the above yields as corollaries the double angle identies

Corollary 21.6 (Double Angles). If 𝑠, 𝑐 satisfy the angle sum identities, then for any
𝑥 ∈ ℝ,

𝑠(2𝑥) = 2𝑠(𝑥)𝑐(𝑥)

Another useful identity derivable from this work is the half angle identity

Lemma 21.2 (Half Angles). If 𝑠, 𝑐 are trigonometric functions, then

𝑐(𝑥)2 = 1 + 𝑐(2𝑥)
2

Proof. Using the angle sum identity we see

𝑐(2𝑥) = 𝑐(𝑥)𝑐(𝑥) − 𝑠(𝑥)𝑠(𝑥) = 𝑐(𝑥)2 − 𝑠(𝑥)2

Then applying the pythagorean identity

𝑐(2𝑥) = 𝑐(𝑥)2 − 𝑠(𝑥)2
= 𝑐(𝑥)2 − (1 − 𝑐(𝑥)2)
= 2𝑐(𝑥)2 − 1

Re-arranging yields the claimed identity.

Exercise 21.11. If 𝑠, 𝑐 are trigonometric functions, prove that

𝑠(𝑥)2 = 1 − 𝑐(2𝑥)
2
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21. Elementary Functions

These two identities are often rewritten by replacing 𝑥 with 𝑥/2 and taking a square
root:

𝑐 (𝑥2 ) = √
1 + 𝑐(𝑥)

2 𝑠 (𝑥2 ) = √
1 − 𝑐(𝑥)

2
EXERCISE: VIETE FORMULA USING DOUBLE ANGLE FOR AN ARBITRARY TRIG
PAIR S,C (PAGE 381 IN AMAZING, ADPATED)

21.2.2. Periodicity

But to do so, we first need to show the functions even have a period. Why must
solutions to the angle identities be periodic?

Lemma 21.3. Let 𝑐, 𝑠 be a trigonometric pair. Then 𝑐 has a root.

Proof. Since the cosine is not constant and 𝑐(0) = 1, there must be some 𝑡0 for which
𝑐(𝑡0) ≠ 0. Since 𝑐2 + 𝑠2 = 1 we see that −1 ≤ 𝑐(𝑥) ≤ 1 so 𝑐(𝑡0) < 1.
If 𝑐(𝑡0) is negative, we are done by the intermediate value theorem - there is a zero
between 0 and 𝑡0. So, we may assume 0 < 𝑐(𝑡0) < 1, and define the sequence

𝑐𝑛 = 𝑐(2𝑛𝑡0)

To show 𝑐(𝑥) is eventually negative (and thus, has a root by the intermediate value
theorem argument) it suffices to see that 𝑐𝑛 is eventually negative; and thus that 𝐿 =
inf{𝑐𝑛} is negative (note the infimum exists as the set {𝑐𝑛} is bounded below by −1).
First, notice that the half angle identity implies 2𝑐20 − 1 = 𝑐1. For 𝑥 ∈ (0, 1), we see
2𝑥2−𝑥 −1 is negative: plugging in 𝑐0 yields 2𝑐20 −𝑐0−1 < 0, or 𝑐1 = 2𝑐20 −1 < 𝑐0. Thus,
𝑐0 is not the smallest term in our sequence, and we can truncate it without changing
the infimum:

inf𝑛≥0{𝑐𝑛} = inf𝑛≥0{𝑐𝑛+1}

Using again the half angle identity, 2𝑐2𝑛 − 1 = 𝑐𝑛+1, so

𝐿 = inf{𝑐𝑛} = inf{𝑐𝑛+1} = inf{2𝑐2𝑛 − 1} = 2 inf{𝑐2𝑛 } − 1

If our sequence were never negative, then inf{𝑐𝑛} = 𝐿 ≥ 0 and inf{𝑐2𝑛 } = 𝐿2. Combin-
ing with the above, this implies 𝐿 = 2𝐿2 − 1 whose only positive solution is 𝐿 = 1
(which we know is not the infimum, as 𝑐0 < 1). Thus, this is impossible, so it must be
that 𝐿 < 0, and our sequence eventually reaches a negative term.
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Applying the intermediate value theorem to on the interval between 𝑐(𝑡0) > 0 and
𝑐(2𝑛𝑡0) < 0 furnishes a zero.

This shows that cosine has a zero somewhere. Because it will be convenient below, we
carry this reasoning a little farther and show that cosine actually has a first positive
zero.

Lemma 21.4. There is a 𝑧 > 0 such that 𝑐(𝑧) = 0, but the cosine is positive on the
interval [0, 𝑧): that is, 𝑧 is the first zero of the cosine.

Proof. Let 𝑥 be a zero of the cosine function. Since the cosine is even we know −𝑥 is
also a zero: and, since 𝑐(0) = 1we know neither 𝑥 ≠ 0 so at least one of ±𝑥 is positive.
Thus, the cosine has at least one positive real root.

Let 𝑅 = {𝑥 > 0 ∣ 𝑐(𝑥) = 0} be the set of all positive roots of the cosine function. We
prove this set has a minimum element, which is the first zero. Since 𝑅 is nonempty
(our first observation) and bounded below by zero (by definition) completeness im-
plies 𝑟 = inf𝑅 exists. For every 𝑛 ∈ ℕ, since 𝑟 + 1/𝑛 is not an upper bound we may
choose some 𝑥𝑛 ∈ ℝ with 𝑟 ≤ 𝑥𝑛 ≤ 𝑟 + 1/𝑛. By the squeeze theorem 𝑥𝑛 → 𝑟 , and by
continuity of the cosine this implies

lim cos(𝑥𝑛) = 𝑐(lim 𝑥𝑛) = 𝑐(𝑟)

However each 𝑥𝑛 is a zero of cosine by definition! Thus this is the constant sequence
0, 0, … , which converges to 0. All together this means 𝑐(𝑟) = 0, and so 𝑟 ∈ 𝑅. But if
the infimum is an element of the set then that set has a minimum element, so 𝑟 is the
smallest positive zero of the cosine!

It turns out that simply knowing the existence of a single zero of the cosine function
is enough to resolve everything.

Exercise 21.12 (Periodicity of 𝑠, 𝑐). The functions 𝑠(𝑥) and 𝑠(𝑥) are periodic, with the
same period 𝑇 > 0.
Hint This period is four times the first zero of cosine: show that for this 𝑃 that 𝑐(𝑇 ) = 1
and 𝑠(𝑇 ) = 0, and then that 𝑐(𝑥 + 𝑇 ) = 𝑐(𝑥) and 𝑠(𝑥 + 𝑇 ) = 𝑠(𝑥) for all 𝑥 ∈ ℝ.

It is customary and convenient to work with the half period 𝑃 = 𝑇/2 of a trigonomet-
ric pair instead of the period itself. This has a nice intrinsic characterization in terms
of the functions

Exercise 21.13. Let 𝑠, 𝑐 be a trigonometric pair with half period 𝑃 . Then 𝑃 is the first
positive zero of 𝑠(𝑥).
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21. Elementary Functions

We can also use the work done to prove periodicity to show that a trigonometric pair
consists of two copies of the same function, shifted with respect to one another

Exercise 21.14. Let 𝑠, 𝑐 be a trigonometric pair of half period 𝑃 . Then
𝑠(𝑥 + 𝑃) = 𝑐(𝑥)

21.2.3. Existence of Trigonometric Functions

So far we have computed many properties of the trigonometric functions if they exist
but we still need to confront existence. Like for exponentials, we study their behavior
on a dense set and use continuous extension theorems. We can use earlier work done
on the trigonometric identities to understand their values on a dense set of dyadic
rationals:

Exercise 21.15. Prove that if 𝑠, 𝑐 are a trigonometric pair, the values 𝑐(𝑥), 𝑠(𝑥) at
some fixed 𝑥 ∈ ℝ fully determine the values of 𝑐, 𝑠 on dyadic rational multiples of 𝑥 ,
or points of the form 𝑚𝑥/2𝑛 for 𝑚 ∈ ℤ, 𝑛 ∈ ℕ.

This has a nice corollary; that if there is a trigonometric pair of period 𝑃 then it is
unique!

Proposition 21.6 (Uniqueness Given a Single Value). Continuous solutions to the
angle sum identities are determined by their value at any nonzero input: in particular,
there is a unique trigonometric pair for each possible period 𝑃 > 0.

Proof. Let 𝔻 be the set of dydaic rationals, and choose some nonzero 𝑥 ∈ ℝ. Then
𝑥𝔻 = {𝑥𝑚/2𝑛 ∣ 𝑚 ∈ ℤ, 𝑛 ∈ ℕ} is a dense subset of ℝ, and the values of 𝑐, 𝑠 on 𝑥𝔻
are fully determined by the values 𝑐(𝑥), 𝑠(𝑥) by Exercise 21.15. And hence continuity
fully determines the values of 𝑐, 𝑠 at any other inputs.

By the ability to rescale trigonometric functions (Exercise 21.8), we can prove the ex-
istence of trig functions with arbitrary period so long as we can show at least one
trigonometric pair exists. So here for simplicity we will focus on trigonometric func-
tions with half period 1, and prove a useful lemma:

Lemma 21.5. Let 𝑠, 𝑐 satisfy the angle sum identities and have 𝑠(1) = 0, 𝑐(1) = −1.
Then for any dyadic rational 𝑑 = 𝑚/2𝑛 ∈ [0, 1], we have

𝑠(𝑑)
𝑑 < 4

Proposition 21.7. Let 𝑠, 𝑐 satisfy the angle sum identities with 𝑠(1) = 0, 𝑐(1) = −1.
Then 𝑠 is uniformly continuous on the dyadic rationals.
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Proof. Choose 𝜖 > 0, and set 𝛿 = 𝜖/4. Given any 𝑥, 𝑦 with |𝑥 −𝑦| < 𝛿 , we aim to show
that |𝑠(𝑥) − 𝑠(𝑦)| < 𝜖. Its helpful to rewrite with a change of variables 𝑢 = 𝑥+𝑦

2 and
𝑣 = 𝑥−𝑦

2 , so 𝑥 = 𝑢 + 𝑣 and 𝑦 = 𝑢 − 𝑣 . Then applying the angle identites we see

𝑠(𝑥) − 𝑠(𝑦) = 𝑠(𝑢 + 𝑣) − 𝑠(𝑢 − 𝑣)
= 𝑠(𝑢)𝑐(𝑣) + 𝑠(𝑣)𝑐(𝑢) − [𝑠(𝑢)𝑐(𝑣) + 𝑠(𝑣)𝑐(𝑢)]
= 2𝑠(𝑣)𝑐(𝑢)

Since |𝑐(𝑢)| ≤ 1, this implies

|𝑠(𝑥) − 𝑠(𝑦)| = |2𝑠(𝑣)𝑐(𝑢)| ≤ 2|𝑠(𝑣)|

By the above lemma we know a bound for 𝑠: for any dyadic rational 𝑣 ∈ [−1, 1],
|𝑠(𝑣)| ≤ 4|𝑣 | and thus

|𝑠(𝑥) − 𝑠(𝑦)| ≤ 2|𝑠(𝑣)| ≤ 8|𝑣 | = 8 | 𝑥 − 𝑦
2 | = 4|𝑥 − 𝑦|

But |𝑥 − 𝑦| < 𝛿 which implies 4|𝑥 − 𝑦| < 4𝛿 = 𝜖, as required.

Theorem 21.3. There exists a trigonometric pair of half period 1.

Proof. Define 𝑠, 𝑐 on the dyadic rationals by setting 𝑠(1) = 0, 𝑐(1) = −1 and imposing
the angle sum identities. By the previous proposition, the resulting values of 𝑠 de-
fine a uniformly continuous function, and hence 𝑐(𝑥) = 𝑠(𝑥 + 1/2) is also uniformly
continuous on the dyadic rationals. Since this is a dense subset of ℝ, the continu-
ous extension theorem applies and there exists a continuous extension ̃𝑠, ̃𝑐 of these
functions to the entire real line.

It remains only to check that this continuous extension satisfies the angle sum iden-
tities. Let 𝑥, 𝑦 ∈ ℝ be arbitrary, and by density we may choose sequences 𝑥𝑛 → 𝑥 ,
𝑦𝑛 → 𝑦 of dyadic rationals. Then 𝑥𝑛 −𝑦𝑛 → 𝑥 −𝑦 and we may compute ̃𝑐(𝑥 − 𝑦) using
continuity:

̃𝑐(𝑥 − 𝑦) = ̃𝑐(lim 𝑥𝑛 − 𝑦𝑛) = lim ̃𝑐(𝑥𝑛 + 𝑦 − 𝑛) = lim 𝑐(𝑥𝑛 − 𝑦𝑛)

Now we know that 𝑐, 𝑠 themselves satisfy the angle sum identites on the dyadic ratio-
nals, so

𝑐(𝑥𝑛 − 𝑦𝑛) = 𝑐(𝑥𝑛)𝑐(𝑦𝑛) + 𝑠(𝑥𝑛)𝑠(𝑦𝑛)
and using the limit laws and continuity we see
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lim 𝑐(𝑥𝑛 + 𝑦𝑛) = lim [𝑐(𝑥𝑛)𝑐(𝑦𝑛) + 𝑠(𝑥𝑛)𝑠(𝑦𝑛)]
= lim [𝑐(𝑥𝑛)𝑐(𝑦𝑛)] + lim [𝑠(𝑥𝑛)𝑠(𝑦𝑛)]
= [lim 𝑐(𝑥𝑛)][lim 𝑐(𝑦𝑛)] + [lim 𝑠(𝑥𝑛)][lim 𝑠(𝑦𝑛)]

Since 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 these final limits equal the value of the continuous exten-
sions ̃𝑠, ̃𝑐 there:

[lim 𝑐(𝑥𝑛)][lim 𝑐(𝑦𝑛)] + [lim 𝑠(𝑥𝑛)][lim 𝑠(𝑦𝑛)] = ̃𝑐(𝑥) ̃𝑐(𝑦) + ̃𝑠(𝑥) ̃𝑠(𝑦)

Putting this all together, we see that ̃𝑠, ̃𝑐 satisfy the angle sum identity

̃𝑐(𝑥 − 𝑦) = ̃𝑐(𝑥) ̃𝑐(𝑦) + ̃𝑠(𝑥) ̃𝑠(𝑦)

as required. An analogous argument shows the same for ̃𝑠(𝑥 − 𝑦); thus these form a
trigonometric pair.

Theorem 21.4. There exists a unique trigonometric pair 𝑠, 𝑐 of functions with half
period 𝑃 > 0 for any 𝑃 .

Proof. Let 𝑆(𝑥), 𝐶(𝑥) be the trigonometric pair of half period 1. Then 𝑠(𝑥) = 𝑆(𝑥/𝑃)
and 𝑐(𝑥) = 𝐶(𝑥/𝑃) are a trigonometric pair (since they are rescalings of a known
pair: Exercise 21.8) and have 𝑠(𝑃) = 𝑆(𝑃/𝑃) = 𝑆(1) = 0, 𝑐(𝑃) = 𝐶(𝑃/𝑃) = 𝐶(1) = −1,
implying 𝑃 is the half period as claimed.

21.3. ★ The Class of Elementary Functions

21.4. Problems

21.4.1. Infinite Products and Sums

As an application of our study of exponentials and logs, we see that the theory of
infinite products reduces to that of inifnite sums. Indeed, let 𝑎𝑘 be a sequence of
positive terms defining the infinite product ∏𝑘 𝑎𝑘 as the limit of the partial products
𝑝𝑛 = ∏𝑘≤𝑛 𝑎𝑘 .
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21.4.2. Trigonometric

Evaluate certain trig values in terms of the period.

Exercise 21.16 (Summing sin 𝑘𝑥). Prove the following trigonometric identity follow-
ing the steps below:

𝑛
∑
𝑘=1

sin(𝑘𝑥) =
sin ( 𝑛

2𝑥) sin ( 𝑛+1
2 𝑥)

sin 𝑥
2

• Use angle sum and difference identities to prove

2 sin(𝑘𝑥) sin ( 𝑥
2 ) = cos ((𝑘 − 1

2 )𝑥) − cos ((𝑘 + 1
2 )𝑥)

• For 𝑘 ∈ {1, … , 𝑛} sum these up as a telescoping series

• Again use sum and difference identites to show the right hand side cos ( 𝑥
2 ) −

cos ((𝑛 + 1
2 )𝑥) is equal to 2 sin ( 𝑛

2𝑥) sin ( 𝑛+1
2 𝑥)

• Divide by sin(𝑥/2) to get ∑1≤𝑘≤𝑛 sin(𝑘𝑥) alone.
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Part V.

Derivatives
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• In Chapter 22 we define the derivative as a limit of difference quotients
• In Chapter 23 we investigate the basic properties of differentiable functions and
their arithmetic

• In Chapter 24 we prove the Mean Value Theorem, a cornerstone result in real
analysis

• In Chapter 25 we study a wide range of applications of the mean value theorem,
from understanding maxima and minima to L’Hospitals rule.

• In Chapter 26 we investigate the differentiability of power series
• In Chapter 27 we use calculus to single out the natural exponential, natural
logarithm, and natural units (radians) for the trigonometric functions.
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22. Definition

Highlights of this Chapter: we define the derivative and compute a few
examples directly from the definition.

Finally - on to some calculus! Here we will define the derivative, and study its prop-
erties. This may sound daunting at first, remembering back to the days of calculus
when it all seemed so new and advanced. But hopefully, after so much exposure to
sequences and series during this course, the rigorous notion of a derivative will feel
more just like a nice application of what we’ve learned, than a whole new theory.

22.1. Difference Quotients

The derivative is defined to capture the slope of a graph at a point. Elementary algebra
tells us we can compute the slope of a line given two points as rise over run, and so
we can compute the slope of a secant line of a function between the points 𝑎, 𝑡 as

𝑓 (𝑡) − 𝑓 (𝑎)
𝑡 − 𝑎

The derivative is the limit of this, as 𝑡 → 𝑎:

Definition 22.1 (The Derivative). Let 𝑓 be a function defined on an open interval
containing 𝑎. Then 𝑓 is differentiable at 𝑎 if the following limit of difference quotients
exists. In this case, we define the limiting value to be the derivative of 𝑓 at 𝑎.

𝑓 ′(𝑎) = 𝐷𝑓 (𝑎) = lim𝑡→𝑎
𝑓 (𝑡) − 𝑓 (𝑎)

𝑡 − 𝑎

Exercise 22.1 (Equivalent Formulation). Prove that we may alternatively use the
following limit definition to calculate the derivative:

𝑓 ′(𝑎) = limℎ→0
𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)

ℎ
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22. Definition

Example 22.1. The function 𝑓 (𝑥) = 𝑥2 is differentiable at 𝑥 = 2.
This is a classic problem from calculus 1, whose argument is already pretty much
rigorous! We wish to compute the limit

lim𝑥→2
𝑥2 − 4
𝑥 − 2

So, we choose an arbitrary sequence 𝑥𝑛 with 𝑥𝑛 ≠ 2 but 𝑥𝑛 → 2 and compute

lim
𝑥2𝑛 − 4
𝑥𝑛 − 2 = lim

(𝑥𝑛 + 2)(𝑥𝑛 − 2)
𝑥𝑛 − 2 = lim 𝑥𝑛 + 2

Where the arithmetic is justified since 𝑥𝑛 ≠ 2 for all 𝑛 by definition, so everything is
defined. But now, as 𝑥𝑛 → 2 we can just use the limit laws to see

lim 𝑥𝑛 + 2 = 2 + 2 = 4

Since 𝑥𝑛 was arbitrary, this holds for all such sequences, so the limit exists and equals
4. Because this limit defines the derivative, we have that 𝑓 is differentiable at 2 and

𝑓 ′(2) = 4

Exercise 22.2. Compute the derivative of 𝑓 (𝑥) = 𝑥3 at an arbitrary point 𝑎 ∈ ℝ,
directly from the definition and show 𝑓 ′(𝑎) = 3𝑎2.

22.1.1. One-Sided Derivative

As defined above, the derivative is a limit 𝑡 → 𝑎, which depends on values of 𝑡 both
greater than and less than 𝑎. But sometimes its useful to have a notion of the deriva-
tive that only cares about one sided limits (for instance, when computing the slope
at the end of an interval). We give the analogous definition below

Definition 22.2 (One Sided Derivatives). Let 𝑓 be a function defined at 𝑎; then its
1-sided derivatives are defined by the following limits, when they exist

𝐷+𝑓 (𝑎) = lim
𝑡→𝑎+

𝑓 (𝑡) − 𝑓 (𝑎)
𝑡 − 𝑎

𝐷−𝑓 (𝑎) = lim𝑡→𝑎−
𝑓 (𝑡) − 𝑓 (𝑎)

𝑡 − 𝑎
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22.2. Derivative as a Function

This definition, together with our previous work on limits, implies that a function 𝑓
is differentiable if and only if its two one sided derivatives exist and are equal. This
is useful in practice, for instance in showing the non-differentiability of the absolute
value:

Exercise 22.3. Show that 𝑓 (𝑥) = |𝑥| is not differentiable at 𝑥 = 0.

The pasting lemma has a differentiable analog, which shows exactly when gluing two
pieces (like the absolute value) is differentiable, and when its not.

Exercise 22.4. Let 𝑓 , 𝑔 be two continuous and differentiable functions with 𝑎 ∈ ℝ a
point such that 𝑓 (𝑎) = 𝑔(𝑎). Prove that the piecewise function

ℎ(𝑥) = {𝑓 (𝑥) 𝑥 ≤ 𝑎
𝑔(𝑥) 𝑥 > 𝑎

is differentiable at 𝑎 if and only if 𝑓 ′(𝑎) = 𝑔′(𝑎). (recall we saw such a function is
always continuous at 𝑎 in ?@exr-pasting-lemma).

One sided derivatives let us more easily prove that the derivative exists in cases where
it is easy to take limits from above and below, but not arbitrary limits. A great ex-
ample use case is when the difference quotient is monotone: then the right and left
limits exist ?@exr-monotone-limits (they are the inf and sup for any sequence, re-
spectively). When is the difference quotient monotone? One particularly useful case:
this holds whenever the function is convex

Proposition 22.1 (♦ Convexity & 1-Sided Derivatives). If 𝑓 is convex then at any
point 𝑎 ∈ ℝ the one sided difference quotients 𝐷−𝑓 (𝑎) and 𝐷+𝑓 (𝑎) both exist.

Exercise 22.5. These one sided difference quotients need not be equal, however.
Prove the convex function 𝑓 (𝑥) below is not differentiable at 𝑥 = 1:

𝑓 (𝑥) = {𝑥 𝑥 ≤ 1
𝑥2 𝑥 > 1

22.2. Derivative as a Function

So far we have been discussing the derivative at a point as a number; the result of a
limiting process. But we can let this point vary, and produce a function taking in 𝑥
and outputting the derivative at 𝑥 :
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22. Definition

Definition 22.3 (The Function 𝑓 ′). Let 𝑓 be a function, and suppose that the deriva-
tive of 𝑓 exists at each point of a set𝐷 ⊂ ℝ. Thenwemay define a function 𝑓 ′ ∶ 𝐷 → ℝ
by

𝑓 ′ ∶ 𝑥 ↦ 𝑓 ′(𝑥) = lim𝑡→𝑥
𝑓 (𝑡) − 𝑓 (𝑥)

𝑡 − 𝑥

If 𝑓 ′ is continuous, 𝑓 is called continuously differentiable on 𝐷.

For example, 𝑓 (𝑥) = 𝑥3 is continuously differentiable on ℝ since by Exercise 22.2 we
see its derivative is the function 𝑥 ↦ 3𝑥2, and this is a polynomial: we proved all
polynomials are continuous in ?@exr-polynomials-continuous.

Example 22.2. While its hard to imagine a function that is differentiable at every
point but not continuously differentiable such things exist. For example

𝑓 (𝑥) = {𝑥
2 sin ( 1

𝑥2 ) 𝑥 ≠ 0
0 𝑥 = 0

Its possible to find a formula for 𝑓 ′(𝑥) when 𝑥 ≠ 0, and show that lim𝑥→0 𝑓 ′(𝑥) does
not exist (we will do this later). However one can also calculate directly the derivative
at zero: and find 𝑓 ′(0) = 0. This means lim𝑥→0 𝑓 ′(𝑥) ≠ 𝑓 ′(lim𝑥→0 𝑥) as one side does
not exist and the other is zero: thus 𝑓 ′ is not continuous at 0.

Exercise 22.6. For 𝑓 (𝑥) as above in Example 23.1, calculate 𝑓 ′(0) directly using the
limit definition. (Perhaps surprisingly, all you need to know about the sine function
here is that it is bounded between −1 and 1!)

22.3. Higher Derivatives

Since the derivative of a function yields another function, we can look at iterating
this process to produce higher derivatives

Definition 22.4 (nth Derivatives). Given a differentiable function 𝑓 , the second
derivative 𝑓 ′′ is defined as the derivative of 𝑓 ′. A function is twice differentiable
at 𝑥 if

lim𝑥→𝑎
𝑓 ′(𝑥) − 𝑓 ′(𝑎)

𝑥 − 𝑎
exists. Continuing inductively, we define the 𝑛𝑡ℎ derivative of a function at 𝑎 as the
derivative of the 𝑛 − 1𝑠𝑡 derivative of 𝑓 at 𝑎.
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22.3. Higher Derivatives

Wewill use the prime notation for small numbers of derivatives, like 𝑓 ′(𝑥), 𝑓 ′′(𝑥) and
𝑓 ′′′(𝑥). For higher derivatives it is traditional to denote via the number of derivatives
in parentheses: 𝑓 (2) = 𝑓 ′′, 𝑓 (3) = 𝑓 ′′′ and so on; so 𝑓 (47) for the 47th derivative of
𝑓 .

Proposition 22.2 (A Difference Quotient for 2nd Derivative). If 𝑓 is twice differen-
tiable at 𝑎, then

𝑓 ′′(𝑎) = limℎ→0
𝑓 (𝑎 + 2ℎ) − 2𝑓 (𝑎 + ℎ) + 𝑓 (𝑎)

ℎ2

Exercise 22.7 (A Difference Quotient for 3nd Derivative). Find a limit depending
only on 𝑓 (not 𝑓 ′ or 𝑓 ′′) which computes the third derivative

Its useful to have a notation for functions which admit 𝑘 derivatives, or infinitely
many derivatives: we give the standard one below.

Definition 22.5 (𝐶𝑘 Functions). A function is 𝑘 times differentiable on a domain 𝐷 if
𝑓 (𝑘)(𝑥) exists for all 𝑥 ∈ 𝐷. The set of all 𝑘 times differentiable functions on a domain
𝐷 is denoted 𝐶𝑘(𝐷).

Definition 22.6 (Smooth Functions). A function is called smooth at a point if its 𝑛𝑡ℎ
derivative exists for all 𝑛 ∈ ℕ. A function is smooth on a domain 𝐷 if its infinitely dif-
ferentiable at each point of 𝐷. The collection of all smooth functions on 𝐷 is denoted
𝐶∞(𝐷).
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23. Working with Derivatives

Highlights of this Chapter: we prove many foundational theorems about
the derivative that one sees in an early calculus course. We see how
to take the derivative of scalar multiples, sums, products, quotients and
compositions. We also compute - directly from the definition - the deriva-
tive of exponential functions. This leads to an important discovery: there
is a unique simplest, or natural exponential, whose derivative is itself.
This is the origin of 𝑒 in Analysis.

From the definition, we move on to confirm the basic properties of the derivative well
known and loved in introductory calculus courses. Most of these are straightforward,
the only exception whose proof requires more thought than usually let on in Calculus
I is the chain rule.

23.1. Continuity

Before jumping in we prove one small oft-useful result often not mentioned in a cal-
culus class, relating differentiability to continuity.

Theorem 23.1 (Differentiable implies Continuous). Let 𝑓 be differentiable at 𝑎 ∈ ℝ.
Then 𝑓 is continuous at 𝑎.

Proof. Since 𝑓 is differentiable at 𝑎, we know the limit of the difference quotient is
finite

lim𝑥→𝑎
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎 = 𝑓 ′(𝑎)

We also know that lim𝑥→𝑎(𝑥 − 𝑎) = 0$ So, using the limit theorems we may multiply
these together and get what we want. Precisely, let 𝑥𝑛 → 𝑎 be any sequence with
𝑥𝑛 ≠ 𝑎 for all 𝑛. Then we have
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23. Working with Derivatives

0 = (0)(𝑓 ′(𝑎))
= (lim 𝑥𝑛 − 𝑎) (lim 𝑓 (𝑥𝑛) − 𝑓 (𝑎)

𝑥𝑛 − 𝑎 )

= lim ((𝑥𝑛 − 𝑎)𝑓 (𝑥𝑛) − 𝑓 (𝑎)
𝑥𝑛 − 𝑎 )

= lim (𝑓 (𝑥𝑛) − 𝑓 (𝑎))

Thus lim(𝑓 (𝑥𝑛) − 𝑎) = 0 so by the limit theorems we see lim 𝑓 (𝑥𝑛) = 𝑎. Since 𝑥𝑛 was
arbitrary with 𝑥𝑛 ≠ 𝑎 this holds for any such sequence, we see that 𝑓 is continuous
at 𝑎 using the sequence definition.

Remark 23.1. There is a little gap not explicitly spelled out at the end of the proof
above, that we should fill in now (to assure ourselves this style of reasoning always
works). We just proved that for sequences 𝑥𝑛 ≠ 𝑎 the property we want holds, but
continuity requires this fact for all arbitrary sequences. How do we bridge this gap?
Let 𝑦𝑛 → 𝑎 be an arbitrary sequence: then we split into the subsequences 𝑥𝑛 ≠ 𝑎 and
the subsequence of all terms = 𝑎. If either of these is finite, we can just truncate the
original sequence at a point past which all terms are of one or the other: each of these
has lim 𝑓 (𝑥𝑛) = 𝑓 (𝑎) so we are done. In the case that both are infinite, we just use
that we have separated our sequence into a union of two subsequences, each with
the same limit! Thus the overall limit exists.

Thus continuous functions must be differentiable, but what can we say about the
derivative itself? If a function is everywhere differentiable must the derivative itself
be continuous? In fact not, as the following example shows

Example 23.1. While its hard to imagine a function that is differentiable at every
point but not continuously differentiable such things exist. For example

𝑓 (𝑥) = {𝑥
2 sin ( 1

𝑥2 ) 𝑥 ≠ 0
0 𝑥 = 0

Its possible to find a formula for 𝑓 ′(𝑥) when 𝑥 ≠ 0, and show that lim𝑥→0 𝑓 ′(𝑥) does
not exist (we will do this later). However one can also calculate directly the derivative
at zero: and find 𝑓 ′(0) = 0. This means lim𝑥→0 𝑓 ′(𝑥) ≠ 𝑓 ′(lim𝑥→0 𝑥) as one side does
not exist and the other is zero: thus 𝑓 ′ is not continuous at 0.

Exercise 23.1. For 𝑓 (𝑥) as above in Example 23.1, calculate 𝑓 ′(0) directly using the
limit definition. (Perhaps surprisingly, all you need to know about the sine function
here is that it is bounded between −1 and 1!)
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23.2. Field Operations

23.2. Field Operations

Here we prove the ‘derivative laws’ of Calculus I:

23.2.1. Sums and Multiples

Theorem 23.2 (Differentiating Constant Multiples). Let 𝑓 be a function and 𝑐 ∈ ℝ.
Then if 𝑓 is differentiable at a point 𝑎 ∈ ℝ so is 𝑐𝑓 , and

(𝑐𝑓 )′(𝑎) = 𝑐 (𝑓 ′(𝑎))

Proof. Let’s use the difference quotient with 𝑎 + ℎ𝑛 to change things up: Let ℎ𝑛 → 0
be arbitrary, and we wish to compute the limit

lim
𝑐𝑓 (𝑎 + ℎ𝑛) − 𝑐𝑓 (𝑎)

ℎ𝑛
By the limit laws we can pull out the constant 𝑐, and the remainder converges to 𝑓 ′(𝑎),
as 𝑓 is assumed to be differentiable at 𝑎.

= 𝑐 lim 𝑓 (𝑎 + ℎ𝑛) − 𝑓 (𝑎)
ℎ𝑛

= 𝑐𝑓 ′(𝑎)

Because this is true for all sequences ℎ𝑛 → 0 with ℎ𝑛 ≠ 0, the limit exists, and equals
𝑐𝑓 ′(𝑎).

Theorem 23.3 (Differentiating Sums). Let 𝑓 , 𝑔 be functions which are both differen-
tiable at a point 𝑎 ∈ ℝ. Then 𝑓 + 𝑔 is also differentiable at 𝑎, and

(𝑓 + 𝑔)′(𝑎) = 𝑓 ′(𝑎) + 𝑔′(𝑎)

Exercise 23.2. Prove the differentiability rule for sums.

23.2.2. Products and Quotients

Theorem 23.4 (Differentiating Products). Let 𝑓 , 𝑔 be functions which are both differ-
entiable at a point 𝑎 ∈ ℝ. Then 𝑓 𝑔 is differentiable at 𝑎 and

(𝑓 𝑔)′(𝑎) = 𝑓 ′(𝑎)𝑔(𝑎) + 𝑓 (𝑎)𝑔′(𝑎)
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23. Working with Derivatives

Proof. Let 𝑓 , 𝑔 be differentiable at 𝑎 ∈ ℝ, and choose an arbitrary sequence 𝑎𝑛 → 𝑎.
Then we wish to compute

lim
𝑓 (𝑎𝑛)𝑔(𝑎𝑛) − 𝑓 (𝑎)𝑔(𝑎)

𝑎𝑛 − 𝑎

To the numerator we add 0 = 𝑓 (𝑎𝑛)𝑔(𝑎) − 𝑓 (𝑎𝑛)𝑔(𝑎) and regroup with algebra:

= lim
𝑓 (𝑎𝑛)𝑔(𝑎𝑛) − 𝑓 (𝑎𝑛)𝑔(𝑎) + 𝑓 (𝑎𝑛)𝑔(𝑎) − 𝑓 (𝑎)𝑔(𝑎)

𝑎𝑛 − 𝑎

= lim
𝑓 (𝑎𝑛)𝑔(𝑎𝑛) − 𝑓 (𝑎𝑛)𝑔(𝑎)

𝑎𝑛 − 𝑎 + 𝑓 (𝑎𝑛)𝑔(𝑎) − 𝑓 (𝑎)𝑔(𝑎)
𝑎𝑛 − 𝑎

Using the limit laws, we can take each of these limits individually so long as they exist
(which we will show they do). But even more, note that the first term has a common
factor of 𝑓 (𝑎𝑛) in the numerator that can be factored out, and the second a common
factor of 𝑔(𝑎). Thus, by the limit laws, we see

= (lim 𝑓 (𝑎𝑛)) (lim
𝑔(𝑎𝑛) − 𝑔(𝑎)

𝑎𝑛 − 𝑎 ) + 𝑔(𝑎) (𝑓 (𝑎𝑛) − 𝑓 (𝑎)
𝑎𝑛 − 𝑎 )

Because 𝑓 is differentiable at 𝑎, its continuous at 𝑎, and so we know lim 𝑓 (𝑎𝑛) = 𝑓 (𝑎).
The other two limits above converge to the derivatives 𝑓 ′(𝑎) and 𝑔′(𝑎) respectively.
Thus, alltogether we find the resulting limit to be

𝑓 (𝑎)𝑔′(𝑎) + 𝑓 ′(𝑎)𝑔(𝑎)

As this was the result for an arbitrary sequence 𝑎𝑛 → 𝑎 with 𝑎𝑛 ≠ 𝑎, it must be the
same for all sequences, meaning the limit exists, and

(𝑓 ⋅ 𝑔)′(𝑎) = 𝑓 (𝑎)𝑔′(𝑎) + 𝑓 ′(𝑎)𝑔(𝑎)

Exercise 23.3. Let 𝑓 be a function and 𝑎 ∈ ℝ be a point such that 𝑓 (𝑎) ≠ 0 and 𝑓 is
differentiable at 𝑎. Prove that 1/𝑓 is also differentiable at 𝑎 and

( 1
𝑓 )

′
(𝑎) = −𝑓 ′(𝑎)

𝑓 (𝑎)2
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23.3. Compositions and Inverses

Theorem 23.5 (Differentiating Quotients). Let 𝑓 , 𝑔 be a functions which are differen-
tiable at a point 𝑎 ∈ ℝ and assume 𝑔(𝑎) ≠ 0. Then the function 𝑓 /𝑔 is also differentiable
at 𝑎 and

(𝑓𝑔 )
′
(𝑎) = 𝑓 ′(𝑎)𝑔(𝑎) − 𝑓 (𝑎)𝑔′(𝑎)

𝑔(𝑎)2

Exercise 23.4. Use the Reciprocal Rule and Product Rule to prove the quotient rule.

23.3. Compositions and Inverses

23.3.1. The Chain Rule

Theorem 23.6 (The Chain Rule). If 𝑔(𝑥) is differentiable at 𝑎 ∈ ℝ and 𝑓 (𝑥) is differ-
entiable at 𝑔(𝑎) then the composition 𝑓 ∘ 𝑔 is differentiable at 𝑎, with

(𝑓 ∘ 𝑔)′(𝑎) = 𝑓 ′(𝑔(𝑎))𝑔′(𝑎)

Wish this Worked! We are taking the derivative at 𝑎, so let 𝑥𝑛 → 𝑎 wtih 𝑥𝑛 ≠ 𝑎 be
arbitrary. Then the limit defining [𝑓 (𝑔(𝑎))]′ is

lim
𝑓 (𝑔(𝑥𝑛)) − 𝑓 (𝑔(𝑎))

𝑥𝑛 − 𝑎

We multiply the numerator and denominator of this fraction by $𝑔(𝑥𝑛) − 𝑔(𝑎) and
regroup:

𝑓 (𝑔(𝑥𝑛)) − 𝑓 (𝑔(𝑎))
𝑥𝑛 − 𝑎 = 𝑓 (𝑔(𝑥𝑛)) − 𝑓 (𝑔(𝑎))

𝑥𝑛 − 𝑎
𝑔(𝑥𝑛) − 𝑔(𝑎)
𝑔(𝑥𝑛) − 𝑔(𝑎)

= lim
𝑓 (𝑔(𝑥𝑛)) − 𝑓 (𝑔(𝑎))

𝑔(𝑥𝑛) − 𝑔(𝑎)
𝑔(𝑥𝑛) − 𝑔(𝑎)

𝑥𝑛 − 𝑎

Because 𝑔 is continuous at 𝑎, we know 𝑔(𝑥𝑛) → 𝑎, and because 𝑓 is differentiable at
𝑔(𝑎)we recognize the first term here as the limit defining 𝑓 ′ at 𝑔(𝑎)! Since the second
term is the limit defining the derivative of 𝑔, both of these exist by our assumptions,
and so by the limit theorems we can compute

= (lim 𝑓 (𝑔(𝑥𝑛)) − 𝑓 (𝑔(𝑎))
𝑔(𝑥𝑛) − 𝑔(𝑎) ) (lim 𝑔(𝑥𝑛) − 𝑔(𝑎)

𝑥𝑛 − 𝑎 )

= 𝑓 ′(𝑔(𝑎))𝑔′(𝑎)
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23. Working with Derivatives

Unfortunately, this proof fails at one crucial step! Wile we do know that 𝑥𝑛 − 𝑎 ≠ 0
(in the definition of lim𝑥→𝑎 , we only choose sequences 𝑥𝑛 → 𝑎 with 𝑥𝑛 ≠ 𝑎) we do not
know that the other denominator 𝑔(𝑥𝑛) − 𝑔(𝑎) is nonzero.
If this problem could only happen finitely many times it would be no trouble - we
could just truncate the beginning of our sequence and rest assuredwe had not affected
the value of the limit. But functions - even differentiable functions - can be prettywild.
The function 𝑥2 sin(1/𝑥) (from Example 23.1) ends up equaling zero infinitely often
in any neighborhood of zero! So such things are a real concern.

Happily the fix - while tedious - is straightforward. It’s given below.

Exercise 23.5. We define the auxiliary function 𝑑(𝑦) as follows:

𝑑(𝑦) = {
𝑓 (𝑦)−𝑓 (𝑔(𝑎))

𝑦−𝑔(𝑎) 𝑦 ≠ 𝑔(𝑎)
𝑓 ′(𝑔(𝑎)) 𝑦 = 𝑔(𝑎)

This function equals our problematic difference quotient most of the time, but equals
the quantity we want it to be when the denominator is zero.

Prove that 𝑑 is continuous at 𝑔(𝑐) and wemay use 𝑑 in place of the difference quotient
in our computation: that for all 𝑥 ≠ 𝑎, the following equality holds:

𝑓 (𝑔(𝑥)) − 𝑓 (𝑔(𝑎))
𝑥 − 𝑎 = 𝑑(𝑔(𝑥))𝑔(𝑥) − 𝑔(𝑎)

𝑥 − 𝑎

Given this, the original proof is rescued:

Proof. We are taking the derivative at 𝑎, so let 𝑥𝑛 → 𝑎 with 𝑥𝑛 ≠ 𝑎 be arbitrary. Then
the limit defining [𝑓 (𝑔(𝑎))]′ is (by the exercise)

lim
𝑓 (𝑔(𝑥𝑛)) − 𝑓 (𝑔(𝑎))

𝑥𝑛 − 𝑎 = lim 𝑑(𝑔(𝑥𝑛))
𝑔(𝑥𝑛) − 𝑔(𝑎)

𝑥𝑛 − 𝑎

Because 𝑑 is continuous at 𝑔(𝑎) and 𝑔(𝑥𝑛) → 𝑔(𝑎) we know 𝑑(𝑔(𝑥𝑛)) → 𝑑(𝑔(𝑎)) =
𝑓 ′(𝑔(𝑎)). And, as 𝑔 is differentiable at 𝑎 we know the limit of the difference quotient
exists. Thus, by the limit laws we can separate them and

= (lim 𝑑(𝑔(𝑥𝑛))) (
𝑔(𝑥𝑛) − 𝑔(𝑎)

𝑥𝑛 − 𝑎 ) = 𝑓 ′(𝑔(𝑎))𝑔′(𝑎)
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23.3.2. Differentiating Inverses

Theorem 23.7 (Differentiating Inverses). Let 𝑓 be an invertible function and 𝑎 ∈ ℝ a
point where 𝑓 (𝑎) = 𝑏. Assume 𝑓 is differentiable at 𝑎 with 𝑓 ′(𝑎) ≠ 0. Then its inverse
function 𝑓 −1 is differentiable at 𝑏, and

(𝑓 −1)′(𝑏) = 1
𝑓 ′(𝑎)

One may be tempted to prove this using the chain rule, by the following argument:
since 𝑓 ∘ 𝑓 −1(𝑥) = 𝑥 we differentiate to yield (𝑓 ∘ 𝑓 −1(𝑥))′ = 1 and apply the chain
rule to the left hand side, resulting in

𝑓 ′ (𝑓 −1(𝑥)) (𝑓 −1)′(𝑥) = 1

Solving for (𝑓 −1)′ and plugging in 𝑥 = 𝑏 yields the result. However a more careful
review shows doesn’t actually do what we think: in applying the chain rule, we’ve
implicitly assumed that 𝑓 −1 is invertible; which is part of what we want to prove!
(This proof does go through when we already know 𝑓 −1 to be differentiable, but we
are unfortunately not often already in possession of that knowledge). Below we give
a direct proof of the theorem from the limit definition, fixing this oversight:

Proof. Weattempt to compute the limit defining the derivative for 𝑓 −1: lim𝑦→𝑏
𝑓 −1(𝑦)−𝑓 −1(𝑏)

𝑦−𝑏 .
To compute such a limit we choose an arbitrary sequence 𝑦𝑛 → 𝑦 with 𝑦𝑛 ≠ 𝑦 and
evaluate

lim
𝑓 −1(𝑦𝑛) − 𝑓 −1(𝑏)

𝑦𝑛 − 𝑏
By definition 𝑏 = 𝑓 (𝑎), and for each 𝑛 there is a unique 𝑥𝑛 such that 𝑦𝑛 = 𝑓 (𝑥𝑛):
making these substitutions yields

lim
𝑓 −1(𝑓 (𝑥𝑛)) − 𝑓 −1(𝑓 (𝑎))

𝑓 (𝑥𝑛) − 𝑓 (𝑎)
The composition 𝑓 −1 ∘ 𝑓 is the identity since they are inverse functions so
𝑓 −1(𝑓 (𝑥𝑛)) = 𝑥𝑛 and 𝑓 −1(𝑓 (𝑎)) = 𝑎. Making these additional substitutions our limit
statement becomes

lim
𝑥𝑛 − 𝑎

𝑓 (𝑥𝑛) − 𝑓 (𝑎)
By assumption 𝑓 is differentiable at 𝑎 and 𝑓 ′(𝑎) ≠ 0, so we know that

𝑓 ′(𝑎) = lim
𝑓 (𝑥𝑛) − 𝑓 (𝑎)

𝑥𝑛 − 𝑎

The limit we are interested in is the reciprocal of this, and as the limit value is nonzero
by assumption, the limit laws imply
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23. Working with Derivatives

lim
𝑥𝑛 − 𝑎

𝑓 (𝑥𝑛) − 𝑓 (𝑎) = lim 1
𝑓 (𝑥𝑛)−𝑓 (𝑎)

𝑥𝑛−𝑎
= 1

lim 𝑓 (𝑥𝑛)−𝑓 (𝑎)
𝑥𝑛−𝑎

= 1
𝑓 ′(𝑎)

Since the sequence 𝑦𝑛 was arbitrary, this argument holds for any such sequence. Thus
the limit defining (𝑓 −1)′(𝑏) exists, and (𝑓 −1)′(𝑏) = 1

𝑓 ′(𝑎) .

Exercise 23.6. Compute the derivative of 𝑦 = √𝑥 using this idea.

23.4. ♦ The Power Rule

Perhaps themostmemorable fact fromCalculus I is the power rule, that (𝑥𝑛)′ = 𝑛𝑥𝑛−1.
In this short section, we prove the power level at various levels of generality, starting
with natural number exponents and proceeding to arbitrary real exponents.

Proposition 23.1 (Power Rule: Natural Number Exponents). If 𝑛 is a natural number,
𝑥𝑛 is differentiable at all real numbers and

(𝑥𝑛)′ = 𝑛𝑥𝑛−1

Proof. This is directly proved via induction on 𝑛, starting from the base case 𝑥′ = 1,
which holds as if 𝑓 (𝑥) = 𝑥 and 𝑎 ∈ ℝ,

lim𝑥→𝑎
𝑓 (𝑥) − 𝑎
𝑥 − 𝑎 = 𝑥 − 𝑎

𝑥 − 𝑎 = 1

Now, assume (𝑥𝑛)′ = 𝑛𝑥𝑛−1 and consider 𝑥𝑛+1. Using the product rule, we compute
the derivative of 𝑥𝑛+1 = 𝑥𝑥𝑛

(𝑥𝑥𝑛)′ = (𝑥)′𝑥𝑛 + 𝑥(𝑥𝑛)′
= 1𝑥𝑛 + 𝑥(𝑛𝑥𝑛−1)
= 𝑥𝑛 + 𝑛𝑥𝑛
= (𝑛 + 1)𝑥𝑛+1

Exercise 23.7 (Power Rule: Integer Exponents). Let 𝑛 ∈ ℤ and consider the function
𝑥𝑛 (which is defined as 1/𝑥 |𝑛| when 𝑛 < 0). Then 𝑥𝑛 is differentiable at all 𝑥 ≠ 0 and

(𝑥𝑛)′ = 𝑛𝑥𝑛−1
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Using this, we can extend what we know to rational exponents:

Proposition 23.2 (Power Rule: Rational Exponents). Let 𝑟 = 𝑝/𝑞 be any rational
number and 𝑓 (𝑥) = 𝑥 𝑟 . Then 𝑓 is differentiable for all 𝑥 > 0 and

𝑓 ′(𝑥) = 𝑟𝑥 𝑟−1

Proof. Let 𝑟 = 𝑝/𝑞 where without loss of generality 𝑝, 𝑞 ≠ 0 and 𝑞 > 1 (as if 𝑞 = 1
we are in the integer exponent case). Then let 𝑓 (𝑥) = 𝑥𝑝/𝑞 , and note that 𝑓 (𝑥)𝑞 = 𝑥𝑝 .
Then we can differentiate both sides of this inequality:

[𝑓 (𝑥)𝑞]′ = 𝑞𝑓 (𝑥)𝑞−1𝑓 ′(𝑥)
[𝑥𝑝]′ = 𝑝𝑥𝑝−1

Equating these gives 𝑞𝑓 (𝑥)𝑞−1𝑓 ′(𝑥) = 𝑝𝑥𝑝−1, and solving for 𝑓 ′:

𝑓 ′(𝑥) = 𝑝𝑥𝑝−1
𝑞𝑓 (𝑥)𝑞−1

Using that 𝑓 (𝑥) = 𝑥𝑝/𝑞 we can simplify the right hand side further:

𝑓 ′(𝑥) = 𝑝𝑥𝑝−1
𝑞(𝑥𝑝/𝑞)𝑞−1 = 𝑝𝑥𝑝−1

𝑞𝑥𝑝
𝑞−1
𝑎

= 𝑝
𝑞 𝑥

(𝑝−1)−𝑝 𝑞−1
𝑞

This exponent simplifies as expected, yielding

𝑓 ′(𝑥) = 𝑝
𝑞 𝑥

𝑝
𝑞 −1

Now that we know the power rule for all rational exponents, it is time to consider
arbitrary real exponents, recalling that we define 𝑥𝑎 as a limit of rational exponents.

Theorem 23.8 (The Power Rule). If 𝑎 ∈ ℝ and 𝑓 (𝑥) = 𝑥𝑎 . Then 𝑓 is differentiable for
all 𝑥 > 0, and

(𝑥𝑎)′ = 𝑎𝑥𝑎−1
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23. Working with Derivatives

Well Almost…. The function 𝑥𝑎 is defined as a limit: for any sequence 𝑎𝑛 → 𝑎 of
rational numbers, we define

𝑓 (𝑥) = lim𝑛 𝑥𝑎𝑛

To differentiate at 𝑥 , we need to choose a sequence 𝑥𝑘 → 𝑥 and compute the limit

lim𝑘
𝑥𝑎𝑘 − 𝑥𝑎
𝑥𝑘 − 𝑥

But, as 𝑥𝑎 is itself defined as a limit, we have a limit of limits!

= lim𝑘
lim𝑛 𝑥𝑎𝑛𝑘 − lim𝑛 𝑥𝑎𝑛

𝑥𝑘 − 𝑥 = lim𝑘 lim𝑛
𝑥𝑎𝑛𝑘 − 𝑥𝑎𝑛
𝑥𝑘 − 𝑥

We need to justify that we can switch the order of these limits: assuming temporarily
that we are allowed to do so, this yields

= lim𝑛 (lim𝑘
𝑥𝑎𝑛𝑘 − 𝑥𝑎𝑛
𝑥𝑘 − 𝑥 )

For a fixed 𝑛, this inner limit now just describes the definition of the derivative of
the function 𝑥𝑎𝑛 as 𝑥𝑘 → 𝑥 . Since we know 𝑎𝑛 is rational, we can apply our previous
result to see

= lim𝑛 (𝑥𝑎𝑛 )′ = lim 𝑎𝑛𝑥𝑎𝑛−1

Now we can take the 𝑛 limit, using the limit laws and the definition of irrational
exponents

lim𝑛 𝑎𝑛𝑥𝑎𝑛−1 = (lim 𝑎𝑛)(lim 𝑥𝑎𝑛−1) = 𝑎𝑥𝑎−1

This is exactly what we want! Thus, all that remains is a proof that switching the
limits is actually justified.

PROOF OF SWITCHING LIMITS!!!

We will give an alternative argument for the general power rule that sidesteps this
issue, and uses exponentials and logarithms after we have learned to differentiate
them.

23.5. The 𝑑𝑥 Notation

Introduce the notation 𝑑𝑓
𝑑𝑥 and its utility with the chain rule, and other calculations.
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24. Differentiable Functions

Highlights of this Chapter: we study the relationship between the behav-
ior of a function and its derivative, proving several foundational results
in the theory of differentiable functions:

• Fermat’s Theorem: A differentiable function has derivative zero at
an extremum.

• Rolle’s Theorem: if a differentiable function is equal at two points,
it must have zero derivative at some point in-between.

• The Mean Value Theorem: the average slope of a differentiable
function on an interval is realized as the instantaneous slope at
some point inside that interval.

The Mean Value theorem is really the star of the show, and we go on to
study several of its prominent applications in the following chapter.

24.1. Extrema

That the derivative (rate of change) should be able to detect local extrema is an old
idea, even predating the calculus of Newton and Leibniz. Though certainly realized
earlier in certain cases, it is Fermat who is credited with the first general theorem (so,
the result below is often called Fermat’s theorem)

Theorem 24.1 (Finding Local Extrema (Fermat’s Theorem)). Let 𝑓 be a function with
a local extremum at 𝑚. Then if 𝑓 is differentiable at 𝑚, we must have 𝑓 ′(𝑚) = 0.

Proof. Without loss of generality we will assume that 𝑚 is the location of a local
minimum (the same argument applies for local maxima, except the inequalities in
the numerators reverse). As 𝑓 is differentiable at 𝑚, we know that both the right and
left hand limits of the difference quotient exist, and are equal.

First, some preliminaries that apply to both right and left limits. Since we know
the limit exists, it’s value can by computed via any appropriate sequence 𝑥𝑛 → 𝑚.
Choosing some such sequence we investigate the difference quotient

𝑓 (𝑥𝑛) − 𝑓 (𝑚)
𝑥𝑛 − 𝑚
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Because 𝑚 is a local minimum, there is some interval (say, of radius 𝜖) about 𝑚 where
𝑓 (𝑥) ≥ 𝑓 (𝑚). As 𝑥𝑛 → 𝑚, we know the sequence eventually enters this interval (by
the definition of convergence) thus for all sufficiently large 𝑛 we know

𝑓 (𝑥𝑛) − 𝑓 (𝑚) ≥ 0

Now, we separate out the limits from above and below, starting with lim𝑥→𝑚− . If
𝑥𝑛 → 𝑚 but 𝑥𝑛 < 𝑚 then we know 𝑥𝑛 − 𝑚 is negative for all 𝑛, and so

𝑓 (𝑥𝑛) − 𝑓 (𝑚)
𝑥𝑛 − 𝑚 = pos

neg
= neg

Thus, for all 𝑛 the difference quotient is ≤ 0, and so the limit must be as well! That is,

lim𝑥→𝑚−
𝑓 (𝑥) − 𝑓 (𝑚)

𝑥 − 𝑚 ≤ 0

Performing the analogous investigation for the limit from above, we now have a se-
quence 𝑥𝑛 → 𝑚 with 𝑥𝑛 ≥ 𝑚. This changes the sign of the denominator, so

𝑓 (𝑥𝑛) − 𝑓 (𝑚)
𝑥𝑛 − 𝑚 = pos

pos
= pos

Again, if the difference quotient is ≥ 0 for all 𝑛, we know the same is true of the limit.

lim
𝑥→𝑚+

𝑓 (𝑥) − 𝑓 (𝑚)
𝑥 − 𝑚 ≥ 0

But, by our assumption that 𝑓 is differentiable at 𝑚 we know both of these must be
equal! And if one is ≥ 0 and the other ≤ 0 the only possibility is that 𝑓 ′(𝑚) = 0.

24.2. Mean Values

One of the most important theorems relating 𝑓 and 𝑓 ′ is the mean value theorem.
This is an excellent example of a theorem that is intuitively obvious (from our experi-
ence with reasonable functions) but yet requires careful proof (as we know by know
many functions have non-intuitive behavior). Indeed, when I teach calculus I, I often
paraphrase the mean value theorem as follows:

If you drove 60 miles in one hour, then at some point you must have been
driving 60 miles per hour
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How can we write this mathematically? Say you drove 𝐷 miles in 𝑇 hours. If 𝑓 (𝑡) is
your position as a function of time*, and you were driving between 𝑡 = 𝑎 and 𝑡 = 𝑏
(where 𝑏 − 𝑎 = 𝑇 ), your average speed was

𝐷
𝑇 = 𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎
To then say *at some point you were going 𝐷 miles per hour implies that there exists
some 𝑡⋆ between 𝑎 and 𝑏 where the instantaneous rate of change - the derivative - is
equal to this value. This is exactly the Mean Value Theorem:

Theorem 24.2 (The Mean Value Theorem). If 𝑓 is a function which is continuous on
the closed interval [𝑎, 𝑏] and differentiable on the open interval (𝑎, 𝑏), then there exists
some 𝑥⋆ ∈ (𝑎, 𝑏) where

𝑓 ′(𝑥⋆) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

Note: The reason we require differentiability only ont he interior of the interval is
that the two sided limit defining the derivative may not exist at the endpoints, (if for
example, the domain of 𝑓 is only [𝑎, 𝑏]).
In this section we will prove the mean value theorem. It’s simplest to break the proof
into two steps: first the special case were 𝑓 (𝑎) = 𝑓 (𝑏) (and so we are seeking 𝑓 ′(𝑥⋆ =
0)), and then apply this to the general version. This special case is often useful in its
own right and so has a name: Rolle’s Theorem.

Theorem 24.3 (Rolle’s Theorem). Let 𝑓 be continuous on the closed interval [𝑎, 𝑏]
and differentiable on (𝑎, 𝑏). Then if 𝑓 (𝑏) = 𝑓 (𝑎), there exists some 𝑥⋆ ∈ (𝑎, 𝑏) where
𝑓 ′(𝑥⋆) = 0.

Proof. Without loss of generality wemay take 𝑓 (𝑏) = 𝑓 (𝑎) = 0 (if their common value
is 𝑘, consider instead the function 𝑓 (𝑥) − 𝑘, and use the linearity of differentiation to
see this yields the same result).

There are two cases: (1) 𝑓 is constant, and (2) 𝑓 is not. In the first case, 𝑓 ′(𝑥) = 0
for all 𝑥 ∈ (𝑎, 𝑏) so we may choose any such point. In the second case, since 𝑓 is
continuous, it achieves both a maximum and minimum value on [𝑎, 𝑏] by the extreme
value theorem. Because 𝑓 is nonconstant these values are distinct, and so at least
one of them must be nonzero. Let 𝑐 ∈ (𝑎, 𝑏) denote the location of either a (positive)
absolute max or (negative) absolute min.

Then, 𝑐 ∈ (𝑎, 𝑏) and for all 𝑥 ∈ (𝑎, 𝑏), 𝑓 (𝑥) ≤ 𝑓 (𝑐) if 𝑐 is the absolute min, and 𝑓 (𝑥) ≥
𝑓 (𝑐) if its the max. In both cases, 𝑐 satisfies the definition of a local extremum. And,
as 𝑓 is differentiable on (𝑎, 𝑏) this implies 𝑓 ′(𝑐) = 0, as required.

Now, we return to the main theorem:
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Of the Mean Value Theorem. Let 𝑓 be a function satisfying the hypotheses of the
mean value theorem, and 𝐿 be the secant line connecting (𝑎, 𝑓 (𝑎)) to (𝑏, 𝑓 (𝑏)).
Computing this line,

𝐿 = 𝑓 (𝑎) + 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 (𝑥 − 𝑎)

Now define the auxiliary function 𝑔(𝑥) = 𝑓 (𝑥) − 𝐿(𝑥). Since 𝐿(𝑎) = 𝑓 (𝑎) and
𝐿(𝑏) = 𝑓 (𝑏), we see that 𝑔 is zero at both endpoints. Further, since both 𝐿 and 𝑓
are continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), so is 𝑔. Thus, 𝑔 satisfies the hy-
potheses of Rolle’s theorem, and so there exists some ⋆ ∈ (𝑎, 𝑏) with

𝑔(⋆) = 0

But differentiating 𝑔 we find

0 = 𝑓 ′(⋆) − 𝐿′(⋆)
= 𝑓 ′(⋆) − 𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎

Thus, at ⋆ we have 𝑓 ′(⋆) = 𝑓 (𝑏)−𝑓 (𝑎)
𝑏−𝑎 as claimed

Exercise 24.1. Verify the mean value theorem holds for 𝑓 (𝑥) = 𝑥2 + 𝑥 − 1 on the
interval [4, 7].

24.2.1. ★ IVT for Derivatives

Theorem 24.4. Let 𝑓 be a differentiable function on an interval 𝐼 . Then its derivative
𝑓 ′ satisfies the intermediate value property: for any 𝑎, 𝑏 ∈ 𝐼 and any 𝑦 between 𝑓 ′(𝑎)
and 𝑓 ′(𝑏), there is some 𝑐 ∈ [𝑎, 𝑏] with 𝑓 ′(𝑐) = 𝑦 .

24.3. ★ Infinite Sums

The crux of differentiating a function defined as a series is to be able to bring the
derivative inside the sum. Because derivatives are limits, we can use dominated con-
vergence to understand when we can switch sums and limits. One crucial step here
is the Mean Value Theorem.

Theorem 24.5 (Dominated Convergence and Derivatives). Let 𝑓𝑘(𝑥) be a series of
functions on a domain 𝐷.

• For each 𝑘, 𝑓𝑘(𝑥) is differentiable at all 𝑥 ∈ 𝐷.
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• For each 𝑥 ∈ 𝐷, ∑𝑘 𝑓𝑘(𝑥) is convergent.
• There is an 𝑀𝑘 with |𝑓 ′𝑘 (𝑥)| < 𝑀𝐾 , for all 𝑥 ∈ 𝐷.
• The sum ∑𝑀𝑘 is convergent.

Then, the sum ∑𝑘 𝑓 ′𝑘 (𝑥) is convergent, and

(∑
𝑘

𝑓𝑘(𝑥))
′
= ∑

𝑘
𝑓 ′𝑘 (𝑥)

Proof. Recall the limit definition of the derivative (Definition 22.1):

(∑
𝑘

𝑓𝑘(𝑥))
′
= lim𝑦→𝑥

∑𝑘 𝑓𝑘(𝑦) − ∑𝑘 𝑓𝑘(𝑥)
𝑦 − 𝑥

Writing each sum as the limit of finite sums, we may use the limit theorems (Theo-
rem 7.3,Theorem 7.2) to combine this into a single sum

lim𝑦→𝑥
lim𝑁 ∑𝑁

𝑘=0 𝑓𝑘(𝑦) − lim𝑁 ∑𝑁
𝑘=0 𝑓𝑘(𝑥)

𝑦 − 𝑥 = lim𝑦→𝑥 lim𝑁

𝑁
∑
𝑘=0

𝑓𝑘(𝑦) − 𝑓𝑘(𝑥)
𝑦 − 𝑥

And now, rewriting the limit of partial sums as an infinite sum, we see

(∑
𝑘

𝑓𝑘(𝑥))
′
= lim𝑦→𝑥 ∑𝑘

𝑓𝑘(𝑦) − 𝑓𝑘(𝑥)
𝑦 − 𝑥

If we are justified in switching the limit and the sum via Theorem 17.5, this becomes

∑
𝑘

lim𝑦→𝑥
𝑓𝑘(𝑦) − 𝑓𝑘(𝑥)

𝑦 − 𝑥 = ∑
𝑘

𝑓 ′𝑘 (𝑥)

which is exactly what we want. Thus, all we need to do is justify that the conditions
of Theorem 17.5 are satisfied, for the terms

𝑔𝑘(𝑦) =
𝑓𝑘(𝑦) − 𝑓𝑘(𝑥)

𝑦 − 𝑥
with 𝑥 a fixed constant and 𝑦 the variable, as we take the limit 𝑦 → 𝑥 .
Step 1: Show lim𝑦→𝑥 𝑔𝑘(𝑦) exists We have assumed that 𝑓𝑘 is differentiable at each
point of 𝐷, which is exactly the assumption that lim𝑦→𝑥 𝑔𝑘(𝑦) exists.
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Step 2: Show ∑𝑘 𝑔𝑘(𝑦) is convergent We have assumed that ∑𝑘 𝑓𝑘(𝑡) exists for all
𝑡 ∈ 𝐷. Let 𝑥 ≠ 𝑦 be two points in 𝐷. Then both ∑𝑘 𝑓𝑘(𝑥) and ∑𝑘 𝑓𝑘(𝑦) exist, and by
the limit theorems, the following limit also exists:

1
𝑦 − 𝑥 (∑

𝑘
𝑓𝑘(𝑦) − ∑

𝑘
𝑓𝑘(𝑥)) = ∑

𝑘

𝑓𝑘(𝑦) − 𝑓𝑘(𝑥)
𝑦 − 𝑥 = ∑

𝑘
𝑔𝑘(𝑦)

Step 3: Find an 𝑀𝑘 with |𝑔𝑘(𝑦)| < 𝑀𝑘 for all 𝑦 ≠ 𝑥 . We are given by assumption
that there is such an 𝑀𝑘 bounding the derivative 𝑓𝑘 on 𝐷: we need only show this
suffices. If 𝑥 ≠ 𝑦 then 𝑔𝑘(𝑦) measures the slope of the secant line of 𝑓𝑘 between 𝑥
and 𝑦 , so by the Mean Value Theorem (Theorem 24.2) there is some 𝑐 between 𝑥 and
𝑦 with

|𝑔𝑘(𝑦)| = | 𝑓𝑘(𝑦) − 𝑓𝑘(𝑥)
𝑦 − 𝑥 | = |𝑓 ′𝑘 (𝑐)|

Since |𝑓 ′𝑘 (𝑐)| ≤ 𝑀𝑘 by assumption (as 𝑐 ∈ 𝐷), 𝑀𝑘 is a bound for 𝑔𝑘 as required.

Step 4: Show ∑𝑀𝑘 is convergent This is an assumption, as the 𝑀𝑘 ’s are the same
as originally given. Thus there’s nothing left to show, and dominated convergence
applies!

24.4. ★ Order of Multiple Derivatives

WRITE THIS SECTION

Exchanging limits! Conditions onwhen you can do this: both partial derivatives exist
and are continuous.
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25. Applications

25.1. Information Loss

Proposition 25.1 (Zero Derivative implies Constant). If 𝑓 is a differentiable function
where 𝑓 ′(𝑥) = 0 on an interval 𝐼 , then 𝑓 is constant on that interval.

Proof. Let 𝑎, 𝑏 be any two points in the interval: we will show that 𝑓 (𝑎) = 𝑓 (𝑏), so 𝑓
takes the same value at all points. If 𝑎 < 𝑏 we can apply the mean value theorem to
this pair, which furnishes a point 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ′(𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

But, 𝑓 ′(𝑐) = 0 by assumption! Thus 𝑓 (𝑏) − 𝑓 (𝑎) = 0, so 𝑓 (𝑏) = 𝑓 (𝑎).

Corollary 25.1 (Functions with the Same Derivative). If 𝑓 , 𝑔 are two functions which
are differentiable on an interval 𝐼 and 𝑓 ′ = 𝑔′ on 𝐼 , then there exists a 𝐶 ∈ ℝ with

𝑓 (𝑥) = 𝑔(𝑥) + 𝐶

Proof. Consider the function ℎ(𝑥) = 𝑓 (𝑥) − 𝑔(𝑥). Then by the differentiation laws,

ℎ′(𝑥) = 𝑓 ′(𝑥) − 𝑔′(𝑥) = 0
as we have assumed 𝑓 ′ = 𝑔′. But now ?@prp-derivative-zero-implies-const im-
plies that ℎ is constant, so ℎ(𝑥) = 𝐶 for some 𝐶 . Substituting this in yields

𝑓 (𝑥) = 𝑔(𝑥) + 𝐶

Definition 25.1. Let 𝑓 be a function. If 𝐹 is a differentiable function with the same
domain such that 𝐹 ′ = 𝑓 , we say 𝐹 is an antiderivative of 𝑓 .

Corollary 25.2 (Antiderivatives differ by a Constant). Any two antiderivatives of a
function 𝑓 differ by a constant. Thus, the collection of all possible antiderivatives is
described choosing any particular antiderivative 𝐹 as

{𝐹 (𝑥) + 𝐶 ∣ 𝐶 ∈ ℝ}

This is the familiar +𝐶 from Calculus!
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25.2. Function Behavior

We can use the theory of derivatives to understand when a function is increasing
/ decreasing and convex/concave, which prove useful in classifying the extrema of
functions among other things.

Proposition 25.2 (Monotonicity and the Derivative). If 𝑓 is is continuous and differ-
entiable on [𝑎, 𝑏], then 𝑓 (𝑥) is monotone increasing on [𝑎, 𝑏] if and only of 𝑓 ′(𝑥) ≥ 0 for
all 𝑥 ∈ [𝑎, 𝑏].
As this is an if and only if statement, we prove the two claims separately. First, we
assume that 𝑓 ′ ≥ 0 and show 𝑓 is increasing: :::{.proof} Let 𝑥 < 𝑦 be any two points
in the interval [𝑎, 𝑏]: we wish to show that 𝑓 (𝑥) ≤ 𝑓 (𝑦). By the Mean Value Theorem,
we know there must be some point ⋆ ∈ (𝑥, 𝑦) such that

𝑓 ′(⋆) = 𝑓 (𝑦) − 𝑓 (𝑥)
𝑦 − 𝑥

But, we’ve assumed that 𝑓 ′ ≥ 0 on the entire interval, so 𝑓 ′(⋆) ≥ 0. Thus 𝑓 (𝑦)−𝑓 (𝑥)𝑦−𝑥 ≥
0, and since 𝑦 − 𝑥 is positive, this implies

𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0
That is, 𝑓 (𝑦) ≥ 𝑓 (𝑥). Note that we can extract even more information here than
claimed: if we know that 𝑓 ′ is strictly greater than 0 then following the argument we
learn that 𝑓 (𝑦) > 𝑓 (𝑥), so 𝑓 is strictly monotone increasing. :::

Next, we assume 𝑓 is increasing and show 𝑓 ′ ≥ 0:

Proof. Assume 𝑓 is increasing on [𝑎, 𝑏], and let 𝑥 ∈ (𝑎, 𝑏) be arbitrary. Because we
have assumed 𝑓 is differentiable, we know that the right and left limits both exist and
are equal, and that either of them equals the value of the derivative. So, we consider
the right limit

𝑓 ′(𝑥) = lim
𝑡→𝑥+

𝑓 (𝑡) − 𝑓 (𝑥)
𝑡 − 𝑥

For any 𝑡 > 𝑥 we know 𝑓 (𝑡) ≥ 𝑓 (𝑥) by the increasing hypothesis, and we know that
𝑡 − 𝑥 > 0 by definition. Thus, for all such 𝑡 this difference quotient is nonnegative,
and hence remains so in the limit:

𝑓 ′(𝑥) ≥ 0

Exercise 25.1. Prove the analogous statement for negative derivatives: 𝑓 ′(𝑥) ≤ 0 on
[𝑎, 𝑏] if and only if 𝑓 (𝑥) is monotone decreasing on [𝑎, 𝑏].
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25.2.1. ♦ Convexity and the Second Derivative

Recall back from the very introduction to functions we defined the property of convex-
ity, saying that a function was convex if the secant line 𝐿 connecting any two points
lies strictly above the graph of 𝑓 , or 𝐿(𝑥) − 𝑓 (𝑥) ≥ 0.
It’s good to have a quick review: if 𝑎, 𝑏 are two points in the domain, the secant
line connecting (𝑎, 𝑓 (𝑎)) to (𝑏, 𝑓 (𝑏)) is familiar from our proof of the Mean Value
Theorem:

𝐿𝑎,𝑏(𝑥) = 𝑓 (𝑎) + 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 (𝑥 − 𝑎)

Working even harder, we can come up with a rather simple looking condition that is
equivalent to 𝑓 lying below its secant line 𝐿𝑎,𝑏 for all 𝑥 ∈ (𝑎, 𝑏). This is all still strictly
algebraic manipulations, encapsulated into a lemma below.

Lemma 25.1 (An Inequality for Convexity). MAYBE SIGN ERROR IN LEMMA

If 𝑓 is a function defined on [𝑎, 𝑏] the, 𝑓 lies below its secant line 𝐿𝑎,𝑏(𝑥) everywhere on
the interval if and only if

𝑓 (𝑏) − 𝑓 (𝑥)
𝑏 − 𝑥 − 𝑓 (𝑎) − 𝑓 (𝑥)

𝑥 − 𝑎 > 0

for all 𝑥 ∈ (𝑎, 𝑏).

Proof. Because 1 = 𝑏−𝑥
𝑏−𝑎 + 𝑥−𝑎

𝑏−𝑎 , multiplying through by 𝑓 (𝑥) yields the identity

𝑓 (𝑥) = 𝑓 (𝑥) 𝑏 − 𝑥
𝑏 − 𝑎 + 𝑓 (𝑥)𝑥 − 𝑎

𝑏 − 𝑎

Substituting this into the simplified form of ?@exr-secant-line-simiplifcation, we
can collect like terms and see

𝐿𝑎,𝑏(𝑥) − 𝑓 (𝑥) = [𝑓 (𝑏) − 𝑓 (𝑥)] 𝑏 − 𝑥
𝑏 − 𝑎 + [𝑓 (𝑎) − 𝑓 (𝑥)] 𝑥 − 𝑎

𝑏 − 𝑎
= 𝑥 − 𝑎

𝑏 − 𝑎 [𝑓 (𝑏) − 𝑓 (𝑥)] − 𝑏 − 𝑥
𝑏 − 𝑎 [𝑓 (𝑥) − 𝑓 (𝑎)]

We are trying to set ourselves up to use the Mean Value Theorem, so there’s one more
algebraic trick we can employ: we can multiply and divide the first term by 𝑏−𝑥 , and
multiply and divide the second term by 𝑥 − 𝑎: This gives
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𝐿𝑎,𝑏(𝑥) − 𝑓 (𝑥) = 𝑏 − 𝑥
𝑏 − 𝑥

𝑥 − 𝑎
𝑏 − 𝑎 [𝑓 (𝑏) − 𝑓 (𝑥)] − 𝑥 − 𝑎

𝑥 − 𝑎
𝑏 − 𝑥
𝑏 − 𝑎 [𝑓 (𝑥) − 𝑓 (𝑎)]

= (𝑏 − 𝑥)(𝑥 − 𝑎)
𝑏 − 𝑎

𝑓 (𝑏) − 𝑓 (𝑥)
𝑏 − 𝑥 − (𝑏 − 𝑥)(𝑥 − 𝑎)

𝑏 − 𝑎
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎

Note that each of these terms has the factor (𝑏−𝑥)(𝑥−𝑎)
𝑏−𝑎 in common, and that this factor

is positive (as 𝑥 ∈ (𝑎, 𝑏) implies 𝑏 − 𝑥 > 0 and 𝑥 − 𝑎 > 0). Thus, we can factor it out
and see that 𝐿𝑎,𝑏(𝑥) − 𝑓 (𝑥) is positive if and only if the remaining term is positive:
that is, if and only if

𝑓 (𝑏) − 𝑓 (𝑥)
𝑏 − 𝑥 − 𝑓 (𝑎) − 𝑓 (𝑥)

𝑥 − 𝑎 > 0
as claimed

Now, our goal is to use the Mean Value Theorem to relate this expression (which is a
property of 𝑓 ) to a property of one of its derivatives (here 𝑓 ′′).

Exercise 25.2. If 𝑓 ′′ > 0 on the interval [𝑎, 𝑏] prove that 𝑓 lies below its secant line
𝐿𝑎,𝑏 .
Hint: Here’s a sketch of how to proceed

• For 𝑥 ∈ (𝑎, 𝑏), start with the expression 𝑓 (𝑏)−𝑓 (𝑥)
𝑏−𝑥 − 𝑓 (𝑎)−𝑓 (𝑥)

𝑥−𝑎 , which you even-
tually want to show is positive.

• Apply the MVT for 𝑓 to find points 𝑐1 ∈ (𝑎, 𝑥) and 𝑐2 ∈ (𝑥, 𝑏)where 𝑓 ′(𝑐𝑖) equals
the respective average slopes.

• Using this, show that your original expression is equivalent to (𝑐2 −
𝑐1) 𝑓

′(𝑐2)−𝑓 ′(𝑐1)
𝑐2−𝑐1 , and argue that it is sufficient to show that 𝑓 ′(𝑐2)−𝑓 ′(𝑐1)

𝑐2−𝑐1 is
positive.

• Can you apply the MVT again (this time to 𝑓 ′) and use our assumption on the
second derivative to finish the argument?

Using this, we can quickly prove the main claimed result:

Theorem 25.1 (Convexity and the Second Derivative). If 𝑓 is twice differentiable on
an interval and 𝑓 ′′ > 0 on that interval, then 𝑓 is convex on the interval.

Proof. Let 𝐼 be the interval in question, and let 𝑎 < 𝑏 be any two points in 𝐼 . Re-
stricting our function to the interval [𝑎, 𝑏] we have 𝑓 ′′(𝑥) > 0 for all 𝑥 ∈ [𝑎, 𝑏] by
hypothesis; so Exercise 25.2 implies that the secant line lies strictly above the graph.
Since the interval [𝑎, 𝑏]was arbitrary, this holds for any two such points, which is the
definition of convexity.
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Though we will not need it, this is actually an if and only if theorem, giving a precise
characterization of convex functions in terms of a much easier to check differentia-
bility condition.

25.2.2. Contraction Maps

We can use what we’ve learned about derivatives and the mean value theorem to also
produce a simple test for finding contraction maps.

Proposition 25.3 (Contraction Mappings). If 𝑓 is continuously differentiable and
|𝑓 ′| < 1 on closed interval then 𝑓 is a contraction map.

Proof. Let 𝑓 have a continuous derivative 𝑓 ′ which satisfies |𝑓 ′(𝑥)| < 1 for all 𝑥 in a
closed interval 𝐼 . Because 𝑓 ′ is continuous and |𝑥| is continuous, so is the composition
|𝑓 ′|, and thus it achieves a maximum value on 𝐼 (Theorem 19.2); call this maximum
𝑀 , and note that 𝑀 < 1 by our assumption.

Now let 𝑥 < 𝑦 ∈ 𝐼 be arbitrary. By the Mean Value Theorem there is some 𝑐 ∈ [𝑥, 𝑦]
such that

𝑓 (𝑦) − 𝑓 (𝑥) = 𝑓 ′(𝑐)(𝑦 − 𝑥)

Taking absolute values and using that |𝑓 ′(𝑐)| ≤ 𝑀 this implies

|𝑓 (𝑦) − 𝑓 (𝑥)| ≤ 𝑀|𝑦 − 𝑥|

Since 𝑥, 𝑦 were arbitrary this holds for all such pairs, and so the distance between 𝑥
and$ 𝑦 decreases by a factor of at least 𝑀 , which is strictly less than 1. Thus 𝑓 is a
contraction map!

We know contraction maps to be extremely useful as they have a unique fixed point,
and iterating from any starting value produces a sequence which rapidly converges
to that fixed point. Using this differential condition its easy to check if a function is
a contraction mapping, and thus easy to rigorously establish the existence of certain
convergent sequences.

As a good example, we give a re-proof of the convergence of the Babylonian proce-
dure to √2

Example 25.1. The function 𝑓 (𝑥) = 𝑥+ 2
𝑥

2 is a contraction map on the interval [1, 2].
The fixed point of this map is √2∈[1,2]$, thus the sequence 1, 𝑓 (1), 𝑓 𝑓 (1), 𝑓 𝑓 𝑓 (1), …
converges to √2.
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To prove this, note that if 𝑥 = (𝑥 + 2
𝑥 )/2 then 𝑥2 = 2 whose only positive solution is

√2, thus it remains only to check that 𝑓 is a contraction. Computing its derivative;

𝑓 ′(𝑥) =
1 − 2

𝑥2

2 = 1
2 − 1

𝑥2

On the interval [1, 2] the function 1/𝑥2 lies in [1/4, 1] and so 𝑓 ′ lies in the interval
[−1/2, 1/4], and |𝑓 ′| lies in [1/4, 1/2]: thus |𝑓 ′| is bounded above by 1/2 and is a
contraction map!

25.3. Classifying Extrema

We can leverage our understanding of function behavior to classify the maxima and
minima of a differentiable function. By Fermat’s theorem we know that if the deriva-
tive exists at such points it must be zero, motivating the following definition:

Definition 25.2 (Critical Points). A critical point of a function 𝑓 is a point where
either (1) 𝑓 is not differentiable, or (2) 𝑓 is differentiable, and the derivative is zero.

Note that not all critical points are necessarily local extrema - Fermat’s theorem only
claims that extrema are critical points - not the converse! There are many examples
showing this is not an if and only if:

Example 25.2. The function 𝑓 (𝑥) = 𝑥3 has a critical point at 𝑥 = 0 (as the derivative
is zero), but does not have a local extremum there. The function 𝑔(𝑥) = 2𝑥 + |𝑥| has a
critical point at 0 (because it is not differentiable there) but also does not have a local
extremum.

If one is only interested in the absolute max and min of the function over its entire do-
main, this already provides a reasonable strategy, which is one of the early highlights
of Calculus I.

Theorem 25.2 (Finding Global Extrema). Let 𝑓 be a continuous function defined on
a closed interval 𝐼 with finitely many critical points. Then the absolute maximum and
minimum value of 𝑓 are explicitly findable via the following procedure:

• Find the value of 𝑓 at the endpoints of 𝐼
• Find the value of 𝑓 at the points of non-differentiability
• Find the value of 𝑓 at the points where 𝑓 ′(𝑥) = 0.

The absolute max of 𝑓 is the largest of these values, and the the absolute min is the
smallest.
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Proof. Because 𝐼 is a closed interval and 𝑓 is continuous, we are guaranteed by the
extreme value theorem that 𝑓 achieves both a maximum and minimum value. Let
these be max,min respectively, realized at points 𝑀,𝑚 with

𝑓 (𝑀) = max 𝑓 (𝑚) = min

Without loss of generality, we will consider 𝑀 (the same argument applies to 𝑚).

First, 𝑀 could be at one of the endpoints of 𝑓 . If it is not, then𝑀 lies in the interior of
𝐼 , and there is some small interval (𝑎, 𝑏) containing𝑀 totally contained in the domain
𝐼 . Since𝑀 is the location of the global max, we know for all 𝑥 ∈ 𝐼 , 𝑓 (𝑥) ≤ 𝑓 (𝑀). Thus,
for all 𝑥 ∈ (𝑎, 𝑏), 𝑓 (𝑥) ≤ 𝑓 (𝑀) so 𝑀 is the location of a local max.

But if 𝑀 is the location of a local maximum, if 𝑓 is differentiable there by Fermat’s
theorem we know 𝑓 ′(𝑀) = 0. Thus, 𝑀 must be a critical point of 𝑓 (whether differ-
entiable or not).

Thus, 𝑀 occurs in the list of critical points and endpoints, which are the points we
checked.

Oftentimes one is concerned with the more fine-grained information of trying to clas-
sify specific extrema as (local) maxes or mins, however. This requires some additional
investigation of the behavior of 𝑓 near the critical point

Proposition 25.4 (Distinguishing Maxes and Mins). Let 𝑓 be a continuously differen-
tiable function on [𝑎, 𝑏] and 𝑐 ∈ (𝑎, 𝑏) be a critical point where 𝑓 ′(𝑥) < 0 for 𝑥 < 𝑐 and
𝑓 ′(𝑥) > 0 if 𝑥 > 0, for all 𝑥 in some small interval about 𝑐.
Then 𝑐 is a local minimum of 𝑓 .

Proof. By the above, we know that 𝑓 ′(𝑥) < 0 for 𝑥 < 𝑐 implies that 𝑓 is monotone
decreasing for 𝑥 < 𝑐: that is, 𝑥 < 𝑐 ⟹ 𝑓 (𝑥) ≥ 𝑓 (𝑐). Similarly, as 𝑓 ′(𝑥) > 0 for
𝑥 > 0, we have that 𝑓 is increasing, and 𝑐 < 𝑥 ⟹ 𝑓 (𝑐) ≤ 𝑓 (𝑥).
Thus, for 𝑥 on either side of 𝑐 we have 𝑓 (𝑥) ≥ 𝑓 (𝑐), so 𝑐 is the location of a local
minimum.

This is even more simply phrased in terms of the second derivative, as is common in
Calculus I.

Theorem 25.3 (The Second Derivative Test). Let 𝑓 be a twice continuously differ-
entiable function on [𝑎, 𝑏], and 𝑐 a critical point. Then if 𝑓 ′′(𝑐) > 0, the point 𝑐 is the
location of a local minimum, and if 𝑓 ′′(𝑥) > 0 then 𝑐 is the location of a local maximum.
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Proof. We consider the case that 𝑓 ′′(𝑐) > 0, the other is analogous. Since 𝑓 ′′ is
continuous and positive at 𝑐, we know that there exists a small interval (𝑐 − 𝛿, 𝑐 + 𝛿)
about 𝑐 where 𝑓 ′′ is positive (by ?@prp-continuous-positive-neighborhood).

Thus, by ?@prp-pos-deriv-increasing, we know on this interval that 𝑓 ′ is an in-
creasing function. Since 𝑓 ′(𝑐) = 0, this means that if 𝑥 < 𝑐 we have 𝑓 ′(𝑥) < 0 and if
𝑥 > 𝑐 we have 𝑓 ′(𝑥) > 0. That is, 𝑓 ′ changes from negative to positive at 𝑐, so 𝑐 is
the location of a local minimum by ?@cor-max-min-first-deriv.

25.4. ♦ L’Hospital’s Rule

L’Hospital’s rule is a very convenient trick for computing tricky limits in calculus:
it tells us that when we are trying to evaluate the limit of a quotient of continuous
functions and ‘plugging in’ yields the undefined expression 0/0 we can attempt to
find the limit’s value by differentiating the numerator and denominator, and trying
again. Precisely:

Theorem 25.4 (L’Hospital’s Rule). Let 𝑓 and 𝑔 be continuous functions on an interval
containing 𝑎, and assume that both 𝑓 and 𝑔 are differentiable on this interval, with the
possible exception of the point 𝑎.
Then if 𝑓 (𝑎) = 𝑔(𝑎) = 0 and 𝑔′(𝑥) ≠ 0 for all 𝑥 ≠ 𝑎,

lim𝑥→𝑎
𝑓 ′(𝑥)
𝑔′(𝑥) = 𝐿 implies lim𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥) = 𝐿

Sketch.

• Show that for any 𝑥 , we have

𝑓 (𝑥)
𝑔(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎)

𝑔(𝑥) − 𝑔(𝑎) =
𝑓 (𝑥)−𝑓 (𝑎)

𝑥−𝑎
𝑔(𝑥)−𝑔(𝑎)

𝑥−𝑎

• For any 𝑥 , use theMVT to get points 𝑐, 𝑘 such that 𝑓 ′(𝑐) = 𝑓 (𝑥)−𝑓 (𝑎)
𝑥−𝑎 and 𝑔′(𝑘) =

𝑔(𝑥)−𝑔(𝑎)
𝑥−𝑎 .

• Choose a sequence 𝑥𝑛 → 𝑎: for each 𝑥𝑛 , the above furnishes points 𝑐𝑛 , 𝑘𝑛: show
these sequences converge to 𝑎 by squeezing.

• Use this to show that the sequence 𝑠𝑛 = 𝑓 ′(𝑐𝑛)
𝑔′(𝑘𝑛) converges to 𝐿, using our as-

sumption lim𝑥→𝑎
𝑓 ′
𝑔′ = 𝐿.

• Conclude that the sequence 𝑓 (𝑥𝑛)
𝑔(𝑥𝑛) → 𝐿, and that lim𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥) = 𝐿 as claimed.
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25.5. ★ Newton’s Method

Hint: Use the 𝜖 − 𝛿 definition of a functional limit our assumption lim𝑥→𝑎
𝑓 ′(𝑥)
𝑔′(𝑥) = 𝐿 to

help: for any 𝜖, theres a 𝛿 where |𝑥 − 𝑎| < 𝛿 implies this quotient is within 𝜖 of 𝐿. Since
𝑐𝑛 , 𝑘𝑛 → 𝑎 can you find an 𝑁 beyond which 𝑓 ′(𝑐𝑛)/𝑔′(𝑘𝑛) is always within 𝜖 of 𝐿?

Exercise 25.3. Fill in the details of the above proof sketch.

25.5. ★ Newton’s Method

Netwon’s method is a recipe for numerically finding zeroes of a function 𝑓 (𝑥). It
works iteratively, by taking one guess for a zero and producing a (hopefully) better
one, using the geometry of the derivative and linear approximations. The procedure
is simple to derive: given a point 𝑎 we can calculate the tangent line to 𝑓 at 𝑎

ℓ(𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎)

and since this tangent line should be a good approximation of 𝑓 near 𝑎, if 𝑎 is near
the a of 𝑓 , we can approximate this zero by solving not for 𝑓 (𝑥) = 0 (which is hard,
if 𝑓 is a complicated function) but ℓ(𝑥) = 0 (which is easy, as ℓ is linear). Doing so
gives

𝑥 =

Definition 25.3 (Newton Iteration). Let 𝑓 be a differentiable function. Then Newton
iteration is the recursive procedure

𝑥 ↦ 𝑥 − 𝑓 (𝑥)
𝑓 ′(𝑥)

Starting from some 𝑥0 this defines a recursive sequence 𝑥𝑛+1 = 𝑥𝑛 − 𝑓 (𝑥𝑛)/𝑓 ′(𝑥𝑛)
This is an extremely useful calculational procedure in practice, so long as you can
cook up a function that is zero at whatever point you are interested in. To return to
a familiar example, to calculate √𝑎 one might consider the function 𝑓 (𝑥) = 𝑥2 − 𝑎, or
to find a solution to cos(𝑥) = 𝑥 , one may consider 𝑔(𝑥) = 𝑥 − cos(𝑥).

Exercise 25.4. Show the sequence of approximates from newtons method for √2
starting at 𝑥0 = 2 is precisely the babylonian sequence.

We already have several proofs this sequence for √2 converges, so we know that
Newton’s method works as expected in at least one instance. But we need a general
proof. Below we offer a proof of the special case of a simple zero: were 𝑓 (𝑥) crosses
the axes like 𝑥 rather than running tangent to it like 𝑥2:
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25. Applications

Definition 25.4 (Simple Zero). A continuously differentiable function 𝑓 has a simple
zero at 𝑐 if 𝑓 (𝑐) = 0 but 𝑓 ′(𝑐) ≠ 0.

Theorem 25.5 (Newton’s Method). Let 𝑓 be a continuously twice-differentiable func-
tion with a simple zero at 𝑐. Then there is some 𝛿 such that applying newton iteration to
any starting point in 𝐼 = (𝑐 − 𝛿, 𝑐 + 𝛿) results in a sequence that converges to 𝑐.

Proof. Our strategy is to show that there is an interval on which the Newton iteration
𝑁(𝑥) = 𝑥 − 𝑓 (𝑥)/𝑓 ′(𝑥) is a contraction map.

Since 𝑐 is a simple zero we know 𝑓 ′(𝑐) ≠ 0 and without loss of generality we take
𝑓 ′(𝑐) > 0. Since 𝑓 is continuously twice differentiable 𝑓 ′ is also continuous, meaning
there is some 𝑎 > 0 where 𝑓 ′ is positive on the entire interval (𝑐 − 𝑎, 𝑐 + 𝑎). On this
interval we may compute the derivative of the Newton map

𝑁 ′(𝑥) = 1 − 𝑓 ′𝑓 ′ − 𝑓 ′′𝑓
(𝑓 ′)2 = 𝑓 𝑓 ′′

(𝑓 ′)2

Since 𝑓 , 𝑓 ′ and 𝑓 ′′ are all continuous and 𝑓 ′ is nonzero on this interval, 𝑁 ′ is contin-
uous. As 𝑓 (𝑐) = 0 we see 𝑁 ′(𝑐) = 0, so using continuity for any 𝜖 > 0 there is some
𝑏 > 0 where 𝑥 ∈ (𝑐 − 𝑏, 𝑐 + 𝑏) implies |𝑁 ′(𝑥)| < 𝜖.
Thus, choosing any 𝜖 < 1 and taking 𝛿 = min{𝑎, 𝑏}we’ve found an interval (𝑐−𝛿, 𝑐+𝛿)
where the derivative of 𝑁 is strictly bounded away from 1: thus by Proposition 25.3
𝑁 is a contraction map on this interval, and so iterating 𝑁 from any starting point
produces a sequence that converges to the unique fixed point of 𝑁 (Theorem 10.2).
This fixed point ⋆ satisfies

𝑁(⋆) = ⋆ − 𝑓 (⋆
𝑓 ′(⋆) = ⋆

which after some algebra simplifies to

𝑓 (⋆) = 0

Since 𝑓 (𝑐) = 0 and 𝑓 ′(𝑥) is positive on the entire interval by construction, 𝑓 is in-
creasing and so 𝑓 (𝑥) < 0 for 𝑥 < 𝑐 and 𝑓 (𝑥) > 0 for 𝑥 > 𝑐. That is, 𝑓 has a unique
zero on this interval, so ⋆ = 𝑐 and our sequence of Newton iterates converges to 𝑐 as
desired.

The structure of this proof tells us that Netwon’s method is actually quite efficient: a
contraction map which contracts by 𝜖 < 1 creates a cauchy sequence that converges
exponentially fast (like 𝜖𝑛). And in our proof, we see continuity of 𝑁 ′ lets us set
any 𝜖 < 1 and get an interval about 𝑐 where convergence is exponential in 𝜖. These
intervals are nested, and so as 𝑥 gets closer and closer to 𝑐 the convergence of New-
ton’s method gets better and better : its always exponentially fast but the base of the
exponential improves as we close in.
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25.5. ★ Newton’s Method

Exercise 25.5. Provide an alternative proof of Newton’s method when 𝑓 is convex:
if 𝑐 is a simple zero and 𝑥0 > 𝑐 show the sequence of Newton iterates is a monotone
decreasing sequence which is bounded below, and converges to the 𝑐 via Monotone
Convergence.
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26. Power Series

26.1. Differentiating Term-By-Term

Uses Dominated Convergence for Derivatives

Proposition 26.1 (Differentiation & Radius of Convergence).

• Proof 1: assuming ratio test works
• Proof 2: general case (hard!)

Theorem 26.1 (Term-by-Term Differentiation).

Corollary 26.1 (Power Series are Smooth).

26.2. Power Series Representations

Definition 26.1 (Power Series Representation).

Remark: use a power series representation to generalize a function from real numbers
to other objects (complex numbers, matrices).

Proposition 26.2 (Candidate Series Representation).

Definition 26.2 (Taylor Series).

26.2.1. Taylor’s Error Formula

Proposition 26.3 (A Generalized Rolle’s Theorem).

Proposition 26.4 (A Polynomial Mean Value Theorem).

Theorem 26.2 (Taylor Remainder).
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26. Power Series

26.2.2. Series Centered at 𝑎 ∈ ℝ
Theorem 26.3. Formula for taylor series and error based at arbitrary 𝑎 ∈ ℝ.

26.3. ★ Smooth vs Analytic

Remark: most of the time a taylor series converges to the desired function, but this
is not required. Give example.

Definition 26.3 (Analytic Function).

Examples of analytic functions:

• Polynomials
• Exponential (to come)
• Sine, Cosine (to come)

These have power series that converge everywhere. But other examples exist

1
1 + 𝑥2

Give example of smooth but not analytic function!
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27. Elementary Functions

In this section we look at how to find derivatives of functions which are defined
not explicitly, but by the functional equations defining exponentials, logarithms and
trigonometric functions.

27.1. Exponentials & Logs

Proposition 27.1. Let 𝐸(𝑥) be an exponential function. Then 𝐸 is differentiable on the
entire real line, and

𝐸′(𝑥) = 𝐸′(0)𝐸(𝑥)

First we show that this formula holds so long as 𝐸 is actually differentiable at zero.
Thus, differentiability at a single point is enough to ensure differentiability every-
where and fully determine the formula!

Proof. Let 𝑥 ∈ ℝ, and ℎ𝑛 → 0. Then we compute 𝐸′(𝑥) by the following limit:

𝐸′(𝑥) = lim
𝐸(𝑥 + ℎ𝑛) − 𝐸(𝑥)

ℎ𝑛
Using the property of exponentials and the limit laws, we can factor an 𝐸(𝑥) out of
the entire numerator:

= lim
𝐸(𝑥)𝐸(ℎ𝑛) − 𝐸(𝑥)

ℎ𝑛
= 𝐸(𝑥) lim 𝐸(ℎ𝑛) − 1

ℎ𝑛
But, 𝐸(0) = 1 so the limit here is actually the *derivative of 𝐸 at zero$!

𝐸′(𝑥) = 𝐸(𝑥)𝐸′(0)

Next, we tackle the slightly more subtle problem of showing that 𝐸 is in fact differen-
tiable at zero. This is tricky because all we have assumed is that 𝐸 is continuous and
satisfies the law of exponents: how are we going to pull differentiability out of this?
The trick is two parts (1) show the right and left hand limits defining the derivative
exist, and (2) show they’re equal. In fact, 𝐸′(0) is a known number, its the natural

log of 𝑎 (Cite where we’ll prove this later)
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27. Elementary Functions

Proof. STEP 1: Show that the left and right hand limits defining the derivative exist:
𝐸 is convex (Exercise 21.4) so the difference quotient is monotone increasing (Propo-
sition 5.1), and so the limit lim𝑥→0− exists (as a sup) and lim𝑥→0+ exists (as an inf),
?@cor-convexity-implies-one-side-limit.

STEP2: Now that we know each of these limits exist, let’s show they are equal using
the definition:

To compute the lower limit, we can choose any sequence approaching 0 from below:
let ℎ𝑛 be a positive sequence with ℎ𝑛 → 0, then −ℎ𝑛 will do:

limℎ→0−
𝐸(ℎ) − 1

ℎ = lim
𝐸(−ℎ𝑛) − 1

−ℎ𝑛
And by ?@exr-exponential-of-negative we see 𝐸(−ℎ𝑛) = 1/𝐸(ℎ𝑛). Thus

lim
𝐸(−ℎ𝑛) − 1

−ℎ𝑛
= lim

1
𝐸(ℎ𝑛) − 1

−ℎ𝑛
= lim

1 − 𝐸(ℎ𝑛)
−ℎ𝑛

1
𝐸ℎ𝑛

= lim
𝐸(ℎ𝑛) − 1

ℎ𝑛
1

𝐸(ℎ𝑛)

But, since 𝐸 is continuous (by definition) and 𝐸(0) = 1 (?@exr-exponential-of-
negative) the limit theorems imply

lim 1
𝐸(ℎ𝑛)

= 1
lim 𝐸(ℎ𝑛)

= 1
𝐸(lim ℎ𝑛)

= 1
𝐸(0) = 1

Thus,

lim (𝐸(ℎ𝑛) − 1
ℎ𝑛

1
𝐸(ℎ𝑛)

)

= (lim 𝐸(ℎ𝑛) − 1
ℎ𝑛

) (lim 1
𝐸(ℎ𝑛)

)

= lim
𝐸(ℎ𝑛) − 1

ℎ𝑛

But this last limit evaluates exactly to the limit from above since ℎ𝑛 > 0 and ℎ𝑛 → 0.
Stringing all of this together, we finally see

limℎ→0−
𝐸(ℎ) − 1

ℎ = lim
ℎ→0+

𝐸(ℎ) − 1
ℎ

Thus, by Proposition 17.1 we see that since both one sided limits exist and are equal
the entire limit exists: 𝐸 is differentiable at 0.
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27.1. Exponentials & Logs

Having done this work we can immediately calculate the derivative of logarithms,
using the fact that they are inverses of exponentials:

Proposition 27.2. Let 𝐿 be a logarithm function, then 𝐿 is differentiable and

𝐿′(𝑥) = 𝐿′(1)
𝑥

Proof. Let 𝐿 be a logarithm, with inverse the exponential 𝐸(𝑥). We know that 𝐸 is
differentiable and 𝐸′(𝑥) ≠ 0 as its a constant multiple of the everywhere-positive
𝐸(𝑥) itself. Thus by Theorem 23.7 the function 𝐿 is also differentiable. Choosing
𝑏 > 0 and setting 𝐿(𝑏) = 𝑎 gives

𝐿′(𝑏) = 1
𝐸′(𝑎) = 1

𝐸′(0)𝐸(𝑎) = 1
𝐸′(0)𝑏

Where the last equality follows as 𝐿(𝑏) = 𝑎 implies 𝐸(𝑎) = 𝑏
Now we apply the theorem on differentiability of inverses one more time to remove
the mention of 𝐸 in the final answer, and express everything in terms of the logarithm
itself. Since 𝐸(0) = 1 and 𝐿(1) = 0, we have 𝐿′(1) = 1

𝐸′(0) and substituting this in
gives the claimed form.

27.1.1. The Natural Exponential and Natural Log

When studying the functional equations for logs and exponentials we saw there is
not one solution but a whole family of them. While the functional equation itself
gave no preference to any exponential over any other, the derivative

Definition 27.1. Wewrite exp(𝑥) for the exponential functionwhich has exp′(0) = 1.
This exponential satisfies the simple differential identity

exp′(𝑥) = exp(𝑥)

Note that by the chain rule we know such a thing exists so long as any exponential
exists. If 𝐸(𝑥) is any exponential then 𝐸(𝑥/𝐸′(0)) has derivative 1 at 𝑥 = 0!
A similar story plays out for logarithms; the functional equation itself had many log-
arithm solutions, but calculus picks out one of these as clearly the most natural:

Definition 27.2 (The Natural Log). We write log for the logarithm function which
has log′(1) = 1. This logarithm satisfies the simple differential identity

log′(𝑥) = 1
𝑥
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27. Elementary Functions

Furthermore the two notions of “naturalness” picking out a logarithm and an expo-
nential are compatible with one another!

Corollary 27.1. The natural exponential and natural log are inverses of one another.

We will make much use of this pair of special functions, and their exeedingly sim-
ple differentiation rules. As a first application, we give a re-proof of the power rule
avoiding difficult limiting arguments:

Theorem 27.1 (★ The General Power Rule). If 𝑎 ∈ ℝ and 𝑓 (𝑥) = 𝑥𝑎 . Then 𝑓 is
differentiable for all 𝑥 > 0, and

(𝑥𝑎)′ = 𝑎𝑥𝑎−1

Proof. Let exp be the natural exponential, and log be the natural log. Then
exp(log(𝑥)) = 𝑥 , and so exp(log(𝑥𝑎)) = 𝑥𝑎 . Using the property of logarithms and
powers (Corollary 21.2) this simplifies

𝑥𝑛 = exp(log(𝑥𝑎)) = exp(𝑎 log(𝑥))

By the chain rule,

[exp(𝑎 log(𝑥))]′ = exp(𝑎 log(𝑥)) [𝑎 log(𝑥)]′
= exp(𝑎 log(𝑥))𝑎 log′(𝑥)
= exp(𝑎 log(𝑥))𝑎 1𝑥

But, recalling that exp(𝑎 log(𝑥)) = exp(log(𝑥𝑎)) = 𝑥𝑎 this simplifies to

= 𝑥𝑎𝑎 1𝑥 = 𝑎𝑥𝑎−1

27.1.2. Finding a Series Representation

Towork with the natural exponential efficiently, we need to find a formula that lets us
compute it. And this is exactly what power series are good at! However, the theory
of power series is a little tricky, as we saw in the last chapter. Not every function has
a power series representation, but if a function does, there’s only one possibility:
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27.1. Exponentials & Logs

Proposition 27.3. If the natural exponential has a power series representation, then it
is

𝑝(𝑥) = ∑
𝑘≥0

𝑥𝑘
𝑘!

Proof. We know the only candidate series for a function 𝑓 (𝑥) is ∑𝑘≥0
𝑓 (𝑘)(0)

𝑘! 𝑥𝑘 , so for
exp this is

𝑝(𝑥) = ∑
𝑘≥0

exp(𝑘)(0)
𝑘! 𝑥𝑘

However, we know that exp′ = exp and so inductively exp(𝑘) = exp, and so

exp(𝑘)(0) = exp(0) = 1
Thus

𝑝(𝑥) = ∑
𝑘≥0

1
𝑘!𝑥

𝑘

So now, while we know exp exists we are back to talking about hypotheticals because
we don’t know if it is representable by a power series! The first step to fixing this is
to show that the proposed series at least converges.

Proposition 27.4. The series 𝑝(𝑥) = ∑𝑘≥0
𝑥𝑘
𝑘! converges for all 𝑥 ∈ ℝ.

Proof. This series converges for all 𝑥 ∈ ℝ by the Ratio test, as

lim | 𝑥
𝑛+1/(𝑛 + 1)!

𝑥𝑛/𝑛! | = lim
|𝑥|

𝑛 + 1 = 0 < 1

Now, all that remains is to show that 𝑝(𝑥) = exp(𝑥). One means to do this is by a
direct calculation, to show this series satisfies the law of exponents

Exercise 27.1 (Power Series & Law of Exponents). Show that for any 𝑥, 𝑦 ∈ ℝ

(∑
𝑛≥0

𝑥𝑛
𝑛! ) (∑

𝑚≥0
𝑦𝑚
𝑚! ) = (∑

𝑘≥0

(𝑥 + 𝑦)𝑘
𝑘! )

Thus, the power series ∑𝑥𝑛/𝑛! satisfies the law of exponents, and defines an expo-
nential function.
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27. Elementary Functions

However this computation is a rather complicated manipulation of products and dou-
ble sums, so we present an alternative approach. Since 𝑝 is a power series, this really
means that the limit of its partial sums equals exp(𝑥), or

∀𝑥 ∈ ℝ exp(𝑥) = lim𝑁 𝑝𝑁 (𝑥)

For any finite partial sum 𝑝𝑁 , we know that it is not exactly equal to exp(𝑥) (as this
finite sum is just a polynomial!). Thus there must be some error term 𝑅𝑁 = exp−𝑝𝑁 ,
or

exp(𝑥) = 𝑝𝑁 (𝑥) + 𝑅𝑁 (𝑥)

This is helpful, as we know from the previous chapter how to calculate such an error,
using the Taylor Error Formula: for each fixed 𝑥 ∈ ℝ and each fixed 𝑁 ∈ ℕ, there is
some point 𝑐𝑁 ∈ [0, 𝑥] such that

𝑅𝑁 (𝑥) = exp(𝑁+1)(𝑐𝑁 )
(𝑁 + 1)! 𝑥𝑁+1

And, to show the power series becomes the natural exponential in the limit, we just
need to show this error tends to zero!

Proposition 27.5. As 𝑁 → ∞, for any 𝑥 ∈ ℝ the Taylor error term for the exponential
goes to zero:

𝑅𝑁 (𝑥) → 0

Proof. Fix some 𝑥 ∈ ℝ. Then for an arbitrary 𝑁 , we know

𝑅𝑁 (𝑥) = exp(𝑁+1)(𝑐𝑁 )
(𝑁 + 1)! 𝑥𝑁+1

where 𝑐𝑁 ∈ [0, 𝑥] is some number that we don’t have much control of (as it came from
an existence proof: Rolle’s theorem in our derivation of the Taylor error). Because
we don’t know 𝑐𝑁 explicitly, its hard to directly compute the limit and so instead we
use the squeeze theorem:

We know that exp is an increasing function: thus, the fact that 0 ≤ 𝑐𝑁 ≤ 𝑥 implies
that 1 = exp(0) ≤ exp(𝑐𝑁 ) ≤ exp(𝑥), and multiplying this inequality through by
𝑥𝑁+1(𝑁 + 1)! yields the inequality

𝑥𝑁+1
(𝑁 + 1)! ≤ 𝑅𝑁 (𝑥) = exp(𝑐𝑁 ) 𝑥𝑁+1

(𝑁 + 1)! ≤ exp(𝑥) 𝑥𝑁+1
(𝑁 + 1)!
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27.1. Exponentials & Logs

(Here I have assumed that 𝑥 ≥ 0: if 𝑥 < 0 then the inequalities reverse for even values
of 𝑁 as 𝑥𝑁+1 is negative and we are multiplying through by a negative number. But
this does not affect the fact that the error term 𝑅𝑁 (𝑥) is still sandwiched between the
two.)

So now our problem reduces to showing that the upper and lower bounds converge
to zero. Since exp(𝑥) is a constant (remember, 𝑁 is our variable here as we take the
limit), a limit of both the upper and lower bounds comes down to just finding the
limit

lim𝑁
𝑥𝑁+1

(𝑁 + 1)

But this is just the 𝑁 + 1st term of the power series 𝑝(𝑥) = ∑𝑛≥0 𝑥𝑛/𝑛! we studied
above! And since this power series converges, we know that as 𝑛 → ∞ its terms must
go to zero (the divergence test). Thus

lim𝑁
𝑥𝑁+1

(𝑁 + 1) = 0 lim𝑁 exp(𝑥) 𝑥𝑁+1
(𝑁 + 1) = 0

and so by the squeeze theorem, 𝑅𝑁 (𝑥) converges and

lim𝑁 𝑅𝑁 (𝑥) = 0

Now we have all the components together at last: we know that exp exists, we have
a candidate power series representation, that candidate converges, and the error be-
tween it and the exponential goes to zero!

Theorem 27.2. The natural exponential is given by the following power series

exp(𝑥) = ∑
𝑘≥0

𝑥𝑘
𝑘!

Proof. Fix an arbitrary 𝑥 ∈ ℝ. Then for any 𝑁 we can write

exp(𝑥) = 𝑝𝑁 (𝑥) + 𝑅𝑁 (𝑥)

For 𝑝𝑁 the partial sum of 𝑝(𝑥) = ∑𝑘≥0 𝑥𝑘/𝑘! and 𝑅𝑁 (𝑥) the error. Since we have
proven both 𝑝𝑁 and 𝑅𝑁 converge, we can take the limit of both sides using the limit
theorems (and, as exp(𝑥) is constant in 𝑁 , clearly lim𝑁 exp(𝑥) = exp(𝑥)):
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exp(𝑥) = lim𝑁 (𝑝𝑁 (𝑥) + 𝑅𝑁 (𝑥))
= lim𝑁 𝑝𝑁 (𝑥) + lim𝑁 𝑅𝑁 (𝑥)
= 𝑝(𝑥) + 0

= ∑
𝑘≥0

𝑥𝑘
𝑘!

Its incredible in and of itself to have such a simple, explicit formula for the natural
exponential. But this is just the beginning: this series actually gives us a means to
express all exponentials:

Theorem 27.3. Let 𝐸(𝑥) be an arbitrary exponential function. Then 𝐸 has a power
series representation on all of ℝ which can be expressed for some real nonzero 𝑐 as

𝐸(𝑥) = ∑
𝑛≥0

𝑐𝑛
𝑛! 𝑥

𝑛

Proof. Because 𝐸 is an exponential we know 𝐸 is differentiable, and that 𝐸′(𝑥) =
𝐸′(0)𝐸(𝑥) for all 𝑥 . Note that 𝐸′(0) is nonzero; else we would have 𝐸′(𝑥) = 0 con-
stantly, and so 𝐸(𝑥) would be constant. Set 𝑐 = 𝐸′(0).
Now, inductively take derivatives at zero:

𝐸′(0) = 𝑐 𝐸′′(0) = 𝑐2 𝐸(𝑛)(0) = 𝑐𝑛

Thus, if 𝐸 has a power series representation it must be

∑
𝑛≥0

𝑐𝑛
𝑛! 𝑥

𝑛 = ∑
𝑛≥0

1
𝑛! (𝑐𝑥)

𝑛

This is just the series for exp evaluated at 𝑐𝑥 : since exp exists and is an exponential, so
is this function (as its defined just by a substitution). So there is such an exponential.

Unfortunately our newfound tool does not apply so well to giving a formula for the
logarithm: power series are always defined on some symmetric interval (−𝑟, 𝑟) about
0, but the domain of the logarithm is (0, ∞). Thus there is no simple power series that
will equal log(𝑥)!. We will come up with formulas to compute the logarithm later on,
first as an integral; and then as a series (that converges only for some values of 𝑥).
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27.1.3. ★ Existence of Exponentials: an Alternative Proof

Our argument above used that we had previously confirmed the existence of exponen-
tial functions, together with the Taylor Error formula to find a series representation.
But as often happens, the amount of new technology we have developed along the
way gives a new self-contained means of both proving the existence of exponentials,
and constructing their series in one stroke! We give this alternative argument here.

The idea essentially turns some of our previous reasoning on its head: we start by
looking at solutions to the equation 𝑦 ′ = 𝑦 and (1) show they satisfy the law of
exponents, then (2) construct an explicit solution as a power series. First, a helpful
lemma about this differential equation:

Proposition 27.6. Let 𝑓 , 𝑔 be two solutions to the differential equation 𝑦 ′ = 𝑦 . Then
they are constant multiples of one another.

Proof. Consider the function ℎ(𝑥) = 𝑓 (𝑥)
𝑔(𝑥) . Differentiating with the quotient rule,

ℎ′(𝑥) = 𝑓 ′(𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑔′(𝑥)
𝑔(𝑥)2 (27.1)

= 𝑓 (𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑔(𝑥)
𝑔(𝑥)2 (27.2)

= 0
𝑔(𝑥)2 (27.3)

= 0 (27.4)

Thus ℎ′(𝑥) = 0 for all 𝑥 , which implies ℎ = 𝑓 /𝑔 is a constant function, and 𝑔 is a
constant multiple of 𝑓 as claimed.

Now we’re ready for the main theorem:

Theorem 27.4. Let 𝑔 be any differentiable function which solves 𝑔′ = 𝑔 and has 𝑔(0) =
1. Then 𝑔 is an exponential.

Proof. Let 𝑔 ∶ ℝ → ℝ solve 𝑌 ′ = 𝑌 and satisfy 𝑔(0) = 1. We wish to show that
𝑔(𝑥 + 𝑦) = 𝑔(𝑥)𝑔(𝑦) for all 𝑥, 𝑦 ∈ ℝ.
So, fix an arbitrary 𝑦 , and consider each of these separately, defining functions 𝐿(𝑥) =
𝑔(𝑥 + 𝑦) and 𝑅(𝑥) = 𝑔(𝑥)𝑔(𝑦).
Differentiating,
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𝐿′(𝑥) = (𝑔(𝑥 + 𝑦))′
= 𝑔(𝑥 + 𝑦)(𝑥 + 𝑦)′
= 𝑔(𝑥 + 𝑦)
= 𝐿(𝑥)

𝑅′(𝑥) = (𝑔(𝑥)𝑔(𝑦))′
= (𝑔(𝑥))′𝑔(𝑦)
= 𝑔(𝑥)𝑔(𝑦)
= 𝑅(𝑥)

Thus, both 𝐿 and 𝑅 satisfy the differential equation 𝑌 ′ = 𝑌 . Our previous proposition
implies they are constant multiples of one another,

𝐿(𝑥)
𝑅(𝑥) = 𝑘 ∀𝑥 ∈ ℝ

To find this constant we evaluate at 𝑥 = 0 where (using 𝑔(0) = 1) we have

𝐿(0) = 𝑔(0 + 𝑦) = 𝑔(𝑦)
𝑅(0) = 𝑔(0)𝑔(𝑦) = 𝑔(𝑦)

They are equal at 0 so the constant is 1:

𝐿(𝑥)
𝑅(𝑥) = 𝐿(0)

𝑅(0) = 𝑔(𝑦)
𝑔(𝑦) = 1

⟹ 𝐿 = 𝑅

But these two functions are precisely the left and right side of the law of exponents
for 𝑔. Thus their equality is equivalent to 𝑔 sayisfying the law of exponents for this
fixed value of 𝑦 :

∀𝑥, 𝐿(𝑥) = 𝑔(𝑥 + 𝑦) = 𝑔(𝑥)𝑔(𝑦) = 𝑅(𝑥)

As 𝑦 was arbitrary, this holds for all 𝑦 , and 𝑔 is an exponential.

This proof does not establish the existence of a solution to this equation, it only says if
you have a solution then its an exponential. But we may now use the theory of power
series to directly construct a solution!
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Proposition 27.7. The series 𝐸(𝑥) = ∑𝑛≥0
𝑥𝑛
𝑛! satisfies 𝐸′(𝑥) = 𝐸(𝑥) and 𝐸(0) = 1.

Thus, it defines an exponential function.

Proof. This series converges on the entire real line via the ratio test (as checked above).
Thus it defines a continuous and differentiable function on ℝ, which can be differen-
tiated term-by-term (Theorem 26.1) to yield

𝐸(𝑥) = (1 + 𝑥 + 𝑥2
2 + 𝑥3

6 + ⋯ + 𝑥𝑛
𝑛! + ⋯)

′

= (1)′ + (𝑥)′ + (𝑥
2
2 )

′
+ (𝑥

3
6 )

′
+ ⋯ + (𝑥

𝑛
𝑛! )

′
+ ⋯

= 0 + 1 + 𝑥 + 3𝑥2
6 + ⋯ + 𝑛𝑥𝑛−1

𝑛! + ⋯

= 1 + 𝑥 + 𝑥2
2 + ⋯ + 𝑥𝑛−1

(𝑛 − 1)! + ⋯
= 𝐸(𝑥)

Finally, plugging in zero yields 𝐸(0) = 1+0+ 02
2! +⋯ = 1, finishing the argument.

27.1.4. The Number 𝑒
Recalling our work with irrational exponents, we know that exponentials are powers:
if 𝐸 is an exponential with 𝐸(1) = 𝑎, then we may write 𝐸(𝑥) = 𝑎𝑥 for any 𝑥 ∈ ℝ
(defined as a limit of rational exponents). So, our special exponential exp comes with
a special number as its base.

Definition 27.3. We denote by the letter 𝑒 the base of the exponential exp(𝑥): that
is, 𝑒 = exp(1), and

exp(𝑥) = 𝑒𝑥

What is this natural base? We can estimate its value using the power series represen-
tation for exp, and the Taylor error formula.

Proposition 27.8. The base of the natural exponential is between 2 and 3.

Proof. The series defining 𝑒 is all positive terms, so we see that 𝑒 is greater than any
partial sum. Thus

2 = 1 + 1 = 1
0! +

1
1! < ∑

𝑘≥0
1
𝑘! = 𝑒

so we have the lower bound. To get the upper bound, we need to come up wtih a
computable upper bound for our series. This turns out to be not that difficult: as
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the factorial grows so quickly, we can produce many upper bounds by just fining
something that grows slower than the reciprocal and summing up their reciprocals.
For instance, when 𝑘 ≥ 2

𝑘(𝑘 − 1) ≤ 𝑘!

and so,

𝑒 = ∑
𝑘≥0

1
𝑘! = 1 + 1 + ∑

𝑘≥2
1
𝑘! ≤ 1 + 1 + ∑

𝑘≥2
1

𝑘(𝑘 − 1)

But this upper bound now is our favorite telescoping series! After a rewrite with
partial fractions, we directly see that it sums to 1. Plugging this in,

𝑒 < 1 + 1 + 1 = 3

How can we get a better estimate? Since we do have a convergent infinite series just
sitting here defining 𝑒 for us, the answer seems obvious - why don’t we just sum up
more and more terms of the series? And of course - that is part of the correct strategy,
but it’s missing one key piece. If you add up the first 10 terms of the series and you
get some number, how can you know how accurate this is?

Just because the first two digits are 2.7, who is to say that after adding a million
more terms (all of which are positive) it won’t eventually become 2.8? To give us any
confidence in the value of 𝑒 we need a way of measuring how far off any of our partial
sums could be.

Our usual approach is to try and produce sequences of upper and lower estimates:
nested intervals of error bars to help us out. But here we have only one sequence
(and producing even a single upper bound above was a bit of work!) so we need to
look elsewhere. It turns out, the correct tool for the job is the Taylor Error formula
once more!

Proposition 27.9. Adding up the first 𝑁 terms of the series expansion of 𝑒 results in a
an estimate of the true value accurate to within 3/(𝑁 + 1)!.

Proof. The number 𝑒 is defined as exp(1), and so using 𝑥 = 1 we are just looking at
the old equation

exp(1) = 𝑝𝑁 (1) + 𝑅𝑁 (1)

Where 𝑅𝑁 (1) = exp(𝑐𝑁 ) 1𝑁+1
(𝑁+1)! for 𝑐𝑁 ∈ [0, 1]. Since exp is increasing, we can bound

exp(𝑐𝑁 ) below by exp(0) = 1 and above by exp(1) = 𝑒, and 𝑒 above by 3: thus
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1
(𝑁 + 1)! ≤ 𝑅𝑁 (𝑥) ≤ 3

(𝑁 + 1)!

And so, the difference |𝑒 − 𝑝𝑁 (1)| = |𝑅𝑁 (1)| is bounded above by the upper bound
3/(𝑁 + 1)!

This gives us a readily computable, explicit estimate. Precisely adding up to the 𝑁 =
5th term of the series yields

1 + 1 + 1
2 + 1

6 + 1
24 + 1

120 ≈ 2.71666…

with the total error between this and 𝑒 is less than 3
6! = 1

240 = 0.0041666…. Thus
we can be confident that the first digit after the decimal is a 7, as 2.7176 − 0.0041 =
2.7135 ≤ 𝑒 ≤ 2.7176 + 0.0041 = 2.7217.
Adding up five more terms, to 𝑁 = 10 gives

1 + 1 + 1
2 + 1

3! + ⋯ + 1
10! = 2.71828180114638…

now with a maximal error of 3/11! = 0.000000075156…. This means we are now
absolutely confident in the first six digits:

𝑒 ≈ 2.718281

Pretty good, for only having to add eleven fractions together! Thats the sort of calcu-
lation one could even manage by hand.

27.2. Trigonometric Functions

Take derivatives of identities.

Corollary 27.2.

lim𝑥→0
sin 𝑥
𝑥 = 1

Definition of NATURAL trigonometric functions - this gives a natural period 𝜏 and
half period 𝜋 .
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27.2.1. Finding Series Representations

Find power series satisfying these.

Prove these series directly satisfy the trigonometric functional equations, using com-
plex exponentials.

PROVE VIETE FORMULA FOR PI (PAGE 381 in AMAZING)

27.3. Problems

Exercise 27.2 (Approximating 𝜋 with Newton’s Method). The first zero of cos(𝑥) is
𝜋/2, so one might hope to use Newton’s method to produce an approximation for 𝜋 .
Show the sequence

𝑥𝑛+1 = 𝑁(𝑥𝑛) = 𝑥𝑛 + cos(𝑥𝑛)
sin(𝑥𝑛)

starting at 𝑥0 = 1 converges to 𝜋/2, and use a calculator to compute the first couple
terms.

This of course is not very satisfying as we had to use a calculator to find values of sin
and cos! But we know enough to approximate these values with a series expansion.

Exercise 27.3. How many terms of the series expansions of sin, cos are needed to
evaluate at 𝑥 = 1 to within 0.0001? Use this many terms of the series expansion to
approximate the terms appearing in the first two iterations of Newtons method

1, 𝑁 (1), 𝑁 (𝑁 (1))
What is your approximate value for 𝜋 resulting from this?
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Integrals
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• In Chapter 28 we discuss the area problem and give a set of axioms to charac-
terize the operation of integration.

• In Chapter 29 we give a particular limiting construction (the Darboux Integral)
and prove it satisfies the axioms

• In Chapter 30 we integrate polynomials and elementary functions directly from
the definition

• In Chapter 31 we investigate further properties of the Darboux Integral beyond
the axioms; showing that it is a linear operation and all continuous functions
are integrable
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28. Axioms

28.1. Characterizing Integration

Definition 28.1 (Axiomatic Integration). For any closed interval 𝐽 = [𝑎, 𝑏]we denote
byℐ (𝐽) the set of integrable functions on 𝐽 . Then a collection of functionsℐ (𝐽) → ℝ
is an integral, and denoted

𝑓 ↦ ∫𝐽 𝑓

if it satisfies the following axioms:

• If 𝑘 ∈ ℝ then 𝑓 (𝑥) = 𝑘 is an element of ℐ ([𝑎, 𝑏]) for any interval [𝑎, 𝑏] and

∫[𝑎,𝑏] 𝑘 = 𝑘(𝑏 − 𝑎).

• If 𝑓 , 𝑔 ∈ ℐ ([𝑎, 𝑏]) and 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏] then

∫[𝑎,𝑏] 𝑓 ≤ ∫[𝑎,𝑏] 𝑔

• If [𝑎, 𝑏] is an interval and 𝑐 ∈ (𝑎, 𝑏), then 𝑓 ∈ ℐ ([𝑎, 𝑏]) if and only if 𝑓 ∈ ℐ ([𝑎, 𝑐])
and 𝑓 ∈ ℐ ([𝑐, 𝑏]). Furthermore, in this case their values are related by

∫[𝑎,𝑏] 𝑓 = ∫[𝑎,𝑐] 𝑓 + ∫[𝑐,𝑏] 𝑓

Note these axioms do not aim to uniquely specify an integral, but rather to delineate
properties that anything worthy of being called an integral must have.

Definition 28.2 (Interesting Integral). An integral is called interesting if ℐ (𝐽) con-
tains all continuous functions on 𝐽 , for all closed intervals 𝐽 .

Intuition about why we think this should determine the value of all functions…

287



28. Axioms

28.2. The Integral as a Function

Proposition 28.1 (The Integral as a Function). If 𝑓 ∈ ℐ ([𝑎, 𝑏]) is an integrable func-
tion, then there exists a function 𝐹 ∶ [𝑎, 𝑏] → ℝ defined by

𝐹(𝑥) = ∫[𝑎,𝑥] 𝑓

Proof. This is just subdivision at work: for any 𝑥 ∈ [𝑎, 𝑏] we may write

[𝑎, 𝑏] = [𝑎, 𝑥] ∪ [𝑥, 𝑏]
. Then Axiom III implies that 𝑓 is integrable on [𝑎, 𝑥], and so the number ∫[𝑎,𝑥] 𝑓 is
defined. This assignment describes a real valued function

𝑥 ↦ ∫[𝑎,𝑥] 𝑓

Proposition 28.2 (Integrating over a Degenerate Interval). If {𝑐} is the degenerate
closed interval containing a single point, and 𝑓 is a function which is integrable on any
interval containing 𝑎, then

∫{𝑎} 𝑓 = 0

Proof. Let 𝑓 be integrable on the interval [𝑢, 𝑣] and 𝑎 ∈ [𝑢, 𝑣] be a point. Without
loss of generality we can in fact take 𝑎 to be one of the endpoints of the interval, by
subdivision: if 𝑎 ∈ (𝑢, 𝑣) then Axiom III implies that 𝑓 is integrable on [𝑢, 𝑎] and on
[𝑎, 𝑣] as well.

Thus, we assume 𝑓 is integrable on [𝑎, 𝑣], and further subdivide this interval as

[𝑎, 𝑣] = [𝑎, 𝑎] ∪ [𝑎, 𝑣] = {𝑎} ∪ [𝑎, 𝑣]

By subdivision, we see that 𝑓 is integrable on {𝑎} and that

∫[𝑎,𝑣] 𝑓 = ∫{𝑎} 𝑓 + ∫[𝑎,𝑣] 𝑓

Subtracting the common integral over [𝑎, 𝑣] from both sides yields the result,

∫{𝑎} 𝑓 = 0
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Theorem 28.1. If 𝑓 ∈ ℐ ([𝑎, 𝑏]) is a bounded integrable function, then its integral
𝐹(𝑥) = ∫[𝑎,𝑥] 𝑓 is continuous.

Proof. Let 𝑓 be integrable and bounded by 𝑀 on [𝑎, 𝑏], and set 𝐹(𝑥) = ∫[𝑎.𝑥] 𝑓 . Begin
by choosing an 𝜖 > 0. We will prove something even strong than asked - that 𝑓 is
uniformly continuous by finding a 𝛿 > 0 where if |𝑦 − 𝑥| < 𝛿 we have |𝐹 (𝑦)−𝐹(𝑥)| < 𝜖.
Let’s unpack this a bit: if 𝑥 < 𝑦 are two points of [𝑎, 𝑏],

𝐹(𝑦) − 𝐹(𝑥) = ∫[𝑎,𝑦] 𝑓 − ∫[𝑎,𝑥] 𝑓

But subdivision (Axiom III) implies

𝐹(𝑦) = ∫[𝑎,𝑦] 𝑓

= ∫[𝑎,𝑥] 𝑓 + ∫[𝑥,𝑦] 𝑓

= 𝐹(𝑥) + ∫[𝑥,𝑦] 𝑓

Thus 𝐹(𝑦) − 𝐹(𝑥) is just the integral of 𝑓 on the subinterval [𝑥, 𝑦] ⊂ [𝑎, 𝑏]. Because 𝑓
is bounded by 𝑀 we know −𝑀 ≤ 𝑓 (𝑥) ≤ 𝑀 . By subdivsion, 𝑓 is then integrable on
every sub-interval 𝐼 ⊂ [𝑎, 𝑏], and by comparison (Axiom II) this implies

−𝑀|𝐼 | ≤ ∫𝐼 𝑓 ≤ 𝑀|𝐼 |

So, we choose 𝛿 = 𝜖/𝑀 . This immediately yields what we want, as if |𝑦 − 𝑥| < 𝛿 ,

−𝜖 = −𝑀𝛿 < −𝑀|𝑦 − 𝑥| ≤ ∫[𝑥,𝑦] 𝑓 ≤ 𝑀|𝑦 − 𝑥| < 𝑀𝛿 = 𝜖

Thus |𝐹 (𝑦) − 𝐹(𝑥)| = | ∫[𝑥,𝑦] 𝑓 , 𝑑𝑥| < 𝜖.

Remark 28.1. Of course, the proven result is not really stronger than what was asked,
since we began on a closed interval, andwe know that continuous on a closed interval
implies uniformly continuous.

However, if you look carefully at the proof you see we nowhere used that the original
domain was a closed interval! So what we have really proven is that the area function
𝐹(𝑥) = ∫[𝑎,𝑏] 𝑓 is uniformly continuous anytime 𝑓 is bounded!
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As defined, the integral is only a function of 𝑥 for 𝑥 greater than the chosen starting
endpoint. While this is what is desired in many applications, its also useful to be able
to extend the definition to make sense for 𝑥 below the starting point as well. This
is the integral often met in calculus, which we call the oriented integral as it changes
sign when the interval from 𝑎 to 𝑥 is traced backwards.

Definition 28.3 (The Oriented Integral). Given a function 𝑓 which is integrable on

the interval between 𝑎 and 𝑏, the oriented integral of 𝑓 is denoted ∫𝑏𝑎 𝑓 and equals

∫
𝑏

𝑎
𝑓 = {∫[𝑎,𝑏] 𝑓 𝑎 ≤ 𝑏

− ∫[𝑏,𝑎] 𝑓 𝑏 < 𝑎

Corollary 28.1. Given any function 𝑓 which is integrable on an interval [𝑎, 𝑏], for any
𝑐 ∈ [𝑎, 𝑏] the oriented integral defines a function [𝑎, 𝑏] → ℝ by

𝑥 ↦ ∫
𝑥

𝑐
𝑓

28.3. ♦ Improper Integrals

We have axiomatized the integral for bounded functions on closed intervals, but the
definition can be naturally extended to unbounded intervals and (certain) unbounded
functions via limits.

Definition 28.4 (Improper Integrals: Unbounded Intervals). The integral of a
bounded function 𝑓 on a ray [𝑎, ∞) is defined as a limit of its integrals over growing
closed intervals

∫[𝑎,∞)
𝑓 ∶= lim𝑏→∞∫[𝑎,𝑏] 𝑓

with the analogous definition for rays (−∞, 𝑏]. The integral over the entire real line
is defined by taking each endpoint to ±∞ separately

∫ℝ 𝑓 ∶= lim𝑎→−∞
𝑏→∞

∫[𝑎,𝑏] 𝑓

That is, both orders lim𝑎→−∞ lim𝑏→∞ and lim𝑏→∞ lim𝑎→−∞ exist and are equal.

Definition 28.5 (Improper Integrals: Unbounded Functions). If 𝑓 is defined on (𝑎, 𝑏]
and integrable on each subinterval [𝑡, 𝑏] for 𝑡 > 𝑎, we define the improper integral on
(𝑎, 𝑏] as a limit

∫(𝑎,𝑏] 𝑓 = lim
𝑡→𝑎+ ∫[𝑡,𝑎] 𝑓
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Similarly for functions unbounded on [𝑎, 𝑏) but bounded on each [𝑎, 𝑡] ⊂ [𝑎, 𝑏), we
define ∫[𝑎,𝑏) 𝑓 = lim𝑡→𝑏− ∫[𝑎,𝑡] 𝑓 .

If a function defined on [𝑎, 𝑏] is unbounded in a neighborhood of some 𝑐 ∈ (𝑎, 𝑏) but
is integrable on every subinterval missing 𝑐, we say the integral on [𝑎, 𝑏] exists if and
only if the integral on [𝑎, 𝑐) and (𝑐, 𝑏] both exist, in which case we define it as equal
to their sum.
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Highlights of this Chapter: We discuss the difficulty of constructing an integral, and
then provide a definition (the Darboux integral) of a potential contender. We then
prove that the Darboux integral satisfies our axioms of integration, and thus is truly
an integral.

29.1. ★ Failure of the ‘Calculus Integral’

The example below shows this is actually a difficult problem to answer: one might
try to define the integral using a right endpoint Riemann sum (as one would in a
calculus course): from this definition one can prove that all continuous functions are
integrable, but then when one goes to try and verify the axioms, one finds this is
actually not an integral at all!

Definition 29.1 (The “Calculus Integral”). Let 𝑓 be a function defined on the interval
[𝑎, 𝑏], and 𝑁 a natural number. With Δ = (𝑏 − 𝑎)/𝑁 we define the (right endpoint)
Riemann sum for 𝑓 with 𝑁 subintervals is

𝑛
∑
𝑖=1

𝑓 (𝑎 + 𝑖Δ)Δ

Such a function 𝑓 is Calculus - integrable if the limit of its Riemann sums exists as the
number of subintervals goes to infinity. In this case, the Calculus Integral is defined
as the limiting value:

∫
Calc

[𝑎,𝑏]
𝑓 (𝑥)𝑑𝑥 = lim𝑁→∞

𝑁
∑
𝑖=1

𝑓 (𝑎 + 𝑖Δ𝑥)Δ𝑥

It turns out that while this definition seems unproblematic when applied to elemen-
tary functions seen in a calculus course, it has some rather surprising behavior in
general: and taking it as our definition would destroy some of the familiar pillars of
integration theory!

To find the trouble, we need to look away from the well behaved functions, and in-
vestigate the integrability of some monsters. Here we’ll look at the characteristic
function of the rationals.
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𝜒(𝑥) = {1 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ

Example 29.1. Let 𝜒 be the above function, equal to 1 on the rationals and 0 on the
irrationals. Then 𝑓 is Calculus - Integrable on every interval of the form [0, 𝑎] but

𝑎 ∈ ℚ ⟹ ∫
Calc

[0,𝑎]
𝜒𝑑𝑥 = 𝑎

𝑎 ∉ ℚ ⟹ ∫
Calc

[0,𝑎]
𝜒𝑑𝑥 = 0

In fact, its worse than this! As a natural extension of the above, one can show the
following:

Exercise 29.1. The function 𝜒 is Calculus-Integrable on any closed interval in ℝ, and
the resulting value is:

• The length of the interval, when both endpoints are rational.
• Zero, when one endpoint is rational and the other irrational

This has a very important consequence to our theory: our proposed definition of the
integral violates the subdivision rule.

Exercise 29.2. The subdivison rule

∫
Calc

[𝑎,𝑏]
𝑓 = ∫

Calc

[𝑎,𝑐]
𝑓 + ∫

Calc

[𝑐,𝑏]
𝑓

is false for the integral as defined in ?@def-calc-Riemann-Integral.
Hint: look at the interval [0, 2], and note 0 < √2 < 2.

Thus, the function defined by this construction does not satisfy the axioms of inte-
gration, and does not define an integral! Apparently, we have our work cut out for
us.

29.2. The Darboux Integral

The failure of the “Calculus Class Integral” above can be traced back to the fact that
it relies on specific partitions, and specific means of sampling those partitions. These
specific choices cause the pathologies of the function 𝜒ℚ to remain invisible to the
limiting procedure. Below we propose a more careful limiting procedure that avoids
making such specific choices: this procedure will notice the pathological behavior
of functions like 𝜒ℚ and rule them non-integrable; avoiding the problem we just en-
countered.
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29.2. The Darboux Integral

Definition 29.2 (Partitions). A partition of the interval 𝐼 = [𝑎, 𝑏] is a finite ordered
set 𝑃 = {𝑡0, 𝑡1, … , 𝑡𝑛} with 𝑎 = 𝑡0 < 𝑡1 < … < 𝑡𝑛−1 < 𝑡𝑁 = 𝑏.

• 𝑁 is called the length of the partition
• We write 𝑃𝑖 = [𝑡𝑖, 𝑡𝑖+1] for the 𝑖𝑡ℎ interval of 𝑃 , and |𝑃𝑖| = (𝑡𝑖+1 − 𝑡𝑖) for its width.

• The maxwidth of 𝑃 is the maximal width of the 𝑃 ’s intervals, maxwidth(𝑃) =
max0≤𝑖<𝑁 {|𝑃𝑖|}.

• The set of all partitions on a fixed interval 𝐼 is denoted 𝒫𝐼 .

𝒫𝐼 = {𝑃 ∶ 𝑃 is a partition of 𝐼 }

Definition 29.3 (Upper and Lower Sums). Let 𝑓 be a function, and 𝑃 a partition of
the closed interval 𝐼 . For each segment 𝑃𝑖 = [𝑡𝑖, 𝑡𝑖+1], we define

𝑚𝑖 = inf𝑥∈𝑃𝑖
{𝑓 (𝑥)} 𝑀𝑖 = sup

𝑥∈𝑃𝑖
{𝑓 (𝑥)}

We then define the upper sum 𝑈𝐼 (𝑓 , 𝑃) and the lower sum 𝐿𝐼 (𝑓 , 𝑃) as

𝐿𝐼 (𝑓 , 𝑃) = ∑
0≤𝑖<𝑁

𝑚𝑖|𝑃𝑖|

𝑈𝐼 (𝑓 , 𝑃) = ∑
0≤𝑖<𝑁

𝑀𝑖|𝑃𝑖|

s

Definition 29.4 (Upper and Lower Integrals). Let 𝑓 be a function on the closed in-
terval 𝐼 . Then we define the upper integral 𝑈𝐼 (𝑓 ) and the lower integral 𝐿𝐼 (𝑓 ) as

𝑈 (𝑓 ) = inf𝑃∈𝒫𝐼
{𝑈𝐼 (𝑓 , 𝑃)}

𝐿(𝑓 ) = sup
𝑃∈𝒫𝐼

{𝐿𝐼 (𝑓 , 𝑃)}

Definition 29.5 (Darboux Integral). Let 𝑓 be a function on the closed interval 𝐼 .
Then 𝑓 is Darboux-Integrable on 𝐼 if 𝑈 (𝑓 ) = 𝐿(𝑓 ), and we define the integral to be
this common value:

∫[𝑎,𝑏] 𝑓 = 𝑈 (𝑓 ) = 𝐿(𝑓 )

Exercise 29.3. Prove the characteristic function of the rationals is not Darboux inte-
grable on [0, 1].
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29.3. Working with Partitions

The goal of this section is to prove the seemingly obvious fact 𝐿𝐼 (𝑓 ) ≤ 𝑈𝐼 (𝑓 ). This
takes more work than it seems at first because of the definitions of 𝐿𝐼 (𝑓 ) as a supre-
mum and 𝑈𝐼 (𝑓 ) as an infimum, but proves an invaluable tool in analyzing integrabil-
ity.

Definition 29.6 (Refining Partitions). A partition 𝑄 is a refinement of a partition 𝑃
if 𝑄 contains all the points of 𝑃 (that is, 𝑃 ⊂ 𝑄).

Proposition 29.1 (The Refinement Lemma). If 𝑄 is a refinement of the partition 𝑃 on
a closed interval 𝐼 , then for any bounded function 𝑓 the following inequalities hold

𝐿𝐼 (𝑓 , 𝑃) ≤ 𝐿𝐼 (𝑓 , 𝑄) ≤ 𝑈𝐼 (𝑓 , 𝑄) ≤ 𝑈𝐼 (𝑓 , 𝑃)

Proof. Here we give the argument for lower sums, the analogous case for upper sums
is asked in Exercise 29.4. Since 𝑃 ⊂ 𝑄 and both 𝑃, 𝑄 are finite sets we know 𝑄 contains
finitely many more points than 𝑃 . Here we will show that if 𝑄 contains exactly one
more point than 𝑃 , that the claim holds; the general case follows by induction.

In this case we may write 𝑄 = 𝑃 ∪ {𝑧}, where 𝑧 lies within the partition 𝑃𝑘 = [𝑡𝑘 , 𝑡𝑘+1].
Thus, 𝑄𝑘 = [𝑡𝑘 , 𝑐] for the left half after subdivision, and 𝑄𝑘+1 = [𝑐, 𝑡𝑘+1] for the right
half. Outside of 𝑃𝑘 , the two partitions are identical, so their difference is given only
by the difference of their values on 𝑃𝑘 :

𝐿𝐼 (𝑓 , 𝑄) − 𝐿𝐼 (𝑓 , 𝑃) =

( inf𝑥∈𝑄𝑘
{𝑓 (𝑥)} |𝑄𝑘 | + inf𝑥∈𝑄𝑘+1

{𝑓 (𝑥)} |𝑄𝑘+1|) − ( inf𝑥∈𝑃𝑘
{𝑓 (𝑥)} |𝑃𝑘 |)

Since both 𝑄𝑘 and 𝑄𝑘+1 are subsets of 𝑃𝑘 , the infimum over each of them is at its
smallest the infimum over the whole set. This implies

inf𝑥∈𝑄𝑘
{𝑓 (𝑥)} |𝑄𝑘 | + inf𝑥∈𝑄𝑘+1

{𝑓 (𝑥)} |𝑄𝑘+1|

≥ inf𝑥∈𝑃𝑘
{𝑓 (𝑥)}|𝑄𝑘 | + inf𝑥∈𝑃𝑘

{𝑓 (𝑥)}|𝑄𝑘+1

= inf𝑥∈𝑃𝑘
{𝑓 (𝑥)} (|𝑄𝑘 | + |𝑄𝑘+1)

= inf𝑥∈𝑃𝑘
{𝑓 (𝑥)}|𝑃𝑘 |

Thus, the first term in the difference above is bigger than the second, so the overall
difference is positive. Thus 𝐿𝐼 (𝑓 , 𝑄) − 𝐿𝐼 (𝑓 , 𝑃) ≥ 0 and so as claimed,

𝐿𝐼 (𝑓 , 𝑄) ≥ 𝐿𝐼 (𝑓 , 𝑃)
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Exercise 29.4. Following the structure above, prove that if 𝑄 refines 𝑃 , that

𝑈𝐼 (𝑓 , 𝑄) ≤ 𝑈𝐼 (𝑓 , 𝑃)

Proposition 29.2 (Upper/Lower Sum Inequality). Lower sums are always smaller
than upper sums, independent of partition. That is, if 𝑃, 𝑄 be two arbitrary partitions of
a closed interval 𝐼 , for any bounded function 𝑓 ,

𝐿𝐼 (𝑓 , 𝑃) ≤ 𝑈𝐼 (𝑓 , 𝑄)

Proof. Let 𝑃 and 𝑄 be two arbitrary partitions of the interval 𝐼 , and consider the
partition 𝑃 ∪ 𝑄. This contains both 𝑃 and 𝑄 as subsets, so is a common refinement of
both.

Using our previous work, this implies

𝐿(𝑓 , 𝑃) ≤ 𝐿(𝑓 , 𝑃 ∪ 𝑄) 𝑈 (𝑓 , 𝑃 ∪ 𝑄) ≤ 𝑈 (𝑓 , 𝑄)

We also know that for the partition 𝑃 ∪ 𝑄 itself,

𝐿(𝑓 , 𝑃 ∪ 𝑄) ≤ 𝑈 (𝑓 , 𝑃 ∪ 𝑄)

Taken together these produce the the string of inequalities

𝐿(𝑓 , 𝑃) ≤ 𝐿(𝑓 , 𝑃 ∪ 𝑄) ≤ 𝑈 (𝑓 , 𝑃 ∪ 𝑄) ≤ 𝑈 (𝑓 , 𝑄)

From which immediately follows that 𝐿(𝑓 , 𝑃) ≤ 𝑈 (𝑓 , 𝑄), as desired.

Proposition 29.3 (Upper/Lower Integral Inequality). Let 𝐼 be any closed interval and
𝑓 a bounded function on 𝐼 . Then the lower integral is less than or equal to the upper
integral,

𝐿𝐼 𝑓 ≤ 𝑈𝐼 𝑓 .

Proof. Recall that 𝑈 (𝑓 ) is the infimum over all partitions of the upper sums.
Let 𝑃 be an arbitrary partition. By ?@prp-upper-lower-on-different-partitions
we know the upper sum with respect to any partition whatsoever is greater than or
equal to 𝐿(𝑓 , 𝑃), so 𝐿(𝑓 , 𝑃) is a lower bound for the set of all upper sums.

Thus, the infimum of the upper sums - the greatest of all lower bounds - must be at
greater or equal to this specific lower bound,

𝐿(𝑓 , 𝑃) ≤ inf𝑄∈𝒫 {𝑈 (𝑓 , 𝑄)} = 𝑈 (𝑓 )
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But this holds for every partition 𝑃 . That means this number 𝑈 (𝑓 ) is actually an upper
bound for the set of all 𝐿(𝑓 , 𝑃). And so, it must be greater than or equal to the least
upper bound 𝐿(𝑓 ):

𝐿(𝑓 ) ≤ 𝑈 (𝑓 )

Corollary 29.1. To show a function 𝑓 is integrable, it suffices to show that 𝑈 (𝑓 ) ≤ 𝐿(𝑓 ).

(To see this, recall in general that 𝐿𝐼 (𝑓 ) ≤ 𝑈𝐼 (𝑓 ) from ?@prp-lower-int-leq-upper-
int. So, if 𝑈𝐼 𝑓 ≤ 𝐿𝐼 𝑓 then in fact they are equal, which is the definition of 𝑓 being
integrable.)

29.4. Integrability Criteria

Here we prove a very useful condition to test if a function is integrable, by finding
sufficient partitions.

Theorem 29.1. Let 𝑓 be a bounded function on a closed interval 𝐼 . Then 𝑓 is integrable
if for every 𝜖 > 0 there exists a partition 𝑃 of 𝐼 such that

𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖

Here we prove one direction of this theorem, namely that if such partitions exist for
all 𝜖 > 0 then 𝑓 is integrable. We prove the converse below.

Proof. Let 𝜖 > 0, and assume there is a partition 𝑃 with

𝑈𝐼 (𝑓 , 𝑃) − 𝐿𝐼 (𝑓 , 𝑃) < 𝜖
Then, recalling 𝐿𝐼 (𝑓 , 𝑃) ≤ 𝐿𝐼 (𝑓 ) and 𝑈𝐼 (𝑓 ) ≤ 𝑈𝐼 (𝑓 , 𝑃) by definition, we chain these
together with 𝐿𝐼 (𝑓 ) ≤ 𝑈𝐼 (𝑓 ) to get

𝐿𝐼 (𝑓 , 𝑃) ≤ 𝐿𝐼 (𝑓 ) ≤ 𝑈𝐼 (𝑓 ) ≤ 𝑈𝐼 (𝑓 , 𝑃)

Thus, the interval [𝐿𝐼 (𝑓 ), 𝑈𝐼 (𝑓 )] is contained within the interval [𝐿𝐼 (𝑓 , 𝑃), 𝑈𝐼 (𝑓 , 𝑃)]
which has length < 𝜖. Thus its length must also be less than 𝜖:

0 ≤ 𝑈𝐼 (𝑓 ) − 𝐿𝐼 (𝑓 ) ≤ 𝜖

But 𝜖 was arbitrary! Thus the only possibility is that 𝑈𝐼 (𝑓 ) − 𝐿𝐼 (𝑓 ) = 0, and so the
two are equal, meaning 𝑓 is integrable as claimed.
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Now we prove the second direction of ?@thm-epsilon-integrability: the proof is
reminiscent of the triangle inequality, though without absolute values (as we know
terms of the form 𝑈 − 𝐿 are always nonnegative already)

Proof. Assume that 𝑓 is integrable, so 𝐿𝐼 (𝑓 ) = 𝑈𝐼 (𝑓 ). Since 𝑈𝐼 (𝑓 ) is the greatest lower
bound of all the upper sums, for any 𝜖 > 0, 𝑈𝐼 (𝑓 ) + 𝜖

2 is not a lower bound: that is,
there must be some partition 𝑃1 where

𝑈𝐼 (𝑓 , 𝑃1) < 𝑈𝐼 (𝑓 ) + 𝜖
2

Similarly, since 𝐿𝐼 (𝑓 ) is the least upper bound of the lower sums, there must be some
partition 𝑃2 with

𝐿𝐼 (𝑓 , 𝑃2) > 𝐿𝐼 (𝑓 ) − 𝜖
2

Now, define 𝑃 = 𝑃1 ∪ 𝑃2 to be the common refinement of these two partitions, and
observe that

𝑈𝐼 (𝑓 , 𝑃) − 𝐿𝐼 (𝑓 , 𝑃) ≤ 𝑈𝐼 (𝑓 , 𝑃1) − 𝐿𝐼 (𝑓 , 𝑃2)
< (𝑈𝐼 (𝑓 ) + 𝜖

2) − (𝐿𝐼 − 𝜖
2)

= 𝑈𝐼 (𝑓 ) − 𝐿𝐼 (𝑓 ) + 𝜖
= 𝜖

Where the last inequality uses 𝐿𝐼 (𝑓 ) = 𝑈𝐼 (𝑓 ). Thus, for our arbitrary 𝜖 we found a
partition on which the upper and lower sums differ by less than that, as claimed.

And finally, we provide an even stronger theorem than 𝜖-integrability, that lets us
prove a function is integrable and calculate the resulting value, by taking the limit
of carefully chosen sequences of partitions. More precisely, we want to consider any
sequence of partitions that’s getting finer and finer :

Definition 29.7 (Shrinking Partitions). A sequence 𝑃𝑛 ∈ 𝒫𝐼 of partitions is said to
be shrinking if the corresponding sequence of max-widths converges to 0.
We often abbreviate the phrase 𝑃𝑛 is a shrinking sequence of partitions by 𝑃𝑛 → 0.

Theorem 29.2 (Integrability & Shrinking Partitions). Let 𝑓 be a function on the inter-
val 𝐼 , and assume that 𝑃𝑛 , 𝑃 ′𝑛 are two sequences of shrinking partitions such that

lim 𝐿𝐼 (𝑓 , 𝑃𝑛) = lim 𝑈𝐼 (𝑓 , 𝑃 ′𝑛)
Then, 𝑓 is integrable on 𝐼 and ∫𝐼 𝑓 is equal to this common value.
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Proof.

Proof. Call this common limiting value 𝑋 . As 𝐿𝐼 𝑓 is defined as a supremum over all
lower sums

lim 𝐿𝐼 (𝑓 , 𝑃𝑛) ≤ sup
{𝑛∈ℕ}

{𝐿𝐼 (𝑓 , 𝑃𝑛)}

≤ sup
𝑃∈𝒫𝐼

{𝐿𝐼 (𝑓 , 𝑃)}

= 𝐿𝐼 (𝑓 )

Similiarly, as 𝑈𝐼 (𝑓 ) is the infimum over all upper sums, we have

lim 𝑈𝐼 (𝑓 , 𝑃 ′𝑛) ≥ 𝑈𝐼 (𝑓 )

By ?@prp-lower-int-leq-upper-int we know 𝐿𝐼 (𝑓 ) ≤ 𝑈𝐼 (𝑓 ), which allows us to
string these inequalities together:

lim 𝐿𝐼 (𝑓 , 𝑃𝑛) ≤ 𝐿𝐼 (𝑓 ) ≤ 𝑈𝐼 (𝑓 ) ≤ lim 𝑈𝐼 (𝑓 , 𝑃 ′𝑛)

Under the assumption that these two limits are equal, all four quantities in this se-
quence must be equal, and in particular 𝐿𝐼 (𝑓 ) = 𝑈𝐼 (𝑓 ). Thus 𝑓 is integrable, and its
value coincides with the limit of either of these sequences of shrinking partitions, as
claimed.

29.5. Verification of Axioms

Proposition 29.4 (Integrability of Constants). Let 𝑓 (𝑥) = 𝑘 be a constant function,
and [𝑎, 𝑏] an interval. Then 𝑘 is Darboux integrable on [𝑎, 𝑏] and

∫[𝑎,𝑏] 𝑘 = 𝑘(𝑏 − 𝑎)

Proof. For any partition 𝑃 , we have

𝑀𝑖 = sup
𝑥∈𝑃𝑖

{𝑓 (𝑥)} = 𝑘 = inf 𝑥 ∈ 𝑃𝑖{𝑓 (𝑥)} = 𝑚𝑖

as 𝑓 is constant. Thus,

𝑈 (𝑓 , 𝑃) = ∑
𝑃𝑖∈𝑃

𝑀𝑖|𝑃𝑖| = 𝑘 ∑
𝑃𝑖∈𝑃

|𝑃𝑖| = 𝑘(𝑏 − 𝑎)
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𝐿(𝑓 , 𝑃) = ∑
𝑃𝑖∈𝑃

𝑚𝑖|𝑃𝑖| = 𝑘 ∑
𝑃𝑖∈𝑃

|𝑃𝑖| = 𝑘(𝑏 − 𝑎)

The upper and lower sums are constant, independent of partition, and so their respec-
tive infima/suprema are also constant, equal to this same value. Thus 𝑘 is integrable,
and the integral is also this common value

∫[𝑎,𝑏] 𝑘 = 𝑘(𝑏 − 𝑎)

Proposition 29.5 (Integration and Inequalities). Let 𝑓 , 𝑔 be Darboux integrable func-
tions on [𝑎, 𝑏] and assume that 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]. Then

∫[𝑎,𝑏] 𝑓 ≤ ∫[𝑎,𝑏] 𝑔

Proof. The constraint 𝑓 ≤ 𝑔 implies that on any partition 𝑃 we have

𝐿(𝑓 , 𝑃) ≤ 𝐿(𝑔, 𝑃)

Or, equivalently 𝐿(𝑔, 𝑃) − 𝐿(𝑓 , 𝑃) ≥ 0. Taking the supremum over all 𝑃 of this set of
nonnegative numbers yields a nonnegative number, so

sup
𝑃∈𝒫[𝑎,𝑏]

{𝐿(𝑔, 𝑃) − 𝐿(𝑓 , 𝑃)} ≥ 0

𝐿(𝑔) − 𝐿(𝑓 ) ≥ 0 ⟹ 𝐿(𝑓 ) ≤ 𝐿(𝑔)
But since we’ve assumed 𝑓 and 𝑔 are integrable we know that 𝐿(𝑓 ) = 𝑈 (𝑓 ) = ∫𝑎,𝑏 𝑓
and 𝐿(𝑔) = 𝑈 (𝑔) = ∫[𝑎,𝑏] 𝑔. Thus

∫[𝑎,𝑏] 𝑓 ≤ ∫[𝑎,𝑏] 𝑔

Proposition 29.6 (Integration and Subdivision). Let [𝑎, 𝑏] be an interval and 𝑐 ∈ (𝑎, 𝑏).
Then a function 𝑓 defined on [𝑎, 𝑏] is Darboux-integrable on this interval if and only if
it is Darboux integrable on both [𝑎, 𝑐] and [𝑐, 𝑏]. Furthermore, when defined these three
integrals satisfy the identity

∫[𝑎,𝑏] 𝑓 = ∫[𝑎,𝑐] 𝑓 + ∫[𝑐,𝑏] 𝑓
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29. Construction

Proof. First, assume that 𝑓 is integrable on [𝑎, 𝑏]. By ?@thm-epsilon-integrability,
this means for any 𝜖 > 0 there exists a partition 𝑃 where 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖. Now
consider the refinement 𝑃𝑐 = 𝑃 ∪ {𝑐}. By the refinement lemma,

𝐿(𝑓 , 𝑃) ≤ 𝐿(𝑓 , 𝑃𝑐) ≤ 𝑈 (𝑓 , 𝑃𝑐) ≤ 𝑈 (𝑓 , 𝑃)
Thus 𝑈 (𝑓 , 𝑃𝑐) − 𝐿(𝑓 , 𝑃𝑐) < 𝜖 as well. Next we take this partition and divide it into
partitions of each subinterval 𝑃1 = 𝑃𝑐∪[𝑎, 𝑐] and 𝑃2 = 𝑃𝑐∪[𝑐, 𝑏]. By simply re-grouping
the finite sums, we see

𝐿(𝑓 , 𝑃𝑐) = 𝐿(𝑓 , 𝑃1) + 𝐿(𝑓 , 𝑃2) 𝑈 (𝑓 , 𝑃𝑐) = 𝑈 (𝑓 , 𝑃1) + 𝑈 (𝑓 , 𝑃2)

And, by the definitions of upper and lower sums, for eachwe know 𝑈 (𝑓 , 𝑃𝑖)−𝐿(𝑓 , 𝑃𝑖) ≥
0. All that remains to insure the integrability of 𝑓 on [𝑎, 𝑐] and [𝑐, 𝑏] is to show that
these differences are individually less than 𝜖. But this is immediate, as for example,

𝑈 (𝑓 , 𝑃1) − 𝐿(𝑓 , 𝑃1) ≤ 𝑈 (𝑓 , 𝑃1) − 𝐿(𝑓 , 𝑃1) + (𝑈 (𝑓 , 𝑃2) − 𝐿(𝑓 , 𝑃2))
= (𝑈 (𝑓 , 𝑃1) + 𝑈 (𝑓 , 𝑃2)) − (𝐿(𝑓 , 𝑃1) + 𝐿(𝑓 , 𝑃2))
= 𝑈 (𝑓 , 𝑃𝑐) − 𝐿(𝑓 , 𝑃𝑐)
≤ 𝜖

and the same argument applies to 𝑈 (𝑓 , 𝑃2) − 𝐿(𝑓 , 𝑃2).

Next we assume integrability on the two subintervals, and prove integrability on the
whole interval.

Proof. Let 𝜖 > 0 and by our integrability assumptions choose partitions 𝑃1 of [𝑎, 𝑐]
and 𝑃2 of [𝑐, 𝑏] such that

𝑈 (𝑓 , 𝑃𝑖) − 𝐿(𝑓 , 𝑃𝑖) ≤ 𝜖
2 𝑖 ∈ {1, 2}

Now, their union 𝑃 = 𝑃1 ∪ 𝑃2 is a partition of [𝑎, 𝑏], and re-grouping the finite sums,
we see

𝐿(𝑓 , 𝑃) = 𝐿(𝑓 , 𝑃1) + 𝐿(𝑓 , 𝑃2) 𝑈 (𝑓 , 𝑃) = 𝑈 (𝑓 , 𝑃1) + 𝑈 (𝑓 , 𝑃2)

Thus,

𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) = (𝑈 (𝑓 , 𝑃1) + 𝑈 (𝑓 , 𝑃2)) − (𝐿(𝑓 , 𝑃1) + 𝐿(𝑓 , 𝑃2))
= (𝑈 (𝑓 , 𝑃1) − 𝐿(𝑓 , 𝑃1)) + (𝑈 (𝑓 , 𝑃2) − 𝐿(𝑓 , 𝑃2))
≤ 𝜖

2 + 𝜖
2

= 𝜖

302



29.5. Verification of Axioms

So, we see that integrability on [𝑎, 𝑏] is equivalent to integrability on [𝑎, 𝑐] and [𝑐, 𝑏].
Finally, we need to show in the case where all three integrals are defined, the subdi-
vision equality actually holds.

Proof. Let 𝑃 be any partition of the interval [𝑎, 𝑏] and define the usual suspects:

𝑃𝑐 = 𝑃 ∪ {𝑐} 𝑃1 = 𝑃𝑐 ∪ [𝑎, 𝑐] 𝑃2 = 𝑃𝑐 ∪ [𝑐, 𝑏]
We need three pieces of data. First, the inequalities relating integrals to upper and
lower sums

𝐿(𝑓 , 𝑃1) ≤ ∫[𝑎,𝑐] 𝑓 ≤ 𝑈 (𝑓 , 𝑃1) 𝐿(𝑓 , 𝑃2) ≤ ∫[𝑐,𝑏] 𝑓 ≤ 𝑈 (𝑓 , 𝑃2)

Second, the inequalities of refinements:

𝐿(𝑓 , 𝑃) ≤ 𝐿(𝑓 , 𝑃𝑐) ≤ 𝑈 (𝑓 , 𝑃𝑐) ≤ 𝑈 (𝑓 , 𝑃)
and third, the relationships between 𝑃1, 𝑃2 and 𝑃𝑐 :

𝐿(𝑓 , 𝑃𝑐) = 𝐿(𝑓 , 𝑃1) + 𝐿(𝑓 , 𝑃2) 𝑈 (𝑓 , 𝑃𝑐) = 𝑈 (𝑓 , 𝑃1) + 𝑈 (𝑓 , 𝑃2)

Putting all of these together, we get both lower and upper estimates for the sum of
the integrals over the subdivision:

𝐿(𝑓 , 𝑃) ≤ 𝐿(𝑓 , 𝑃𝑐) = 𝐿(𝑓 , 𝑃1) + 𝐿(𝑓 , 𝑃2) ≤ ∫[𝑎,𝑐] 𝑓 + ∫[𝑐,𝑏] 𝑓

∫[𝑎,𝑐] 𝑓 + ∫[𝑐,𝑏] 𝑓 ≤ 𝑈 (𝑓 , 𝑃1) + 𝑈 (𝑓 , 𝑃2) = 𝑈 (𝑓 , 𝑃𝑐) ≤ 𝑈 (𝑓 , 𝑃)

And concatenating these inequalities gives the overall bound, for any arbitrary parti-
tion 𝑃 :

𝐿(𝑓 , 𝑃) ≤ ∫[𝑎,𝑐] 𝑓 + ∫[𝑐,𝑏] 𝑓 ≤ 𝑈 (𝑓 , 𝑃)

Thus, the sum of these integrals lies between the upper and lower sum of 𝑓 on [𝑎, 𝑏]
for every partition. As 𝑓 is integrable, we know there is a single number with this
property, and that number is by definition the integral. Thus

∫[𝑎,𝑏] 𝑓 = ∫[𝑎,𝑐] 𝑓 + ∫[𝑐,𝑏] 𝑓

Phew! We’ve successfully verified all three axioms for the Darboux integral. Taken
together, these prove that our construction really is an integral!

Corollary 29.2. The equality of upper and lower sums satisfies the axioms of integra-
tion, and thus the Darboux Integral really does define an integral.
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30. ★ Examples

30.1. Powers

Proposition 30.1 (Integrating 𝑓 (𝑥) = 𝑥). Let [𝑎, 𝑏] be any closed interval in ℝ. Then
𝑓 (𝑥) = 𝑥 is integrable on [𝑎, 𝑏] and

∫[𝑎,𝑏] 𝑥 = 𝑏2 − 𝑎2
2

Proof. Start with [0, 𝑏], then look at 0 < 𝑎 < 𝑏 using interval subdivision. To
show 𝑥 is integrable, we use ?@thm-compute-integral-sequence, which
assures us it is enough to find a sequence 𝑃𝑛 of shrinking partitions where
lim 𝐿(𝑓 , 𝑃𝑛) = lim 𝑈 (𝑓 , 𝑃𝑛).
For each 𝑛, let 𝑃𝑛 be the evenly spaced partition with 𝑛 subintervals, of width Δ𝑛 =
(𝑏 − 𝑎)/𝑛. Since 𝑓 (𝑥) = 𝑥 is monotone increasing, we know on each subinterval
[𝑡𝑖−1, 𝑡𝑖] that

𝑚𝑖 = 𝑡𝑖−1 = (𝑖 − 1)Δ𝑛 𝑀𝑖 = 𝑡𝑖 = 𝑖Δ𝑛

Thus, the upper and lower sums for these partitions are

𝐿(𝑥, 𝑃𝑛) = ∑
1≤𝑖≤𝑛

𝑚𝑖Δ𝑛 = (𝑖 − 1)Δ𝑛Δ𝑛

= Δ2𝑛 (0 + 1 + 2 + ⋯ + (𝑛 − 1))

𝑈 (𝑥, 𝑃𝑛) = ∑
1≤𝑖≤𝑛

𝑀𝑖Δ𝑛 = 𝑖Δ𝑛Δ𝑛

= Δ2𝑛 (1 + 2 + ⋯ + 𝑛)

These are nearly identical formulae: the upper sum is just one term longer than the
lower sum and so their difference is

𝑈 (𝑥, 𝑃𝑛) − 𝐿(𝑥, 𝑃𝑛) = 𝑛Δ2𝑛 = 𝑛 𝑏
2

𝑛2 = 𝑏2
𝑛

305



30. ★ Examples

As 𝑛 → ∞ this converges to zero: thus, if either the upper or lower sum converges,
then both do, and both converge to the same value by the limit theorems. For example,
if we prove 𝑈 (𝑓 , 𝑃𝑛) converges then

lim 𝐿(𝑥, 𝑃𝑛) = lim (𝑈 (𝑥, 𝑃𝑛) − 𝑈 (𝑓 , 𝑃𝑛) + 𝐿(𝑥, 𝑃𝑛))
= lim 𝑈 (𝑥, 𝑃𝑛) − lim(𝑈 (𝑥, 𝑃𝑛) − 𝐿(𝑥, 𝑃𝑛))
= lim 𝑈 (𝑥𝑠, 𝑃𝑛) + 0𝑠

So, we focus on just proving that 𝑈 (𝑥, 𝑃𝑛) converges and finding its value. Because
𝑈 (𝑥, 𝑃𝑛) is a multiple of 1 + 2 + ⋯ + 𝑛, we start by finding a closed form using the
formula for the sum of the first 𝑛 positive integers: 1 + 2 + ⋯ + 𝑛 = 𝑛(𝑛+1)

2 .

𝑈 (𝑥, 𝑃𝑛) = Δ2𝑛
𝑛(𝑛 + 1)

2 = 𝑏2
𝑛2

𝑛(𝑛 + 1)
2 = 𝑏2

2
𝑛(𝑛 + 1)

𝑛2

The factor 𝑏2/2 out front is a constant independent of 𝑛, and the remainder simplifies
directly with some algebra:

𝑛(𝑛 + 1)
𝑛2 = 𝑛 + 1

𝑛 = 1 + 1
𝑛

Thus lim 𝑈 (𝑥, 𝑃𝑛) = 𝑏2
2 lim(1 + 1/𝑛) = 𝑏2

2 . Since this converges our previous work
ensures that the lower sum does as well, and to the same value. Thus 𝑥 is integrable
on [0, 𝑏] and

∫[0,𝑏] 𝑥 = 𝑏2
2

Knowing this, we complete the case for a general positive interval [𝑎, 𝑏]with 0 < 𝑎 < 𝑏
by subdivision:

∫[𝑎,𝑏] 𝑥 = ∫[0,𝑎] 𝑥 + ∫[𝑎,𝑏] 𝑥

Since we know the value of all integrals over intervals beginning at 0, this simplifies
to

𝑏2
2 = 𝑎2

2 + ∫[𝑎,𝑏] 𝑥 𝑑𝑥

And, subtracting to the other side gives our answer

∫[𝑎,𝑏] 𝑥 = 𝑏2 − 𝑎2
2
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30.2. Exponentials

Exercise 30.1. Complete the general proof by dealing with the cases where 𝑎, 𝑏 may
be negative.

Proposition 30.2 (Integrating 𝑓 (𝑥) = 𝑥2). Let [𝑎, 𝑏] be any closed interval in ℝ. Then
𝑓 (𝑥) = 𝑥2 is integrable on [𝑎, 𝑏] and

∫[𝑎,𝑏] 𝑥
2 𝑑𝑥 = 𝑏3 − 𝑎3

3

Exercise 30.2. Following the same technique as above, show that 𝑥2 is integrable on
[𝑎, 𝑏]:

• First, restrict yourself to intervals of the form [0, 𝑏] for 𝑏 > 0.
• Use the monotonicity of 𝑥2 on these intervals to explicitly write out upper and
lower sums.

• Use the following identity on sums of squares from elementary number theory
to compute their value

∑
1≤𝑘≤𝑁

𝑘2 = 𝑁(𝑁 + 1)(2𝑁 + 1)
6

• Explain how to generalize this to intervals of the form [𝑎, 0] for 𝑎 < 0, and
finally to general intervals [𝑎, 𝑏] for any 𝑎 < 𝑏 ∈ ℝ using subdivision.

30.2. Exponentials

Here’s a quite long calculation showing that it’s possible to integrate exponential
functions directly from first principles. The length of this calculation alone is a good
selling point for the fundamental theorem of calculus! There are several facts about
exponentials we will need from our previous investigations; listed here for ease of
reference.

• Exponentials are always nonzero
• Exponentials are strictly increasing, or strictly decreasing
• Exponentials are differentiable everywhere

Proposition 30.3 (Integrating Exponentials). Let 𝐸 be an exponential function, and
[𝑎, 𝑏] an interval. Then 𝐸 is integrable on [𝑎, 𝑏] and

∫[𝑎,𝑏] 𝐸 = 𝐸(𝑏) − 𝐸(𝑎)
𝐸′(0)
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Proof. We will show the argument for 𝐸 an increasing exponential (its base 𝐸(1) > 1):
an identical argument applies to decreasing exponentials (only switching 𝑈 and 𝐿 in
the computations below).

To show 𝐸(𝑥) is integrable, we use ?@thm-compute-integral-sequence, which as-
sures us it is enough to find a sequence 𝑃𝑛 of shrinking partitions where lim 𝐿(𝑓 , 𝑃𝑛) =
lim 𝑈 (𝑓 , 𝑃𝑛). Indeed - for each 𝑛, let 𝑃𝑛 denote the evenly spaced partition of [𝑎, 𝑏]with
widths Δ𝑛 = (𝑏 − 𝑎)/𝑛

𝑃𝑛 = {𝑎, 𝑎 + Δ𝑛 , 𝑎 + 2Δ𝑛 , ⋯ , 𝑎 + 𝑛Δ𝑛 = 𝑏}

We will begin by computing the lower sum. Because 𝐸 is continuous, it achieves a
maximum and minimum value on each interval 𝑃𝑖 = [𝑡𝑖, 𝑡𝑖+1]. And, since 𝐸 is mono-
tone increasing, this value occurs at the leftmost endpoint. Thus,

𝐿(𝐸, 𝑃𝑛) = ∑
0≤𝑖<𝑛

inf𝑃𝑖
{𝐸(𝑥)}|𝑃𝑖|

= ∑
0≤𝑖<𝑛

𝐸(𝑡𝑖)Δ𝑛

= ∑
0≤𝑖<𝑛

𝐸(𝑎 + 𝑖Δ𝑛)Δ𝑛

Using the law of exponents for 𝐸 we can simplify this expression somewhat:

𝐸(𝑎 + 𝑖Δ𝑛) = 𝐸(𝑎)𝐸(𝑖Δ𝑛)
= 𝐸(𝑎)𝐸(Δ𝑛 + Δ𝑛 + ⋯ + Δ𝑛)
= 𝐸(𝑎)𝐸(Δ𝑛)𝐸(Δ𝑛)⋯ 𝐸(Δ𝑛)
= 𝐸(𝑎)𝐸(Δ𝑛)𝑖

Plugging this back in and factoring out the constants, we see that the summation is
actually a partial sum of a geometric series:

∑
0≤𝑖<𝑛

𝐸(𝑎 + 𝑖Δ𝑛)Δ𝑛 = ∑
0≤𝑖<𝑛

𝐸(𝑎)𝐸(Δ𝑛)𝑖Δ𝑛

= 𝐸(𝑎)Δ𝑛 ∑
0≤𝑖<𝑛

𝐸(Δ𝑛)𝑖

Having previously derived the formula for the partial sums of a geometric series, we
can write this in closed form:
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∑
0≤𝑖<𝑛

𝐸(Δ𝑛)𝑖 =
1 − 𝐸(Δ𝑛)𝑛
1 − 𝐸(Δ𝑛)

But, we can simplify even further! Using again the laws of exponents we see that
𝐸(Δ𝑛)𝑛 is the same as 𝐸(𝑛Δ𝑛), and 𝑛Δ𝑛 is nothing other than the width of our entire
interval, so 𝑏−𝑎. Thus the numerator becomes 1−𝐸(𝑏−𝑎), and putting it all together
yields a simple expression for 𝐿(𝐸, 𝑃𝑛):

𝐿(𝐸, 𝑃𝑛) = 𝐸(𝑎)Δ𝑛
1 − 𝐸(𝑏 − 𝑎)
1 − 𝐸(Δ𝑛)

Some algebraic re-arrangement is beneficial: first, note that by the laws of exponents
we have

𝐸(𝑎)(1 − 𝐸(𝑏 − 𝑎)) = 𝐸(𝑎) − 𝐸(𝑏 − 𝑎)𝐸(𝑎)
= 𝐸(𝑎) − 𝐸(𝑏)

Thus for every 𝑛 we have

𝐿(𝐸, 𝑃𝑛) = (𝐸(𝑎) − 𝐸(𝑏)) Δ𝑛
1 − 𝐸(Δ𝑛)

We are interested in the limit as 𝑛 → ∞: by the limit laws we can pull the constant
𝐸(𝑎) − 𝐸(𝑏) out front, and only concern ourselves with the fraction involving Δ𝑛 .
There’s one final trick: look at the negative reciprocal of this fraction:

−1
Δ𝑛

1−𝐸(Δ𝑛)
= 𝐸(Δ𝑛) − 1

Δ𝑛

Because we know 𝐸(0) = 1 for all exponentials, this latter term is none other than
the difference quotient defining the derivative for 𝐸! Since we have proven 𝐸 to be
differentiable, we know that evaluating this along any sequence converging to zero
yields the derivative at zero. And as Δ𝑛 → 0 this implies

lim
𝐸(Δ𝑛) − 𝐸(0)

Δ𝑛
= 𝐸′(0)

Thus, our original limit Δ𝑛/(1 − 𝐸(Δ𝑛)) is the negative reciprocal of this, and

309



30. ★ Examples

lim 𝐿(𝐸, 𝑃𝑛) = lim (𝐸(𝑎) − 𝐸(𝑏)) Δ𝑛
1 − 𝐸(Δ𝑛)

= (𝐸(𝑎) − 𝐸(𝑏)) lim Δ𝑛
1 − 𝐸(Δ𝑛)

= (𝐸(𝑎) − 𝐸(𝑏)) −1
𝐸′(0)

= 𝐸(𝑏) − 𝐸(𝑎)
𝐸′(0)

Phew! That was a lot of work! Nowwe have to tackle the upper sum. But luckily this
will not be nearly as bad: we can reuse most of what we’ve done! Since 𝐸 is mono-
tone increasing, we know that the maximum on any interval occurs at the rightmost
endpoint, so

𝑈 (𝐸, 𝑃𝑛) = ∑
0≤𝑖<𝑛

sup
𝑃𝑖

{𝐸(𝑥)}|𝑃𝑖|

= ∑
0≤𝑖<𝑛

𝐸(𝑡𝑖+1)Δ𝑛

= ∑
0≤𝑖<𝑛

𝐸(𝑎 + (𝑖 + 1)Δ𝑛)Δ𝑛

Comparing this with our previous expression for 𝐿(𝐸, 𝑃𝑛), we see (unsurprisingly) its
identical except for a shift of 𝑖 ↦ 𝑖 + 1. The law of exponents turns this additive shift
into a multiplicative one:

𝑈 (𝐸, 𝑃𝑛) = ∑
0≤𝑖<𝑛

𝐸(𝑎 + (𝑖 + 1)Δ𝑛)Δ𝑛

= ∑
0≤𝑖<𝑛

𝐸(Δ𝑛)𝐸(𝑎 + 𝑖Δ𝑛)Δ𝑛

= 𝐸(Δ𝑛) ∑
0≤𝑖<𝑛

𝐸(𝑎 + 𝑖Δ𝑛)Δ𝑛

= 𝐸(Δ𝑛)𝐿(𝐸, 𝑃𝑛)

Thus, 𝑈 (𝐸, 𝑃𝑛) = 𝐸(Δ𝑛)𝐿(𝐸, 𝑃𝑛) for every 𝑛. Since 𝐸 is continuous,

lim 𝐸(Δ𝑛) = 𝐸(limΔ𝑛) = 𝐸(0) = 1

And, as 𝐿(𝐸, 𝑃𝑛) converges (as we proved above) we can apply the limit theorem for
products to get
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lim 𝑈 (𝐸, 𝑃𝑛) = lim(𝐸(Δ𝑛)𝐿(𝐸, 𝑃𝑛))
= (lim 𝐸(Δ𝑛)) (lim 𝐿(𝐸, 𝑃𝑛))
= lim 𝐿(𝐸, 𝑃𝑛)
= 𝐸(𝑏) − 𝐸(𝑎)

𝐸′(0)

Thus, the limits of our sequence of upper and lower bounds are equal! And, by the
argument at the beginning of this proof, that squeezes 𝐿(𝐸) and 𝑈 (𝐸) to be equal as
well. Thus, 𝐸 is integrable on [𝑎, 𝑏] and its value is what we have squeezed:

∫[𝑎,𝑏] 𝐸 = 𝐸(𝑏) − 𝐸(𝑎)
𝐸′(0)

Corollary 30.1 (Integrating the Natural Exponential). On any interval [𝑎, 𝑏] the nat-
ural exponential is integrable, and

∫[𝑎,𝑏] exp = exp(𝑏) − exp(𝑎)

30.3. A Logarithm

This next example is much more important (theoretically) than the previous ones:
while we long ago proved the existence of logarithm functions, we so far have no
formula for actually computing one! Here we produce a first explicit formula for a
logarithm as a rather simple integral!

Proposition 30.4 (𝑓 (𝑥) = 1/𝑥 is Integrable). Let 𝑎 < 𝑏 be positive numbers. Then the
function 𝑓 (𝑥) = 1/𝑥 is integrable on the interval [𝑎, 𝑏].

Proof. Here we attempt to prove integrability without necessarily computing the
value of the function at the same time. So, its enough to use the 𝜖-integrability
criterion, where we show that for any 𝜖 > 0 there exists some partition 𝑃 where
𝑈 (1/𝑥, 𝑃) − 𝐿(1/𝑥, 𝑃) < 𝜖.
Note that 1/𝑥 is monotone decreasing on the positive reals, so for any sub-interval
[𝑡𝑖−1, 𝑡𝑖] of any partition, we have

𝑚𝑖 = 1
𝑡𝑖

𝑀𝑖 = 1
𝑡𝑖−1
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If 𝑃 is an evenly spaced partition of [𝑎, 𝑏] with |𝑃𝑖| = Δ for some Δ > 0 this lets us
express the difference 𝑈 − 𝐿 as a telescoping sum:

𝑈 − 𝐿 = ∑
1≤𝑖≤𝑁

𝑀𝑖Δ − ∑
1≤𝑖≤𝑁

𝑚𝑖Δ

= Δ ∑
1≤𝑖≤𝑁

(𝑀𝑖 − 𝑚𝑖)

= Δ ∑
1≤𝑖≤𝑁

1
𝑡𝑖−1

− 1
𝑡𝑖

= Δ(( 1
𝑡0

− 1
𝑡1
) + ( 1

𝑡1
− 1

𝑡2
) + ⋯ + ( 1

𝑡𝑁−1
− 1

𝑡𝑁
))

= Δ ( 1
𝑡0

− 1
𝑡𝑁

)

= Δ (1𝑎 − 1
𝑏 )

Write 𝐿 = 1
𝑎 − 1

𝑏 for this constant value. Then to make the difference between upper
and lower sums less than 𝜖 all we need is to set Δ < 𝜖/𝐿.

Proposition 30.5. For any positive 𝑘 ∈ ℝ and [𝑎, 𝑏] ⊂ (0,∞),

∫[𝑎,𝑏]
1
𝑡 = ∫[𝑘𝑎,𝑘𝑏]

1
𝑡

Proof. For any partition 𝑃 of [𝑎, 𝑏] and number 𝑘 let 𝑘𝑃 be the partition of [𝑘𝑎, 𝑘𝑏]
resulting from multiplying all points by 𝑘. This assignment determines a bijection
between the sets of partitions of [𝑎, 𝑏] and the partitions of [𝑘𝑎, 𝑘𝑏].
Because we already know 𝑓 (𝑥) = 1/𝑥 to be integrable on both intervals, we may
choose to work with just lower sums without loss of generality. We aim to show that
for every 𝑃 ∈ 𝒫[𝑎,𝑏]

𝐿[𝑎,𝑏] ( 1
𝑥 , 𝑃) = 𝐿[𝑘𝑎,𝑘𝑏] ( 1

𝑥 , 𝑘𝑃)

Assuming we have this, since 𝑃 ↦ 𝑘𝑃 is a bijection 𝒫[𝑎,𝑏] ≅ 𝒫[𝑘𝑎,𝑘𝑏], this implies the
sets of all possible lower sums are equal:

{𝐿[𝑎,𝑏] ( 1
𝑥 , 𝑃) ∶ 𝑃 ∈ 𝒫[𝑎,𝑏]} = {𝐿[𝑘𝑎,𝑘𝑏] ( 1

𝑥 , 𝑃) ∶ 𝑃 ∈ 𝒫[𝑘𝑎,𝑘𝑏]}

Thus as the sets are equal, their suprema are equal, which are by definition the lower
integrals 𝐿[𝑎,𝑏] 1𝑥 = 𝐿[𝑘𝑎,𝑘𝑏] 1𝑥 . But, as we already know this function is integrable on
each of these intervals, these values are just the integrals themselves, so we are done.
Thus, it only remains to prove equality of the upper sums for partitions in bijective
correspondence.
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Exercise 30.3. Let 𝑃 be an arbitrary partition of [𝑎, 𝑏]. Prove that

𝑈[𝑎,𝑏] ( 1
𝑥 , 𝑃) = 𝑈[𝑘𝑎,𝑘𝑏] ( 1

𝑥 , 𝑘𝑃)

Hint:1/𝑥 is monotone decreasing, so we know its infimum on each interval is the right
endpoint

Theorem 30.1. The function 𝐿(𝑥) = ∫[1,𝑥] 1
𝑡 is a logarithm.

Proof. There are various cases depending on where 𝑥, 𝑦 reside in (0, ∞): we do one
here, and leave the remainder as exercises. For any 𝑥, 𝑦 ∈ (1, ∞) we directly compute
using the above lemma. The idea of the proof is immediate in the first case, where
we consider 𝑥, 𝑦 > 1:

𝐿(𝑥𝑦) = ∫[1,𝑥𝑦]
1
𝑡

= ∫[1,𝑥]
1
𝑡 + ∫[𝑥,𝑥𝑦]

1
𝑡

= ∫[1,𝑥]
1
𝑡 + ∫[1,𝑦]

1
𝑡

= 𝐿(𝑥) + 𝐿(𝑦)

This function extends to all of (0, ∞), if we use the definition of the integral allowing
oriented intervals (?@rem-switch-bounds), as you can check in the exercise below.

Exercise 30.4. What are the other cases? Prove them by similarly breaking into
sub-intervals and rescaling (?@prp-reciprocal-x-scaling).

30.4. Trigonometric Functions

Theorem 30.2. For 𝑥 ∈ [0, 𝜋/2], the sine function is integrable and

∫[0,𝑥] sin = 1 − cos(𝑥)

Proof. On the interval [0, 𝑥], we use the sequence of evenly spaced shrinking par-
titions 𝑃𝑛 of width Δ = 𝑥/𝑛, and prove integrability by showing lim 𝐿(sin, 𝑃𝑛) =
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lim 𝑈 (sin, 𝑃𝑛). Because sin is monotonically increasing on [0, 𝜋/2] on any subinter-
val 𝐼 = [𝑎, 𝑏] that 𝑚 = sin 𝑎 and 𝑀 = sin 𝑏. Thus

𝐿(sin, 𝑃𝑛) =
𝑛
∑
𝑖=1

sin ((𝑖 − 1)Δ) Δ

𝑈 (sin, 𝑃𝑛) =
𝑛
∑
𝑖=1

sin (𝑖Δ) Δ

Using sin(0) = 0 we see the sums agree except for the final term of 𝑈 , meaning

𝑈 (sin, 𝑃𝑛) − 𝐿(sin, 𝑃𝑛) = sin(𝑛Δ)Δ = sin(𝑥)𝑥𝑛
As 𝑥 is a fixed constant this tends to zero as 𝑛 → ∞, so sin is integrable on [0, 𝑥] and
we can compute its value as the limit of either the upper or lower sum.
We use the identity for ∑1≤𝑘≤𝑛 sin 𝑘𝑥 proven in Exercise 21.16:

𝑈 (sin, 𝑃𝑛) = ∑
1≤𝑖≤𝑛

sin(𝑖Δ)Δ =
sin ( 𝑛

2Δ) sin ( 𝑛+1
2 Δ)

sin (Δ
2 )

Δ

Substituting back Δ = 𝑥/𝑛 and re-arranging,

𝑈 (sin, 𝑃𝑛) =
sin ( 𝑥

2 ) sin ( 𝑛+1
𝑛

𝑥
2 )

sin ( 𝑥
2𝑛 )

𝑥
𝑛 =

sin ( 𝑥
2 ) sin ( 𝑛+1

𝑛
𝑥
2 )

sin(𝑥/2𝑛)
𝑥/𝑛

We evaluate the limit as 𝑛 → ∞ using the limit laws. The numerator is immediate

sin (𝑥2 ) sin (𝑛 + 1
𝑛

𝑥
2 ) ↦ sin (𝑥2 ) sin (𝑥2 )

using that 𝑛+1
𝑛 → 1 and the continuity of sin. For the denominator, we use the fact

that sin 𝑥
𝑥 → 1 (Corollary 27.2) to see

sin ( 𝑥
2𝑛 )

𝑥/𝑛 = 1
2
sin ( 𝑥

2𝑛 )
𝑥
2𝑛

→ 1
2

Thus

lim 𝑈 (sin, 𝑃𝑛) =
sin ( 𝑥

2 ) sin ( 𝑥
2 )

1
2

= 2 sin2 𝑥
2
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Using the half-angle identity Exercise 21.11, we can rewrite this

lim 𝑈 (sin, 𝑃𝑛) = 21 − cos(𝑥)
2 = 1 − cos 𝑥

As we’ve already shown sin to be integrable, this limit of upper sums over a sequence
of shrinking partitions gives the value:

∫[0,𝑥] sin = 1 − cos(𝑥)

We can leverage this result and the symmetries of the sine function to calculate the
integral over arbitrary intervals:

Exercise 30.5. Prove that sin is integrable on the interval [𝜋/2, 𝜋] and for any 𝑥 ∈
[𝜋/2, 𝜋]

∫[ 𝜋2 ,𝑥]
sin = − cos(𝑥)

Hint: proceed either (1) directly, using the fact that sin is decreasing on this interval or
(2) using the above, and the symmetry sin(𝜋/2 + 𝑥) = sin(𝜋/2 − 𝑥).
Use this and subdivision to show for any 𝑥 ∈ [0, 𝜋],

∫[0,𝑥] sin = 1 − cos 𝑥

Corollary 30.2.

∫[0,𝜋/2] sin = 1 and ∫[0,𝜋] sin = 2

Exercise 30.6. Use the fact that sine is an odd function and integrable on [0, 𝜋] to
show sin is integrable on [−𝜋, 0] and for any 𝑥 ∈ [−𝜋, 0]

∫[𝑥,0] sin = cos(𝑥) − 1

Again by subdivision we can conclude that sin is integrable on [−𝜋, 𝜋].

Proposition 30.6. Let 𝑎, 𝑏 ∈ [−𝜋, 𝜋]. Then sin is integrable on [𝑎, 𝑏] and

∫[𝑎,𝑏] sin = cos(𝑎) − cos(𝑏)
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Proof. We proceed by cases depending on the location of 𝑎, 𝑏. If both are positive and
lie in [0, 𝜋/2] we evaluate using Exercise 30.5

∫[𝑎,𝑏] sin = ∫[0,𝑏] sin−∫[0,𝑎] sin

= (1 − cos 𝑏) − (1 − cos 𝑎)
= cos 𝑎 − cos 𝑏

A similar calculation applies if 𝑎, 𝑏 < 0. If 𝑎 < 0 and 𝑏 > 0 we evaluate as

∫[𝑎,𝑏] sin = ∫[𝑎,0] sin+∫[0,𝑏] sin

= (cos 𝑎 − 1) + (1 − cos 𝑏)
= cos 𝑎 − cos 𝑏

Corollary 30.3.

∫[−𝜋,𝜋] sin = 0

Since sin is 2𝜋 periodic this is enough to conclude that sin is in fact integrable on any
interval

Theorem 30.3 (Integrating sine). Let 𝑎 < 𝑏. Then sin is integrable on [𝑎, 𝑏] and

∫[𝑎,𝑏] sin = cos(𝑎) − cos(𝑏)

This work has immediate payoff for integrating cosine as well, since we know it to
be just a shifted version of the sine:

Theorem 30.4 (Integrating cosine). Let 𝑎 < 𝑏. Then cos is integrable on [𝑎, 𝑏] and

∫[𝑎,𝑏] cos = sin(𝑏) − sin(𝑎)

Exercise 30.7. Prove Theorem 30.4 using that sin(𝑥 + 𝜋/2) = cos(𝑥) and cos(𝑥 +
𝜋/2) = − sin(𝑥) (Exercise 21.14).
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31.1. Integrability

Theorem 31.1 (Continuous functions are Integrable). Every continuous function on
a closed interval is Darboux integrable.

Proof. Let 𝑓 be continuous on the interval [𝑎, 𝑏] and choose 𝜖 > 0. We will prove
integrability by finding a partition 𝑃 such that 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖.
As 𝑓 is continuous it is bounded (by the extreme value theorem), so the upper and
lower sums are defined for all partitions. It is also uniformly continuous (as [𝑎, 𝑏] is a
closed interval), so we can find a 𝛿 such that

|𝑥 − 𝑦| < 𝛿 ⟹ |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖
𝑏 − 𝑎

Now, choose a partition 𝑃 of [𝑎, 𝑏] where the width of each interval is less than 𝛿 .
Comparing upper and lower sums on this interval,

𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) = ∑
𝑃𝑖∈𝑃

𝑀𝑖|𝑃𝑖| − ∑
𝑃𝑖∈𝑃

𝑚𝑖|𝑃𝑖| = ∑
𝑃𝑖∈𝑃

[𝑀𝑖 − 𝑚𝑖]|𝑃𝑖|

Since |𝑃𝑖| < 𝛿 , we know that for any 𝑥, 𝑦 ∈ 𝑃𝑖 the values 𝑓 (𝑥), 𝑓 (𝑦) differ by less
than 𝜖/(𝑏 − 𝑎). Thus the difference of between the infimum and supremum over this
interval must be less than or equal to this bound:

𝑀𝑖 − 𝑚𝑖 ≤ 𝜖
𝑏 − 𝑎

Using this to bound our sum, we see

𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) = ∑
𝑃𝑖∈𝑃

[𝑀𝑖 − 𝑚𝑖]|𝑃𝑖| ≤ 𝜖
𝑏 − 𝑎 ∑

𝑃𝑖∈𝑃
|𝑃𝑖|

= 𝜖
𝑏 − 𝑎 (𝑏 − 𝑎) = 𝜖

Thus, 𝑓 is integrable!
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But the Darboux integral allows us to integrate even more things than the continuous
functions. For example, it is quite straightforward to prove that all monotone functions
are integrable (even those with many discontinuities!)

Theorem 31.2 (Monotone functions are Integrable). Every monotone bounded func-
tion on a closed interval is integrable.

Proof. Without loss of generality let 𝑓 be monotone increasing and bounded on the
interval [𝑎, 𝑏] and choose 𝜖 > 0. We will prove integrability by finding a partition 𝑃
such that 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖.
Let 𝐵 = 𝑓 (𝑏) − 𝑓 (𝑎) be the difference between values of 𝑓 at the endpoints. If 𝐵 = 0
then 𝑓 is constant, and we already know constant functions are integrable so we are
done.

Otherwise, let 𝑃 be an arbitrary evenly spaced partition of widths Δ = 𝜖/𝐵, we con-
sider the difference 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃):

𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) = ∑
𝑃𝑖∈𝑃

𝑀𝑖|𝑃𝑖| − ∑
𝑃𝑖∈𝑃

𝑚𝑖|𝑃𝑖|

= ∑
𝑃𝑖∈𝑃

[𝑀𝑖 − 𝑚𝑖]|𝑃𝑖| = Δ ∑
𝑃𝑖∈𝑃

[𝑀𝑖 − 𝑚𝑖]

Since 𝑓 is increasing, its supremum on each interval occurs on the right, and its infi-
mum on the left. That is, if 𝑃𝑖 = [𝑡𝑖−1, 𝑡𝑖] we have

𝑚𝑖 = 𝑓 (𝑡𝑖−1) 𝑀𝑖 = 𝑓 (𝑡𝑖)

Plugging this into the above gives a telescoping sum!

𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) = Δ ∑
1≤𝑖≤𝑛

[𝑓 (𝑡𝑖) − 𝑓 (𝑡𝑖−1)] = Δ[𝑓 (𝑡𝑛) − 𝑓 (𝑡0)]

But 𝑡0 = 𝑎 and 𝑡𝑛 = 𝑏 are the endpoints of our partition, and so this equals

= Δ[𝑓 (𝑏) − 𝑓 (𝑎)] = 𝜖
𝑓 (𝑏) − 𝑓 (𝑎) [𝑓 (𝑏) − 𝑓 (𝑎)] = 𝜖

And, inductively its straightforward to show (via subdivision) that if the domain of a
function can be partitioned into finitely many intervals on which it is integrable, than
its integrable on the entire thing. Thus, for example piecewise continuous functions
are Darboux Integrable. The precise statement and theorem is below.s
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Definition 31.1 (Piecewise Integrable Functions). A function 𝑓 defined on a domain
𝐼 is piecewise integrable if 𝐼 is the disjoint of a finite sequence of intervals 𝐼 = 𝐼1 ∪ 𝐼2 ∪
… ∪ 𝐼𝑛 , and 𝑓 restricted to each interval is integrable.

Proposition 31.1 (Piecewise Integrable ⟹ Integrable). If 𝑓 is piecewise integrable,
then it is integrable.

Proof. We begin with the case that 𝑓 is piecewise integrable on two subintervals, [𝑎, 𝑐]
and [𝑐, 𝑏] of the interval [𝑎, 𝑏]. Then the subdivision axiom immediately implies that
𝑓 is in fact integrable on the entire interval.

Now, assume for induction that all functions that are piecewise integrable on intervals
with ≤ 𝑛 subdivisions are actually integrable, and let 𝑓 be a piecewise integrable
function on a union of 𝑛 + 1 intervals

[𝑎, 𝑏] = 𝐼1 ∪ 𝐼2 ∪ ⋯ ∪ 𝐼𝑛 ∪ 𝐼𝑛+1

Set 𝐽 equal to the union of the first 𝑛, so that [𝑎, 𝑏] = 𝐽 ∪ 𝐼𝑛+1. Then when restricted to
𝐽 , the function 𝑓 is piecewise integrable on 𝑛 intervals, so its integrable by assump-
tion. And so, 𝑓 is integrable on both 𝐽 and 𝐼𝑛+1, so its piecewise integrable with two
intervals, and hence integrable as claimed.

Because all continuous functions and all monotone functions are integrable, we have
the following useful corollary covering most functions usually seen in a calculus
course.

Corollary 31.1. All piecewise continuous and piecewise monotone functions with
finitely many pieces are integrable.

But monotone functions are even more general than this! A monotone function can
have countably many discontinuities. Pursuing this further, there is a precise charac-
terization of Darboux-Integrable functions (which we state, but do not prove).

Theorem 31.3 (★ Riemann’s Integrability Criterion). A function 𝑓 on the interval
[𝑎, 𝑏] is Riemann/Darboux-integrable if and only if it is bounded and its set of disconti-
nuities is measure zero.

We do not prove this theorem here (its proof is long, and requires a precise definition
of the concept of a measure zero set to even state) nor do we use it in what follows.
But it is interesting to note that if one were to prove this theorem, many of the results
both above and below follow as rather trivial consequences:

• Continuous functions are bounded (the extreme value theorem) and have
empty discontinuity set. Thus they are integrable.
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• One can prove that monotone functions can have at most countably many dis-
continuities, and any countable set has measure zero. Thus monotone func-
tions are integrable.

• Piecewise integrability implies integrability as the overall function is bounded
by the max of the bounds on each interval, and the overall discontinuity set is
the union of the discontinuity sets (and, the finite union of measure zero sets
has measure zero).

• Constant multiples of integrable functions are integrable: multiplying a
bounded function by a constant leaves it still bounded, and does not change
the discontinuity set.

• Sums of integrable functions are integrable: a sum is bounded by the sum of
the bounds for its terms, and its discontinuity set is contained in the union of
the discontinuity sets of each term.

31.2. ♦ Linearity

Theorem 31.4 (Integrability of Constant Multiples). Let 𝑓 be an integrable function a
closed interval 𝐼 , and 𝑐 ∈ ℝ. Then the function 𝑐𝑓 is also integrable on 𝐼 , and furthermore

∫𝐼 𝑐𝑓 = 𝑐 ∫𝐼 𝑓

We separate into cases depending on the sign of 𝑐. Below we complete 𝑐 ≥ 0, and
leave 𝑐 < 0 as an exercise.

𝑐 = 0. When 𝑐 = 0 the function 𝑐𝑓 is identically the zero function. Thus by Proposi-
tion 29.4

∫𝐼 𝑐𝑓 = ∫𝐼 0 = 0|𝐼 | = 0

This is equal to 𝑐 ∫𝐼 𝑓 = 0 ∫𝐼 𝑓 = 0, so we’ve proven 𝑐 ∫𝐼 𝑓 = ∫𝐼 𝑐𝑓 as required.

𝑐 > 0. For 𝑐 > 0, note that on any interval 𝐽 we have

inf𝑥∈𝐽 {𝑐𝑓 (𝑥)} = 𝑐 inf𝑥∈𝐽 {𝑓 (𝑥)} sup
𝑥∈𝐽

{𝑐𝑓 (𝑥)} = 𝑐 sup
𝑥∈𝐽

{𝑓 (𝑥)}

Thus for any partition 𝑃 ,

𝐿(𝑐𝑓 , 𝑃) = ∑
𝑖

inf𝑥∈𝑃𝑖
{𝑐𝑓 (𝑥)}|𝑃𝑖| = 𝑐 ∑

𝑖
inf𝑥∈𝑃𝑖

𝑓 (𝑥)|𝑃𝑖| = 𝑐𝐿(𝑓 , 𝑃)

𝑈 (𝑐𝑓 , 𝑃) = ∑
𝑖

sup
𝑥∈𝑃𝑖

{𝑐𝑓 (𝑥)}|𝑃𝑖| = 𝑐 ∑
𝑖

sup
𝑥∈𝑃𝑖

𝑓 (𝑥)|𝑃𝑖| = 𝑐𝑈 (𝑓 , 𝑃)
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31.2. ♦ Linearity

Let 𝑃𝑛 be any sequence of shrinking partitions: since 𝑓 is integrable we know
lim 𝑈 (𝑓 , 𝑃𝑛) = lim 𝐿(𝑓 , 𝑃𝑛) = ∫𝐼 𝑓 . Computing with the limit laws

lim 𝐿(𝑐𝑓 , 𝑃𝑛) = lim 𝑐𝐿(𝑓 , 𝑃𝑛) = 𝑐 lim 𝐿(𝑓 , 𝑃𝑛) = 𝑐 ∫𝐼 𝑓

lim 𝑈 (𝑐𝑓 , 𝑃𝑛) = lim 𝑐𝑈 (𝑓 , 𝑃𝑛) = 𝑐 lim 𝑈 (𝑓 , 𝑃𝑛) = 𝑐 ∫𝐼 𝑓

Thus the upper and lower sums are equal in the limit, so 𝑐𝑓 is integrable and its
integral is equal to their common value 𝑐 ∫𝐼 𝑓 .

Exercise 31.1. Prove the 𝑐 = −1 case: if 𝑓 is integrable on 𝐼 then so is −𝑓 and
∫𝐼 (−𝑓 ) = − ∫𝐼 𝑓 . Hint: what does multiplying by −1 do to 𝑚 = inf and 𝑀 = sup on
each partition? What does it do to the sums 𝑈 (𝑓 , 𝑃) and 𝐿(𝑓 , 𝑃)?
Combine this with the 𝑐 > 0 case above to prove the analogous result for any negative
constant multiple.

Theorem 31.5 (Integrability of Sums). Let 𝑓 , 𝑔 be integrable functions on a closed
interval 𝐼 . Then their sum 𝑓 + 𝑔 is also integrable on 𝐼 . Furthermore, its integral is the
sum of the integrals of 𝑓 and 𝑔:

∫𝐼 (𝑓 + 𝑔) = ∫𝐼 𝑓 + ∫𝐼 𝑔

Proof. The key inequality bounding sums of functions on an arbitrary interval 𝐽 is

inf𝑥∈𝐽 {𝑓 (𝑥)} + inf𝑥∈𝐽 {𝑔(𝑥)} ≤ inf𝑥∈𝐽 {𝑓 (𝑥) + 𝑔(𝑥)} ≤ sup
𝑥∈𝐽

{𝑓 (𝑥) + 𝑔(𝑥)} ≤ sup
𝑥∈𝐽

{𝑓 (𝑥)} + sup
𝑥∈𝐽

{𝑔(𝑥)}

Given an arbitrary partition 𝑃 , summing over the subintervals 𝑃𝑖 yields

𝐿(𝑓 , 𝑃) + 𝐿(𝑔, 𝑃) ≤ 𝐿(𝑓 + 𝑔, 𝑃) ≤ 𝑈 (𝑓 + 𝑔, 𝑃) ≤ 𝑈 (𝑓 , 𝑃) + 𝑈 (𝑔, 𝑃)
By assumption 𝑓 and 𝑔 are both integrable, so we may select a sequence 𝑃𝑛 of shrink-
ing partitions such that

lim 𝐿(𝑓 , 𝑃𝑛) = lim 𝑈 (𝑓 , 𝑃𝑛) = ∫𝐼 𝑓 lim 𝐿(𝑔, 𝑃𝑛) = lim 𝑈 (𝑔, 𝑃𝑛) = ∫𝐼 𝑔

Taking the limit of the above inequalities along this sequence of partitions yields

∫𝐼 𝑓 + ∫𝐼 𝑔 ≤ lim 𝐿(𝑓 + 𝑔, 𝑃) ≤ lim 𝑈 (𝑓 + 𝑔, 𝑃) ≤ ∫𝐼 𝑓 + ∫𝐼 𝑔

Thus by the squeeze theorem these limits are equal; so 𝑓 + 𝑔 is integrable, and its
integral equals their common value ∫𝐼 𝑓 + ∫𝐼 𝑔.
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31. Integrable Functions

Each of these theorems does two things: it proves something about the space of in-
tegrable functions and also about how the integral behaves on this space. Below we
rephrase the conclusion of these theorems in the terminology of linear algebra - a
result so important it deserves the moniker of “Theorem” itself.

Theorem31.6 (Linearity of the Riemann/Darboux Integral). For each interval [𝑎, 𝑏] ⊂
ℝ, the set ℐ ([𝑎, 𝑏]) of Riemann integrable functions forms a Vector Subspace of the set
of all functions [𝑎, 𝑏] → ℝ. On this subspace, the Riemann integral defines a linear map

∫[𝑎,𝑏] ∶ ℐ ([𝑎, 𝑏]) → ℝ

31.3. ♦ Dominated Convergence for Integrals

Theorem 31.7 (Dominated Convergence for the Darboux Integral). Let {𝑓𝑛} be a
sequence of Riemann integrable functions on a closed interval 𝐼 , and assume that the
functions 𝑓𝑛 converge pointwise to a Riemann integrable function 𝑓 . Then if there exists
some 𝑀 where |𝑓𝑛(𝑥)| < 𝑀 for all 𝑥 ∈ 𝐼 , the order of integration and limit may be
interchanged:

lim∫𝐼 𝑓𝑛 = ∫𝐼 𝑓

Remark 31.1. This dominated convergence theorem is weaker than the form we are
used to for sums. Previously, we have checked the dominating conditions and then
concluded two things: (1) the resulting sum converges, and (2) we can interchange
the sum and limit. For the Darboux integral, we need to demote (1) from a conclusion
to an additional hypothesis.

One motivating reason to seek an alternative theory of integration in advanced anal-
ysis is to find an integral with a dominated convergence theorem closer to the others
we’ve met. Such an integral exists, and was first constructed by Henri Lebesgue in
1905 (but will not concern us here; dominated convergence for the Darboux integral
is plenty powerful!)

31.3.1. ⊕ Integration of Power Series

This material will be re-done in a simpler way with FTC

PSERIES RADIUS OF CONVERGENCE: Forward cite to where the proof is.
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31.3. ♦ Dominated Convergence for Integrals

Theorem 31.8 (Term-by-Term Integration of Power Series). Let 𝑓 = ∑𝑘≥0 𝑎𝑘𝑥𝑘 be a
power series with radius of convergence 𝑅. Then for 𝑥 ∈ (−𝑅, 𝑅):

∫[0,𝑥] 𝑓 = ∑
𝑘≥0

𝑎𝑘
𝑘 + 1𝑥

𝑘+1

We give a proof using Dominated Convergence, followed by some lemmas justifying
this applies to power series.

Proof. Let 𝑓𝑁 denote the 𝑁 𝑡ℎ partial sum of the series, 𝑓𝑁 = ∑𝑁
𝑘=0 𝑎𝑘𝑥𝑘 , so 𝑓 =

lim𝑁 𝑓𝑁 . Substituting this into the above,

∫[0,𝑥] 𝑓 = ∫[0,𝑥] lim𝑁 𝑓𝑁

Now assuming that dominated convergence for integrals applies, we may switch the
integral and limit statement, to get

∫[0,𝑥] lim𝑁 𝑓𝑁 = lim𝑁 ∫[0,𝑥] 𝑓𝑁

Now, each 𝑓𝑁 is a polynomial - meaning its a finite sum! This means we can integrate
it term by term using the linearity of the integral (Theorem 31.5):

∫[0,𝑥] 𝑓𝑁 = ∫[0,𝑥]
𝑁
∑
𝑘=0

𝑎𝑘 𝑡𝑘

=
𝑁
∑
𝑘=0

𝑎𝑘 ∫[0,𝑥] 𝑡
𝑘

=
𝑁
∑
𝑘=0

𝑎𝑘 𝑥𝑘+1
𝑘 + 1

Now, taking the limit 𝑁 → ∞ gives the series of term by term antiderivatives:

∫[0,𝑥] 𝑓 = lim𝑁

𝑁
∑
𝑘=0

𝑎𝑘 𝑥𝑘+1
𝑘 + 1 = ∑

𝑘≥0

𝑎𝑘
𝑘 + 1𝑥

𝑘+1

Now, we need to justify that dominated convergence applies. Theorem 31.7 requires
two things: (1) that the limit lim 𝑓𝑁 = 𝑓 is integrable on [0, 𝑥], and (2) that each of
the functions 𝑓𝑁 is uniformly bounded by some constant 𝑀 on the interval [0, 𝑥].
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31. Integrable Functions

Proposition 31.2. If 𝑓 is a power series and 𝑥 is within the radius of convergence, then
𝑓 is integrable on [0, 𝑥].

Proof. If 𝑥 ∈ (−𝑅, 𝑅) then the closed interval [0, 𝑥] is completely contained within
the interval of convergence. Because a power series is continuous at each point on
the interior of its interval of convergence (?@thm-power-series-continuity), it is
continuous on the closed interval [0, 𝑥].
And, as continuous functions on a closed interval are integrable (?@thm-
continuous-integrability), it is integrable on [0, 𝑥] as required.

The second requirement requires us to dig into the definition of a power series a bit.

Proposition 31.3. Let 𝑓 be a power series with radius of convergence 𝑅, and 𝑓𝑁 be its
sequence of partial sums. Then if 𝑥 ∈ (0, 𝑅), there is a fixed constant 𝑀 such that

|𝑓𝑁 (𝑡)| ≤ 𝑀 ∀𝑁 ∀𝑡 ∈ [0, 𝑥]

Proof. As 0 < 𝑥 < 𝑅 the interval [0, 𝑥] is contained in the interior of the interval of
convergence, so the power series 𝑓 = ∑𝑘≥0 𝑎𝑘 𝑡𝑘 is absolutely convergent for each
𝑡 ∈ [0, 𝑥]. Let 𝑔 denote the series of term-wise absolute values 𝑔(𝑡) = ∑𝑘≥0 |𝑎𝑘 |𝑡𝑘 , and
𝑔𝑁 denote its sequence of partial sums. Then, by the triangle inequality for finite
sums, for every 𝑡 ∈ [0, 𝑥],

|𝑓𝑁 (𝑡)| = |
𝑁
∑
𝑘=0

𝑎𝑘 𝑡𝑘 | ≤
𝑁
∑
𝑘=0

|𝑎𝑘 |𝑡𝑘 = 𝑔𝑁 (𝑡)

And, since all the terms of 𝑔 are positive, the sequence 𝑔𝑁 (𝑡) is monotone increasing
in 𝑁 , with

𝑔𝑁 (𝑡) ≤ 𝑔(𝑡) ∀𝑁
Stringing these two inequalities together, we see that for each 𝑡 ∈ [0, 𝑥], the quantity
𝑔(𝑡) is an upper bound for {𝑓𝑁 (𝑡)}.
But 𝑔 itself is a power series (with coefficients |𝑎𝑘 |) and is convergent for all 𝑡 ∈ [0, 𝑥]
(as 𝑓 is absolutely convergent at all points on the interior of its radius of conver-
gence). Thus by ?@thm-power-series-continuity, 𝑔 is continuous on [0, 𝑥]. That
means we can apply the extreme value theorem (?@thm-extreme-value) to find an
absolute maximum of 𝑔 on [0, 𝑥]: a value 𝑀 such that 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [0, 𝑥].
Now truly stringing it all together, we see that for each 𝑡 ∈ [0, 𝑥] and each 𝑁 ∈ ℕ,

|𝑓𝑁 (𝑡)| ≤ 𝑔𝑁 (𝑡) ≤ 𝑔(𝑡) ≤ 𝑀
Thus 𝑀 is the uniform bound we seek.

Exercise 31.2. Use the argument above to show that this holds for any 𝑥 ∈ (−𝑅, 𝑅);
the assumption on positivity is not required.
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31.4. ★ Order of Multiple Integrals

31.4. ★ Order of Multiple Integrals

Exchanging limits! Conditions on when you can do this (constant bounds)

Maybe something about multiple bounds, and higher dimensional calculus?

Theorem 31.9. Let 𝑓 (𝑥, 𝑦) be a function such that

∫𝐼 ∫𝐽 𝑓 = ∫𝐽 ∫𝐼 𝑓

As a corollary we can offer a re-proof of the equality of mixed partials.

Corollary 31.2. Let 𝑓 (𝑥, 𝑦) be a function of two variables, such that the mixed partial
derivatives 𝑓𝑥𝑦 and 𝑓𝑦𝑥 exist and are continuous in both 𝑥 and 𝑦 . Then they are equal.

31.5. Differentiating Under the Integral

Theorem 31.10. Let 𝑓𝑡 (𝑥)∶ 𝐼 → ℝ be a family of functions such that

• For each fixed 𝑡 , 𝑓𝑡 is continuous on 𝐼
• For each fixed 𝑥 , the function 𝑡 ↦ 𝑓𝑡 (𝑥) is differentiable.
• The derivative 𝑑

𝑑𝑡 𝑓𝑡 (𝑥) is continuous on 𝐼 .
Then the function 𝑡 ↦ ∫𝐼 𝑓𝑡 is differentiable, and

𝑑
𝑑𝑡 ∫𝐼 𝑓𝑡 = ∫𝐼

𝑑
𝑑𝑡 𝑓𝑡

Proof. Expressing the derivative as a limit, we compute using the linearity of the
integral

𝑑
𝑑𝑡 ∫𝐼 𝑓𝑡 = limℎ→0

∫𝐼 𝑓𝑡+ℎ − ∫𝐼 𝑓𝑡
ℎ

= limℎ→0
∫𝐼 (𝑓𝑡+ℎ − 𝑓𝑡 )

ℎ
= limℎ→0∫𝐼

𝑓𝑡+ℎ − 𝑓𝑡
ℎ

This leaves us with a limit of a sequence of integrals, where we need to switch the or-
der of the integral and the limit. To apply dominated convergence, select an arbitrary
sequence ℎ𝑛 → 0 with ℎ𝑛 ≠ 0 and note
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31. Integrable Functions

• For each 𝑛, (𝑓𝑡+ℎ𝑛 − 𝑓𝑡 )/ℎ𝑛 is continuous, and hence integrable.

• The function 𝑑
𝑑𝑡 𝑓𝑡 is continuous, and hence integrable.

The final condition that needs to be checked is the existence of an 𝑀 such that for
all 𝑛 ∈ ℕ and all 𝑥 ∈ 𝐼 , the difference quotient (𝑓𝑡+ℎ𝑛 (𝑥) − 𝑓𝑡 (𝑥))/ℎ𝑛 is less than 𝑀 in
absolute value. For each 𝑛, since |(𝑓𝑡+ℎ𝑛 (𝑥) − 𝑓𝑡 (𝑥))/ℎ𝑛 | is a continuous function of 𝑥
on the closed interval 𝐼 , and so is bounded. If this collection is uniformly bounded by
some fixed 𝑀 , we are done. So, assume for the sake of contradiction it is not, and for
each 𝑘 ∈ 𝑁 there is some 𝑛𝑘 and 𝑥𝑘 where

|
𝑓𝑡+ℎ𝑛𝑘 (𝑥𝑘) − 𝑓𝑡 (𝑥𝑘)

ℎ𝑛𝑘
| > 𝑘

The points 𝑥𝑘 lie in the closed interval 𝐼 , so by the Bolzano Weierstrass theorem
we may select a convergent subsequence (to ease proliferation of indices, we will
simply assume without loss of generality that 𝑥𝑘 itself converges). Say 𝑥𝑘 → 𝑥⋆ ∈ 𝐼 :
then the limit above tending to infinity implies that 𝑑

𝑑𝑡 𝑓𝑡 (𝑥⋆) does not exist by the

exercise below (it would be infinite): this is our contradiction, as we assumed 𝑑
𝑑𝑡 𝑓𝑡 is

continuous (and hence defined!).

Together with the previous points, this means dominated convergence applies!
Switching the order completes the proof, as the resulting integrand is the definition
of the 𝑡 derivative of 𝑓𝑡 .

limℎ→0∫𝐼
𝑓𝑡+ℎ − 𝑓𝑡

ℎ = ∫𝐼 limℎ→0
𝑓𝑡+ℎ − 𝑓𝑡

ℎ = ∫𝐼
𝑑
𝑑𝑡 𝑓𝑡

Exercise 31.3. Assume that for each 𝑡 that 𝑓𝑡 is a continuous function of 𝑥 , and let
𝑡𝑘 → 𝑡 , 𝑥𝑘 → 𝑥 be sequences such that for each 𝑘 ∈ ℕ, the difference quotient

| 𝑓𝑡𝑘 (𝑥𝑘) − 𝑓𝑡 (𝑥)
𝑡𝑘 − 𝑡 | > 𝑘

Show that replacing 𝑥𝑘 with its limit 𝑥 in the above gives an expression that tends to
infinity in the limit: thus 𝑓𝑡 is not differentiable at 𝑥 .
*Hint: add zero in a clever way to the top as 0 = 𝑓𝑡𝑘 (𝑥) − 𝑓𝑡𝑘 (𝑥) and re-arrange, using
continuity of 𝑓𝑡𝑘 as a function of 𝑥 .
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Calculus
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• In Chapter 32 we prove the Fundamental Theorem of Calculus directly from
the axioms of integration

• In Chapter 33 we use our knowledge of differentiation and the fundamental
theorem to prove familiar results about integrals, including 𝑢-substitution and
integration by parts.

• In Chapter 34 we use calculus to help learn more about elementary functions,
finding integral representations for the logarithm and inverse trigonometric
functions, and an infinite product for sin(𝑥).

• In Chapter 36 we use calculus to study linear first order differential equations,
and prove an existence/uniqueness theorem.

• In Chapter 35 we put everything we’ve learned to work to find formulae to
calculuate 𝜋 .
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32. The Fundamental Theorem

Proposition 32.1 (Integrating Bounded Functions). The integral is continuous

Theorem 32.1 (The Fundamental Theorem of Calculus I).

• Proof from the axioms
• Proof from the Riemann Integral
• Proof from the Darboux Integral (Exercise)

Theorem 32.2 (The Fundamental Theorem of Calculus II).

Definition 32.1 (Endpoint Evaluation).

𝑓 |[𝑎,𝑏] = 𝑓 (𝑏) − 𝑓 (𝑎)
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33. Antidifferentiation

33.1. Substitution

Theorem 33.1 (Substitution). Let 𝑔 be a continuously differentiable function on [𝑎, 𝑏]
and 𝑓 be continuous on the range of 𝑔, with 𝐹 an antiderivative of 𝑓 . Then

∫[𝑎,𝑏] 𝑓 (𝑔(𝑥))𝑔
′(𝑥) = 𝐹 ∘ 𝑔|

[𝑎,𝑏]

Proof. Note 𝑔 is continuous as it is differentiable. As compositions and products
of continuous functions are continuous, 𝑓 (𝑔(𝑥))𝑔′(𝑥) is a continuous function, and
hence integrable. Thus by the fundamental theorem of calculus we can evaluate its
integral by finding an antiderivative. The chain rule readily confirms 𝐹 ∘ 𝑔 is such a
function as

(𝐹 (𝑔(𝑥)))′ = 𝐹 ′(𝑔(𝑥))𝑔′(𝑥) = 𝑓 (𝑔(𝑥))𝑔′(𝑥)
Thus ∫[𝑎,𝑏] 𝑓 (𝑔(𝑥))𝑔′(𝑥) = 𝐹(𝑔(𝑏)) − 𝐹(𝑔(𝑎)).

This justifies the familiar use of u-substitution in Calculus

Example 33.1. To integrate (2𝑥 + 1)5 on the interval [𝑎, 𝑏], note that we may write

(2𝑥 + 1)5 = 𝑓 (𝑔(𝑥))

for 𝑓 (𝑥) = 𝑥5 and 𝑔(𝑥) = 2𝑥 + 1. Then 2(2𝑥 + 1)5 is the derivative of 1
6 (2𝑥 + 1)6, so

∫[𝑎,𝑏] 2(2𝑥 + 1)5 = 1
6(2𝑥 + 1)6|

[𝑎,𝑏]

By the linearity of the integral ∫[𝑎,𝑏] 2(2𝑥 + 1)5 = 2 ∫[𝑎,𝑏](2𝑥 + 1)5 and solving for this
yields

∫[𝑎,𝑏](2𝑥 + 1)5 = (2𝑥 + 1)6
12 |

[𝑎,𝑏]
= (2𝑏 + 1)6 − (2𝑎 + 1)5

12

Exercise 33.1.
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33. Antidifferentiation

Corollary 33.1 (Inverse Substitution). Subbing 𝑥 = 𝑓 (𝑡) instead of 𝑢 = 𝑔(𝑥) (like trig
sub)

Examples

Exercise: substitution to show that

∫[𝑘𝑎,𝑘𝑏] 𝑓 (𝑥) = 𝑘 ∫[𝑎,𝑏] 𝑓 (𝑘𝑥)

33.2. Integration by Parts

Theorem 33.2 (Integration by Parts). Let 𝑓 be continuous and 𝑔 continuously differ-
entiable on [𝑎, 𝑏]. Then

∫[𝑎,𝑏] 𝑓 (𝑥)𝑔(𝑥) = 𝐹(𝑥)𝑔(𝑥)|
[𝑎,𝑏]

− ∫[𝑎,𝑏] 𝑓 (𝑥)𝑔
′(𝑥)

where 𝐹 is an antiderivative of 𝑓 .

Corollary 33.2 (Iterated Integration by Parts).

33.3. Power Series

Proposition 33.1. Let ∑𝑎𝑛𝑥𝑛 be a power series with radius of convergence 𝑟 . Then the
series ∑ 𝑎𝑛

𝑛+1𝑥𝑛+1 also has radius of convergence 𝑟 .

Like previously we give two proofs here, a simple and memorable proof in the case
that the ratio tests suffices to determine the convergence of the original series, and a
more robust application of the root test for the general case.

Proof. Like for the differentiable case, we prove this here under the assumption that
the Ratio test succeeds in computing the radius of convergence for the original series,
so for any 𝑥 ∈ (−𝑅, 𝑅)

lim | 𝑎𝑛+1𝑎𝑛
| |𝑥 | < 1

We now turn to compute the ratio test for our new series ∑ 𝑎𝑛
𝑛+1

𝑥𝑛+1: the ratio in
question is

𝑎𝑛+1
𝑛+2 𝑥𝑛+2
𝑎𝑛
𝑛+1𝑥𝑛+1

= (𝑎𝑛+1𝑎𝑛
) (𝑛 + 1

𝑛 + 2) 𝑥
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33.4. ★ Differentiating Under the Integral

Since (𝑛 + 1)/(𝑛 + 2) → 1 we can compute the overall limit using the limit theorems
and see we end up with the exact same limit as for the original series! Thus integrating
term by term does not change the radius of convergence at all.

Now for the general case: :::{.proof}

Having confirmed that ∑ 𝑎𝑛
𝑛+1𝑥𝑛 converges when the original series does, we can pro-

vide a direct proof of the term-by-term integrability of power series, avoiding the use
of dominated convergence:

Theorem 33.3 (Integrating Power Series). Let 𝑓 (𝑥) = ∑ 𝑎𝑛𝑥𝑛 be a power series with
radius of convergence 𝑟 . Then 𝑓 is integrable on (−𝑟, 𝑟) and for any 0 < 𝑥 < 𝑟

∫[0,𝑥] 𝑓 = ∑
𝑛≥0

𝑎𝑛
𝑛 + 1𝑥

𝑛+1

Proof. The function ∑𝑎𝑛𝑥𝑛 is continuous on (−𝑟, 𝑟) and thus integrable by Theo-
rem 31.1. Define 𝐹(𝑥) = ∑ 𝑎𝑛

𝑛+1𝑥𝑛 . This converges on (−𝑟, 𝑟) by Proposition 33.1, and
defines a differentiable function on this interval; whose derivative can be calculated
term-by-term (Theorem 26.1), giving

𝐹 ′(𝑥) = (∑
𝑛≥0

𝑎𝑛
𝑛 + 1𝑥

𝑛+1)
′
= ∑

𝑛≥0
𝑎𝑛𝑥𝑛 = 𝑓 (𝑥)

Thus 𝐹 is an antiderivative of 𝑓 , and by the fundamental theorem of calculus

∫[0,𝑥] 𝑓 = 𝐹(𝑥) − 𝐹(0)

Since 𝐹 has no constant term, 𝐹(0) = 0 and so ∫[0,𝑥] 𝑓 = ∑𝑛≥0
𝑎𝑛
𝑛+1𝑥𝑛+1 as claimed.

Theorem 33.4 (Integral form of Taylor Remainder).

33.4. ★ Differentiating Under the Integral

33.5. The 𝑑𝑥 Notation

Introduce the familiar calculus notation ∫𝑏𝑎 𝑓 𝑑𝑥 and show how the 𝑑𝑥 works as a nice
short-hand for u-substitution, and integration by parts. Also useful just to tell us
what the variable of integration is in multivariate integrals.
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34. Elementary Functions

34.1. Logarithms

Use substitution to show that ∫[1,𝑥] 1
𝑡 is a logarithm. Show this is the natural log.

Get a power series for this!

34.2. Inverse Trigonometric Functions

34.2.1. ★ The ArcSine

Thus, we find ourselves interested in calculating these functions. Inspired by our
previous treatment of logarithms (where we were able to find the derivative of 𝐿(𝑥)
using that it was the inverse of an exponential, without actually knowing a formula
for 𝐿) we seek to begin our study of inverse trigonometry via differentiation:

Proposition 34.1. The derivative of the inverse sine function is

(arcsin 𝑥)′ = 1
√1 − 𝑥2

Proof. Let 𝑓 (𝑥) = arcsin(𝑥). Then where defined, 𝑓 (sin(𝜃)) = 𝜃 by definition, and we
may differentiate via the chain rule: on the left side

𝑑
𝑑𝜃 𝑓 (sin(𝜃)) = 𝑓 ′(sin(𝜃)) cos(𝜃)

and on the right 𝑑
𝑑𝜃 𝜃 = 1. Equating these and solving for 𝑓 ′ yields

𝑓 ′(sin(𝜃)) = 1
cos(𝜃)

The only remaining problem is that we want to know 𝑓 ′ as a function of 𝑥 and we
only know its value implicitly, as a function of sin(𝜃). But setting 𝑥 = sin 𝜃 we can
express cos 𝜃 = √1 − 𝑥2 via the pythagorean identity sin2 𝜃 + cos2 𝜃 = 1. Thus
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34. Elementary Functions

𝑓 ′(𝑥) = 1
√1 − 𝑥2

Before integration this would have been a mere curiosity. But, armed wtih the fun-
damental theorem this is an extremely powerful fact: indeed, it directly gives us a
representation as an integral:

Corollary 34.1. The inverse sine function is defined on the interval [0, 1] by the integral

arcsin(𝑥) = ∫[0,𝑥]
1

√1 − 𝑥2

Proof. Since (arcsin 𝑥)′ = 1
√1−𝑥2 , the inverse sine is an antiderivative of 1

√1−𝑥2 , and
also sin(0) = 0 implies arcsin(0) = 0, so it is zero at 𝑥 = 0. Thus, it is exactly the area
function

arcsin(𝑥) = ∫[0,𝑥]
1

√1 − 𝑡2

34.2.2. The ArcTangent

Proposition 34.2.
(arctan 𝑥)′ = 1

1 + 𝑥2

Proof. We again proceed by differentiating the identity arctan(tan 𝜃) = 𝜃 . This yields
arctan′(tan 𝜃) 1

cos2 𝜃 = 1 and multiplying through by cos2 we can solve for the deriva-
tive of arctangent:

arctan′(tan 𝜃) = cos2 𝜃

The only problem is again we have the derivative as a function implicitly of of tan 𝜃 ,
and we need it in terms of just an abstract variable 𝑥 . Setting 𝑥 = tan 𝜃 we see that
𝑥2 = tan2 𝜃 and (using the pythagorean identity) 𝑥2 + 1 = tan2 𝜃 + 1 = 1

cos2 𝜃 . Thus

cos2 𝜃 = 1
1 + 𝑥2

and putting these two together, we reach what we are after

arctan′(𝑥) = 1
1 + 𝑥2
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34.2. Inverse Trigonometric Functions

Proposition 34.3. The inverse function arctan(𝑥) to the tangent tan(𝑥) =
sin(𝑥)/ cos(𝑥) admits an integral representation

arctan(𝑥) = ∫[0,𝑥]
1

1 + 𝑡2

Proof. This follows as arctan′(𝑥) = 1/(1 + 𝑥2), so both arctan and this integral have
the same derivative. As antiderivatives of the same function this means that they
differ by a constant. Finally, this constant is equal to zero as arctan(0) = 0 and
∫[0,0] 1

1+𝑥2 = 0 as it is an integral over a degenerate interval.

This integral expression is quite nice - the arctangent like the logarithm is shown to
be the integral of a rather simple rational function. But like arcsine, an integral ex-
pression is rather difficult to use for computing actual values: we’d need to actually
compute (or estimate) some Riemann sums. So it’s helpful to look for other expres-
sions as well, and here arctan has a particularly nice power series.

Recall the geometric series
1

1 − 𝑥 = ∑
𝑛≥0

𝑥𝑛

We can substitute −𝑥2 for the variable here to get a series for 1/(1 + 𝑥2):

1
1 + 𝑥2 = ∑

𝑛≥0
(−𝑥2)𝑛 = ∑

𝑛≥0
(−1)𝑛𝑥2𝑛

= 1 − 𝑥2 + 𝑥4 − 𝑥6 + 𝑥8 − ⋯

This power series has radius of convergence 1 (inherited from the original geometric
series) and converges at neither endpoint. We know from the above that this function
is the derivative of the arctangent, so we should integrate it!

arctan(𝑥) = ∫[0,𝑥]
1

1 + 𝑡2 𝑑𝑡 = ∫[0,𝑥] ∑𝑛≥0
(−1)𝑛𝑡2𝑛 𝑑𝑡

Inside its radius of convergence we can exchange the order of the sum and the inte-
gral:
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34. Elementary Functions

∫[0,𝑥] (∑𝑛≥0
(−1)𝑛𝑡2𝑛) 𝑑𝑡 = ∑

𝑛≥0
∫[0,𝑥](−1)

𝑛𝑡2𝑛 𝑑𝑡

= ∑
𝑛≥0

(−1)𝑛 ∫[0,𝑥] 𝑡
2𝑛𝑑𝑡

= ∑
𝑛≥0

(−1)𝑛 𝑥2𝑛+1
2𝑛 + 1

Theorem 34.1. For 𝑥 ∈ (−1, 1),

arctan(𝑥) = ∑
𝑛≥0

(−1)𝑛 𝑥2𝑛+1
2𝑛 + 1

= 𝑥 − 𝑥3
3 + 𝑥5

5 − 𝑥7
7 + 𝑥9

9 − ⋯

34.3. Elementary Functions via Calculus

Discovering the elementary functions as solutions to simple ODEs. (SHOULD
WE SAVE THIS FOR FUNCTION-SPACE CHAPTER IN THE FUTURE? YES
PROBABLY!)

• 𝑦 ′ = 𝑐: affine
• 𝑦 ′ = 𝑐𝑦 : exponential
• 𝑦 ′′ = 𝑐𝑦 : trigonometric for 𝑐 < 0 (new functions - hyperbolic trig for 𝑐 > 0)

Theorem 34.2 (Nullspace of the 𝑛𝑡ℎ derivative). Polynomials

Theorem 34.3 (Eigenspaces of the 𝑛𝑡ℎ derivative). Exponentials and trigonometric
functions

34.3.1. Complexity of Differentiation and Integration

Differentiating an elementary function always gives another elementary function. In-
tegration doesn’t work this way!
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34.4. Euler’s Infinite Product for sin(𝑥)

34.4. Euler’s Infinite Product for sin(𝑥)
Here we will use our ability to integrate trigonometric functions to provide one proof
of Euler’s famous infinite product for sine:

Theorem 34.4 (Infinite Product for sin). For all 𝑥 ≠ 0,
sin 𝜋𝑥
𝜋𝑥 = ∏

𝑘≥1
(1 − 𝑥2

𝑘2 )

To begin we make the following auxiliary definition: for 𝑛 ≥ 0 and 𝑐 ∈ ℝ let

𝐼𝑛(𝑐) ∶= ∫[0,𝜋/2] cos
𝑛(𝑡) cos(𝑐𝑡)

Exercise 34.1. Show that 𝐼0(0) = 𝜋/2 and 𝐼0(2𝑥) = sin(𝜋𝑥)/(2𝑥). Thus
𝐼0(2𝑥)
𝐼0(0)

= sin 𝜋𝑥
𝜋𝑥

Our approach will be to show 𝐼0(2𝑥)/𝐼0(0) is also equal to the desired infinite product.
To do so, we need to run some computation with

Proposition 34.4. For 𝑛 ≥ 2, the following recursion formula holds:

(𝑛2 − 𝑐2)𝐼𝑛(𝑐) = (𝑛2 − 𝑛)𝐼𝑛−2(𝑐)

Proof. https://math.stackexchange.com/questions/786046/infinite-product-prod-
limits-k-1-infty-left1-fracx2k2-pi2-right

Taking a copy of this recursive expression at 𝑐 and at 0 and dividing yields

(𝑛2 − 𝑐2)𝐼𝑛(𝑐)
(𝑛2 − 02)𝐼𝑛(0)

= (𝑛2 − 𝑛)𝐼𝑛−2(𝑐)
(𝑛2 − 𝑛)𝐼𝑛−2(0)

which simplifies to
𝐼𝑛−2(𝑐)
𝐼𝑛−2(0)

= 𝑛2 − 𝑐2
𝑛2

𝐼𝑛(𝑐)
𝐼𝑛(0)

This gives us a means of computing the ratio 𝐼0(𝑐)/𝐼0(0) inductively:
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34. Elementary Functions

𝐼0(𝑐)
𝐼0(0)

= 22 − 𝑐2
22

𝐼2(𝑐)
𝐼2(0)

= 22 − 𝑐2
22

42 − 𝑐2
42

𝐼4(𝑐)
𝐼4(0)

= 22 − 𝑐2
22

42 − 𝑐2
42

62 − 𝑐2
62

𝐼6(𝑐)
𝐼6(0)

= 22 − 𝑐2
22

42 − 𝑐2
42

62 − 𝑐2
62

82 − 𝑐2
82

𝐼8(𝑐)
𝐼8(0)

Exercise 34.2. For any 𝑚 ≥ 1,
𝐼0(𝑐)
𝐼0(0)

= ∏
1≤𝑘≤𝑚

(2𝑘)2 − 𝑐2
(2𝑘)2

𝐼2𝑚(𝑐)
𝐼2𝑚(0)

Plugging in 𝑐 = 2𝑥 gives an expression for sin(𝜋𝑥)/(𝜋𝑥) by Exercise 34.1:

Corollary 34.2. For any 𝑚 ≥ 1,
sin 𝜋𝑥
𝜋𝑥 = 𝐼0(2𝑥)

𝐼0(0)
= ∏

1≤𝑘≤𝑚
(1 − 𝑥2

𝑘2 )
𝐼2𝑚(2𝑥)
𝐼2𝑚(0)

Thus it only remains to show the ‘error term’ 𝐼2𝑚(2𝑥)/𝐼2𝑚(0) goes to 1 as 𝑛 → ∞. Note
that sin(𝜋𝑥)/(𝜋𝑥) is an even periodic function of period 1, so it suffices to prove the
claim for 𝑥 ∈ [0, 1/2].

Exercise 34.3. Prove for 𝑛 ≥ 0 and 𝑥 ∈ [0, 1/2] that
𝐼𝑛+2(0) < 𝐼𝑛(2𝑥) < 𝐼𝑛(0)

Hint: use that cos(2𝑥𝑡) < cos2(𝑥) for 𝑥 ∈ [0, 1/2] for the first inequality, and that
𝐼𝑛+2(0)/𝐼𝑛(0) = 𝑛+1

𝑛+2

Together this does it; we have a proof of Euler’s product for sine.
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35. 𝜋

35.1. Area of a Circle

We have defined 𝜋 as the first zero of the sine function - a definition, but have finally
developed enough tools to relate it to the area of a circle. This provides a relation-
ship between the modern, rigorous theory of trigonometric functions and the ancient
quest of Archimedes to measure the area of the circle.

Indeed, since we have defined area rigorously with integration, we can now make
sense of the area of the circle as long as we can express the unit circle as a function.
While this is not directly possible, we can take the implicit equation 𝑥2 + 𝑦2 = 1 and
solve for 𝑦 giving two functions (one for the top half and one for the bottom). Then
we can measure the area of the circle as twice the top half, or

Area = 2∫[−1,1] √1 − 𝑥2

Now we compute this integral with our newfound integration techniques (substitu-
tion), and show it equals the half-period of our trigonometric functions in natural
units.

Theorem 35.1.
2∫[−1,1] √1 − 𝑥2 = 𝜋

Proof. By subsitution, we see that the following two integrals are equal

∫[0,1] √1 − 𝑥2 = ∫𝐼 √1 − (sin(𝑡))2(sin(𝑡))′

Where 𝐼 = [𝑎, 𝑏] is the interval such that [sin(𝑎), sin(𝑏)] = [0, 1]. Since sin(0) = 0 and
sin(𝜋/2) = 1 we see 𝐼 = [0, 𝜋/2]. Now we focus on simplifying the integrand:

By the Pythagorean identity, 1 − sin2(𝑡) = cos2(𝑡), thus by Example 2.3,

√1 − sin2(𝑡) = √cos2(𝑡) = | cos(𝑡)|
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35. 𝜋

and by definition we recall (sin 𝑡)′ = cos 𝑡 . Thus

∫[0,𝜋/2] = ∫[0,𝜋/2] | cos(𝑡)| cos(𝑡)

= ∫[0,𝜋/2] cos
2(𝑡)

Where we can drop the absolute value as cos is nonnegative on [0, 𝜋/2] (its first
zero is at half the period, so 𝜋 ). We can simplify this using the “half angle formula”
cos2(𝑥) = (1 + cos(2𝑥))/2

∫[0,𝜋/2] cos
2(𝑡) = ∫[0,𝜋/2]

1 + cos(2𝑡)
2

Using the linearity of the integral, this reduces to

∫[0,𝜋/2] cos
2(𝑡) = 1

2 ∫[0,𝜋/2] 1 + 1
2 ∫[0,𝜋/2] cos(2𝑡)

= 𝜋
4 + 1

2 ∫[0,𝜋/2] cos(2𝑡)

The first of these integrals could be immediately evaluated as the integral of a con-
stant, but the second requires us to do another substitution. If 𝑢 = 2𝑡 then

∫[0,𝜋/2] cos(2𝑡) =
1
2 ∫[0,𝜋] cos 𝑢

We recall again that by definition cos 𝑢 = (sin 𝑢)′, so by the first fundamental theorem

∫[0,𝜋] cos 𝑢 = ∫[0,𝜋] (sin 𝑢)′ = sin 𝑢|[0,𝜋/]

But, sin is equal to 0 both at 0 and 𝜋 ! So after all this work, this integral evaluates to
zero. Thus

∫[0,1] √1 − 𝑥2 = ∫[0,𝜋/2] cos
2 𝑡

= 𝜋
4 + 1

2 ∫[0,𝜋] cos(2𝑡)

= 𝜋
4 + 0
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35.2. Calculating 𝜋 ’s Value

Now, we are ready to assemble the pieces. Because 𝑥2 is an even function so is√1 − 𝑥2,
and so its integral over [−1, 1] is twice its integral over [0, 1]. Thus

Area = 2∫[−1,1] √1 − 𝑥2 = 4∫[0,1] √1 − 𝑥2 = 4𝜋4 = 𝜋

This single result ties together so many branches of analysis, and proves a worthy
capstone calculation for the course. However after all this work we shouldn’t let
ourselves be satisfied too quickly! Now that we have related the area of a circle
to trigonometry, we can hope to use other techniques from analysis to accurately
calculate its value.

35.2. Calculating 𝜋 ’s Value

35.2.1. From the Area Integral

Having proven that 𝜋 is the area of the circle, we may attempt to estimate its value
by estimating the integral of √1 − 𝑥2:

𝜋
4 = ∫[0,1] √1 − 𝑥2

Using the evenly spaced partition 𝑃𝑛 with 𝑛 bars of width Δ = 1/𝑛 and the fact that

√1 − 𝑥2 is monotone decreasing on [0, 1], we can evaluate this integral as a limit of
upper sums:

∫[0,1] √1 − 𝑥2 = lim 𝑈 (√1 − 𝑥2, 𝑃𝑛) =
𝑛
∑
𝑖=1

√1 − (𝑖Δ)Δ

Simplifying gives an explicit limit of sums to compute:

Example 35.1. The following limit of infinite sums converges to 𝜋 .

𝜋 = lim 4
𝑛
∑
𝑖=1 √

1 − 𝑖2
𝑛2

1
𝑛 = lim 4

𝑛
∑
𝑖=1

√𝑛2 − 𝑖2
𝑛2
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35. 𝜋

This series is difficult to compute because it involves square roots: irrational quantities
that we will also have to approximate in order to get a good approximate value for
𝜋 . It also converges slowly, so there’s many square roots to approximate! Using a
computer to help we find

4
10
∑
𝑖=1

√100 − 𝑖2
100 ≈ 2.904…

4
100
∑
𝑖=1

√10000 − 𝑖2
10000 ≈ 3.120…

4
1000
∑
𝑖=1

√1000000 − 𝑖2
1000000 ≈ 3.139…

35.2.2. From Inverse Trigonometry

One may use the inverse trigonometric functions to get integral representations of 𝜋 .
Perhaps the most natural thought is to use that sin(𝜋/2) = 1, so arcsin(1) = 𝜋/2 or

𝜋
2 = arcsin(1) = ∫[0,1]

1
√1 − 𝑥2

This integral is improper as the integrand becomes unbounded in a neighborhood of
𝑥 = 1: thus it must be calculated as a limit over intervals [0, 𝑡] with 𝑡 → 1 which is
rather difficult in practice: certainly more involved than the calculation from the area
integral above.

Remark 35.1. If we were not bothered by the square roots for our computation-
focused goals, one could easily replace the problematic integral abovewith something
avoiding its problems. For instance, since sin(𝜋/4) = 1/√2, we have

𝜋
4 = ∫[0,1/√2]

1
√1 − 𝑥2

But this is much worse in terms of square roots: if you write out a Riemann sum here
it’ll be a sum of nested roots, and still more complicated than the estimate from the
area integral.

The same trouble plagues the cosine function, but things get much nicer with the
tangent. We know that sin and cos are equal when evaluated at 𝜋/4, which means
their ratio is 1 = tan 𝜋/4. Inverting this,
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35.2. Calculating 𝜋 ’s Value

Corollary 35.1.
𝜋
4 = arctan(1) = ∫[0,1]

1
1 + 𝑥2 , 𝑑𝑥

This function is integrable (its continuous), so we can compute its value as the limit
of any shrinking sequence of Riemann sums. Below is an explicit example, given for
evenly spaced partitions sampled at their right endpoints.

Example 35.2. The following infinite series converges to 𝜋 :

𝜋 = lim𝑛 4
𝑛
∑
𝑖=1

1
1 + (𝑖Δ)2Δ

= lim𝑛 4
𝑛
∑
𝑖=1

𝑛
𝑛2 + 𝑖2

This sequence of sums is much better to work with: each term is a rational num-
ber, so it can be computed exactly, giving a sequence of better and better rational
approximations to 𝜋 .

4
10
∑
𝑖=1

10
100 + 𝑖2 ≈ 3.0395…

4
100
∑
𝑖=1

100
10000 + 𝑖2 ≈ 3.13155…

4
1000
∑
𝑖=1

1000
1000000 + 𝑖2 ≈ 3.140592…

4
1000000
∑
𝑖=1

1000000
(1000000)2 + 𝑖2 ≈ 3.14159165359…

This is great - these sums are trivial to do on a computer (I did these in a simple
python for loop) and get us an accurate value for 𝜋 . But we shouldn’t be satisfied just
yet! First of all, these sums take a while to converge - we need a thousand terms to
get the first two digits after the decimal, and a million to get the first five!
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35.2.3. From Series

Power series are much easier to deal with than the limits arising from integrals: to
get a better approximation of a power series you keep the terms you have, and just add
morewhereas to compute better approximate Riemann sums you need to start all over
from scratch! Thus its certainly advantageous from a computational perspective to
look for series converging to 𝜋 .
A particularly nice example is given by the arctangent, whose series we computed in

Theorem 34.1 to be ∑𝑛≥0(−1)𝑛 𝑥2𝑛+1
2𝑛+1 on the interval (−1, 1). Since tan(𝜋/4) = 1, we

can calculate 𝜋 as 𝜋/4 = arctan(1), which lies right at the boundary of the interval
of convergence. Luckily, this proves not to be an issue

Proposition 35.1.
𝜋
4 = arctan(1) = ∑

𝑛≥0
(−1)𝑛
2𝑛 + 1

Proof. The arctangent function is continuous on ℝ, so

arctan(1) = arctan( lim𝑥→1− 𝑥) = lim𝑥→1− arctan(𝑥)

For 𝑥 ∈ (−1, 1) the arctangent can be expressed as a power series, so

lim𝑥→1− arctan(𝑥) = lim𝑥→1− ∑
𝑛≥0

(−1)𝑛 𝑥2𝑛+1
2𝑛 + 1

This series converges at 𝑥 = ±1 by the alternating series test. Hence, by Abel’s
theorem (Theorem 20.4) it defines a continuous function on [−1, 1] and so the limit
can be pulled inside:

lim𝑥→1− ∑
𝑛≥0

(−1)𝑛 𝑥2𝑛+1
2𝑛 + 1 = ∑

𝑛≥0
(−1)𝑛 (lim𝑥→1− 𝑥)2𝑛+1

2𝑛 + 1

= ∑
𝑛≥0

(−1)𝑛 12𝑛+1
2𝑛 + 1

= ∑
𝑛≥0

(−1)𝑛 1
2𝑛 + 1

Putting this all together yields the claim:
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35.2. Calculating 𝜋 ’s Value

𝜋
4 = arctan(1) = ∑

𝑛≥0
(−1)𝑛
2𝑛 + 1

This formula is exceedingly beautiful, and worthy of writing out without summation
notation to take in

𝜋
4 = 1 − 1

3 + 1
5 − 1

7 + 1
9 − ⋯

However, way out here at the endpoint the series converges very slowly. Using a
computer to do a little experimenting:

4
10
∑
𝑛=0

(−1)𝑛
2𝑛 + 1 = 3.2323…

4
100
∑
𝑛=0

(−1)𝑛
2𝑛 + 1 = 3.1549…

4
1,000
∑
𝑛=0

(−1)𝑛
2𝑛 + 1 = 3.1425…

Like the Riemann sum approach, we needed a thousand terms to get the first two
decimals right. This problem only occurs as we are evaluating a series at the very
boundary of its interval of convergence: we know via comparison that power series
converge exponentially quickly within their radius of convergence, so to get better
behavior we should seek a point inside (−1, 1) at which the arctan will give us infor-
mation aboout 𝜋 . How do we find such a value? Here’s one clever possibility: we
actually realize 𝜋/4 as the sum of two different arctangent values:

Proposition 35.2.
𝜋
4 = arctan (12) + arctan (13)

Proof. Let 𝜃 = arctan(1/2) and 𝜓 = arctan(1/3). Now use the tangent addition law
tan(𝜃 + 𝜓) = tan 𝜃+tan 𝜓

1−tan 𝜃 tan 𝜓 to compute 𝜃 + 𝜓 :

tan(𝜃 + 𝜓) =
1
2 + 1

3
1 − 1

2
1
3

=
5
6

1 − 1
6

= 1

Thus, tan(𝜃 + 𝜓) = 1 so 𝜃 + 𝜓 = 𝜋/4, as claimed.
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35. 𝜋

Now, both 1/2 and 1/3 lie well within the radius of convergence of the arctangent,
so we can add the two together to get a formula for 𝜋 . Since series converge abso-
lutely within their radii of convergence, we can re-arrange terms as we please, even
combining the two into a single sum:

Theorem 35.2.
𝜋
4 = ∑

𝑘≥0

(−1)𝑘
(2𝑘 + 1)22𝑘+1 + ∑

𝑛≥0
(−1)𝑘

(2𝑘 + 1)32𝑘+1

= ∑
𝑘≥0

(−1)𝑘
2𝑘 + 1 ( 1

22𝑘+1 + 1
32𝑘+1 )

This series converges very quickly, as the exponents 22𝑘+1 and 32𝑘+1 in the denom-
inators grow rapidly. Indeed, summing up to N = TWO already gives the first two
decimal digits!

(12 + 1
3) − 1

3 (18 + 1
27) + 1

5 ( 1
32 + 1

243) = 3.14558

Using up until 𝑁 = 10 terms in this series gives the approximation

𝜋 ≈ 3.14159257960635
Which is correct to 7 decimal digits. To get 15 significant digits using 22 terms in this
series is enough!

This is truly a marvelous machine we have built - conjuring directly from the lowly
geometric series an efficient formula for 𝜋 .

Example 35.3. Want to be even more clever? In 1796 John Machin showed the
following identity:

𝜋
4 = 4 arctan(1/5) − arctan(1/239)

Note: If you wish to prove this, probably the easiest way is to notice that (5+𝑖)4(239−𝑖) =
−114244(1 + 𝑖) and use the polar form of complex numbers to get the result. See here:
https://people.math.sc.edu/howard/Classes/555c/trig.pdf

This allows you to compute π to five or six decimals without much trouble. Just using
the first five terms in the series gives 𝜋 ≈ 3.14159268240440 so we are already good
to seven decimals. Using nine terms in the series gives you 15 significant digits
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36. Differential Equations

What are differential equations etc.

36.1. Quadrature

Solving equations 𝑦 ′ = 𝑓 with the fundamental theorem of calculus. Existence of
darboux integrals proves the existence of solutions. Uniqueness given by corollary to
the MVT about antidifferentiation.

Theorem 36.1 (Solving 𝑦 ′ = 𝑓 ).

Can compute solution via antidifferentiation but this won’t always work (in terms of
known functions). Otherwise can actually use the definition of integration to get the
function: hard to work with - but not so bad with a computer!

36.2. First Order Linear

Homogeneous + Non-Homogeneous

Procedure to ‘guess’ solution to first order homogeneous:

• Differentiating results in multiplication by 𝑃 : a chain rule?
• Getting a ‘log’ to show up, and reducing to quadratrue.

Theorem 36.2 (First Order Linear Homogeneous).

Procedure to guess the solution here: getting product rule to show up and reducing
to quadrature. Doing the example of 𝑦 ′ + 𝑥𝑦 = 𝑄 first, where its already a product
rule.

Theorem 36.3 (First Order Linear).
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36. Differential Equations

Proof. Existence is a calculation. For uniqueness, assume two solutions and consider
their difference. This solves homogeneous equation and has initial condition 𝑦(𝑎) = 0.
But we know existence and uniqueness here implies the only such solution is the zero
function. Thus their difference is zero.

Exercise 36.1. Prove the existence portion of this theorem via a direct calculation.

36.3. Beyond

Beyond this its in general very difficult to solve differential equations exactly: tech-
niques come down to using algebra + calculus to put into this form. Maybe do a
reduction of order thing for 2nd order given one solution?

36.4. Applications

Find some cool applications to calculus!
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