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Preface

This is the beginnings of a textbook for a 1-year course on real analysis; the current
version covers a semester and a half of material. This can be used as a 1-semester
course by omitting some of the topics marked in the text as

« *: optional topic independent of the main text (referenced only in later starred
sections)

+ #: content used in main text, but only to prove some supporting or readily-
believed fact: these arguments can be skipped or skimmed with little ill effect.

« @: additional proof of a result which is proved by different (often cleaner)
means elsewhere

The sections ‘Elementary Functions’ present across the second half of the text are
self-contained and could be omitted from a course culminating with the Fundamental
Theorem of Calculus, but will be an integral part of the eventual year-long course.

If you enrolled in my Spring 2025 course the homework assignments are available
here.


https://analysis.hw.stevejtrettel.site/
https://analysis.hw.stevejtrettel.site/




Troubles with the Infinite

Real analysis is born out of our desire to understand infinite processes, and to over-
come the difficulties raised by taking infinity seriously in this way. To appreciate this,
we begin with an overview of some famous results from antiquity, as well as several
paradoxes that arise from taking them seriously, if we are not careful.

The Diagonal of a Square

Around 3700 years ago, a babylonian student was assigned a homework problem, and
their work (in clay) fortuitously survived until the modern day.

Figure 1.: Tablet YBC-7289

The problem involved measuring the length of the diagonal of a square of side
length 1/2, which involves the square root of 2. The tablet records a babylonian
approximation to v/2 (Though it does so in base 60, where the ‘decimal’ expression
is 1.(24)(51)(10))

V2 ~ 277+ 1414215686 --
408
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Definition 0.1 (Base Systems for Numerals). If b > 1 is a positive integer, base-b
refers to expressing a number in terms of powers of b. In base 10 we write 432 to
mean 4-10% +3- 10! + 2- 10°, whereas in base 5 the string of digits 432 would denote
4-5°+3-51+2.50,

Numbers between 0 and 1 can also be expressed in a base system, using negative
powers of the base. In base 10, 0.231 means 2 - 1071 +3-1072 + 11073, whereas in
base 5 the same string of digits would denote 2- 107! +3-572 +1.573,

The babylonians used base 60, meaning all numbers were written as a series in 60"
for n ranging over the integers. This tablet records the approximate square root of 2
as

1.(24)(51)(10)

Which, in base 60 denotes

V2~1-600+24-60"1+51-607%+10-6073

24 51 10
=1l+=—+ =+ —=
60 602 603
24 17 1
=14+= 4+ 4+ —
60 1200 21600
_ 577
408

Exercise 0.1. By inscribing a regular hexagon in a circle, the Babylonians approxi-
mated 7 to be 25/8. Compute the base 60 ‘decimal’ form of this number.

The tablet itself does not record how the babylonians came up with so accurate an ap-
proximation, but we have been able to reconstruct their reasoning in modern times

Example 0.1 (Babylonian Algorithm Computing +/2). Starting with a rectangle of
area 2, call one of its sides x. If the rectangle is a square, then x = J2 exactly. And
the closer our rectangle is to a square, the closer x is to ¥2. Thus, starting from
this rectangle, we can build an even better approximation by making it more square.
Precisely, the side lengths of this rectangle are x and 2/x, and a rectangle with one
side the average of these two numbers, will be closer to a square than this one.

Starting from a rectangle with side lengths 1 and 2, applying this procedure once im-
proves our estimate from 1 to 3/2, and then applying it again improves it to 577/408.
This Babylonian approximation is just the third element in an infinite sequence of
approximations to v/2
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Exercise 0.2 (Babylonian Algorithm Computing 2). Carry out this process, and
show you get 577/408 as the third approximation to /2. What’s the next term in the
sequence? How many decimal places is this accurate to in base 10? (Feel free to use
a calculator of course!)

Exercise 0.3 (Computing Cube Roots). Can you modify the babylonians procedure
which found approximates of v/2 to instead find rational approximates of J/2?

Here, instead of starting with a rectangle of sides x, y let’s start with a three dimen-
sional brick with a square base (sides x and x), height y, and area 2. Our goal is to find
a “closer to cube” shaped brick than this one, and then to iterate. Propose a method
of getting “closer to cube-shaped” and carry it out: what are the side lengths of the
next shape in terms of x and y?

Start with a simple rectangular prism of volume 2 and iterate this procedure a couple
times to get an approximate value of /2. How close is your approximation?

It is clear from other Babylonian writings that they knew this was merely an approx-

imation, but it took over a thousand years before we had more clarity on the nature
of /2 itself.

Pythagoras

We often remember the Pythagoreans for the theorem bearing their name. But while
they did prove this, the result (likely without proof) was known for millennia before
them. The truly new, and shocking contribution to mathematics was the discovery
that there must be numbers beyond the rationals, if we wish to do geometry.

Theorem 0.1 (V2 is irrational). There is no fraction p/q which squares to 2.

To give a proof of this fact we need one elementary result of number theory, known
as Euclid’s Lemma (which says that if a prime p divides a product ab, then p must
divide either a or b).

Proof. (Sketch) Assume p/q is in lowest terms, and squares to 2. Then p?/¢* = 2 so
p? = 2¢%. Thus 2 divides p?, so in fact 2 divides p (Euclid’s lemma), meaning p is
even.

Thus, we can write p = 2k for some other integer k, which gives (2k)? = 2¢?, or
4k? = 2¢*. Dividing out one factor of 2 yields 2k? = ¢?< so 2 divides ¢°, and thus
(Euclid’s lemma, again) 2 divides gq.

But now we’ve found that both p and g are divisible by 2, which means p/q is not
in lowest terms after all, a contradiction! Thus there can not have been any fraction
squaring to 2 in the first place. O
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Exercise 0.4. Following analogous logic, prove that +/3 is irrational. Generalize this
to prove that /6 is irrational. But be careful! Make sure that your proof doesn’t also
apply to /9 (which of course, IS rational).

Knowing now that v/2 is irrational, it is clear that the Babylonian procedure will never
exactly return the correct answer, as if it starts with a rationally-sided rectangle, it’ll
always produce another with rational side lengths. But its a natural question to won-
der just how good are the babylonian approximations?s

Definition 0.2 (The Babylonian Algorithm and Number Theory). Because /2 is irra-
tional, there is no pair of integers p, g with p? = 2¢%. Good rational approximations
to /2 will almost satisfy this equation, and we will call an approximation excellent if
it is only off by 1: that is p/q is an excellent approximation if

p2 = 2q2 +1
Exercise 0.5 (The Babylonian Algorithm and Number Theory). Prove that all ap-

proximations produced by the babylonian sequence starting from the rectangle with
sides 1 and 2 are excellent, by induction.

To acomodate this discovery, the Greeks had to add a new number to their number
system - in fact, after really absorbing the argument, they needed to add many. Things

like /3, but also
JHJ AR

are called constructible numbers, as they were constructed by the greeks using a com-
pass and straightedge, to extend the rational numbers.

Quadrature of the Parabola

The idea to compute some seemingly unreachable quantity by a succession of better
and better approximations may have begun in babylon, but truly blossomed in the
hands of Archimedes.

In his book The Quadrature of the Parabola, Archimedes relates the area of a parabolic
segment to the area of the largest triangle that can be inscribed within.

Theorem 0.2. The area of the segment bounded by a parabola and a chord is 4/3™s
the area of the largest inscribed triangle.
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Figure 2.: A parabolic region and its largest inscribed triangle

After first describing how to find the largest inscribed triangle (using a calculation
of the tangent lines to a parabola), Archimedes notes that this triangle divides the
remaining region into two more parabolic regions. And, he could fill these with their
largest triangles as well!

These two triangles then divide the remaining region of the parabola into four new
parabolic regions, each of which has their own largest triangle, and so on.

Je4qq

Figure 3.: Archimedes’ infinite construction of the parabolic segment from triangles

Archimedes proves that in the limit, after doing this infinitely many times, the tri-
angles completely fill the parabolic segment, with zero area left over. Thus, the only
task remaining is to add up the area of these infinitely many triangles. And here, he
discoveries an interesting pattern.

We will call the first triangle in the construction stage 0 of the process. Then the two
triangles we make next comprise stage 1, the ensuing four triangles stage 2, and the
next eight stage 3.

Proposition 0.1 (Area of the nth stage). The total area of the triangles in each stage is
1/4 the total area of triangles in the previous stage.
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If A, is the area in the nth stage, Archimedes is saying that A, ; = }}An. Thus

1 1 1
Ag=T Ay =-T Ay=—T As=—T..
0 74" 27 160 P e

And the total area A is the infinite sum

A=T+iry try Loy
4" 16 64

:(1+1+i+i+...)’]"
4 16 64

Now Archimedes only has to sum this series. For us moderns this is no trouble: we
recognize this immediately as a geometric series

But why is it called geometric? Well (this is not the only reason, but...) Archimedes
was the first human to sum such a series, and he did so completely geometrically.
Ignoring the leading 1, we can interpret all the fractions as proportions of the area
of a square. The first term 1/4 tells us to take a quarter of the square, the next term
says to take a quarter of a quarter more, and so on. Repeating this process infinitely,
Archimedes ends up with the following figure, where the highlighted squares on the
diagonal represent the completed infinite sum.

Figure 4.: The infinite process: 1/4 +1/16 4+ 1/64 + -

He then notes that this is precisely one third the area of the bounding square, as two
more identical copies of this sequence of squares fill it entirely (just slide our squares
to the left, or down). Thus, this infinite sum is precisely 1/3, and so the total area is
1 plus this, or 4/3.

This tells us an important fact, beyond just the area of the parabola we sought! We
were looking to compute the area of a curved shape, and the procedure we found could
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never give us the answer exactly, but only an infinite sequence of better approxima-
tions. Being acquainted with the work of Pythagoras and the Babylonians, this might
have well led us to conjecture that the area of the parabola must be irrationally related
to the area of the triangle. But Archimedes showed this is not the case; our infinite
sum here evaluates to a rational number, 4/3!

Infinite sequences of rational numbers can sometimes produce a wholly new
number, and sometimes just converge to another rational.”

How can we tell? This is one motivating reason to develop a rigorous study of such
objects. But it gets even more important, if we try to generalize Archimedes’ argu-
ment.

Troubles with Geometric Series

Archimedes’ quadrature of the parabola represents a monumental leap forward in
human history. This is the first time in the mathematical literature where infinity is
not treated as some distant ideal, but rather a real place that can be reached. And the
argument itself is an absolute classic - involving the first occurrence of an infinite
series in mathematics, and a wonderfully geometric summation method (hence the
name geometric series, which survives until today). The elegance of Archimedes’ cal-
culation is almost dangerous - its easy to be blinded by its apparent simplicity, and —
like Icarus — fly too close to the sun, falling from these heights of logic directly into
contradiction.

Archimedes visualized his argument for the sum ), 4% as though it was occurring
inside of a larger square, but there’s another perspective we could take. Call the total
sum S,
1 1 1
S=1+>+—+ =+
4 42 4

and note that multiplying S by 1/4 is the same as removing the first term, as it shifts
all the terms down by one space:

1 1 1 1
2 42+43+44+ =5-1
Thus, iS = S — 1, and we can solve this algebraic equation directly to find S = 4/3.
The beauty of this argument is that unlike Archimedes’ original, its not tied to the
number 1/4 at all! Imagine we took some number r, and we wanted to add up the
infinite sum

T+r+r2+r +rf 4 8+ + 4

Call that sum S, and notice that we have the same property, multiplying the sum by
r shifts every term down by one, so we get the same result as if we just removed the
first term:
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r$=5-1
We can then solve this for S and get

1
1-r

This gives us what we expect when r = 1/4, and trying it for other fractions, like
r=1/5orr = 23/879, we can confirm (with the help of a computer) that the infinite
sum really does approach the value this formula gives!

Amazingly, it even works for negative numbers, after we think about what this means.

Ifr= _71 then

1
16

1+r+rP+r +ri+rP+=1- >+

+

N | =
=
® |~

Using our formula above we see that this is supposed to converge to

1 1

S:———:

NENT

2
3

oW =

And, using a computer to add up the first 100 terms we see

S = 0.66666666666666666666666666666692962030174033726847057618

This is pretty incredible, as our original geometric reasoning doesn’t make sense for
r = —1/2, but the algebra works just fine! We may also wish to investigate what
happens when r = 1, which would give

S=1+1+1+1+1+1+--

This is going off to infinity, and our formula gives S = 1/(1 — 1) = 1/0, which could
make sense: we could even take this as an indication that we should define 1/0 = co.
But things get more interesting with r = —1. Here the sum is

S=1-1+41-1+1-141—-1+1—-1+1—-
As we add this up term by term, we first have 1, then 0, then 1 then 0, over and over

agan as we repeatedly add a 1, and then immediately cancel it out. This isn’t getting
close to any number at all! But our formula gives

1 1
§—— - =
1-(-1) 2

10



The Circle Constant

Now we have a real question - did we just discover a new, deep fact of mathemat-
ics - that we can sensibly assign values to series like this, that we weren’t originally
concerned with, or did we discover a limitation of our theorem? This is an inter-
esting, and important question to come out of our playing around!

Thus far, we haven’t seen any cases where our theorem has output any ‘obviously’
wrong answers, so we may be inclined to trust it. But this does not hold up to further
scrutiny: what about when r = 2? Here the sum is

142+4+8+16+32+

which is clearly going to infinity. But our formula disagrees, as it would have you
belive the sum is S = 1/(1 — 2) = —1. This raises the more general problem: when
working with infinity, sometimes a formula you derive works, and some-
times it doesn’t. How can you tell when to trust it?

Exercise 0.6. Explain what goes wrong with the argument when r = 2...

The Circle Constant

The curved shape that everyone was really interested in was not the parabola, but the
circle. Archimedes tackles this in his paper The Measurement of the Circle, where he
again constructs a finite sequence of approximations built from triangles, and then
reasons about the circle out at infinity. First, we need a definition:

Definition 0.3 (r and 7). The area of the unit circle is denoted by the constant 7.
The circumference of the unit circle is denoted by the constant 7.

Archimedes came up with a sequence of overestimates, and underestimates for x by
inscribing and circumscribing regular polygons.

Figure 5.: Circumscribed polygons provide an overestimate of the area of the circle.

11
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800

Figure 6.: Inscribed polygons provide an underestimate of the area of the circle.

Any polygon inside the unit circle gave an underestimate, and any polygon outside
gave an overestimate. The more sides the polygon had, the better the approximations
would be.

Calculating the area and perimeter of regular n-gons is (theoretically) straightforward,
as they can be decomposed into 2n right triangles. Drawing a diagram, we find the
relations below;

Figure 7.: Decomposing a circumscribed polygon into right triangles.

Proposition 0.2 (Area of a Circumscribed Polygon). The area of a regular n-gon cir-
cumscribing the unit circle is given by

Cn:2n-<l~1-tan@)
2 n

180
=ntan —
n

Proposition 0.3 (Perimeter of a Circumscribed Polygon). The perimeter of a regular
n-gon circumscribing the unit circle is given by

1
Pn:Zn-tanﬁ
n

12
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: sin 2>
% n
180
COS -~

Figure 8.: Decomposing an inscribed polygon into right triangles.

Proposition 0.4 (Area of a Inscribed Polygon). The area of a regular n-gon inscribed
in the unit circle is given by

(1 180 . 180)
a, =2n-|{=-cos — - sin —
2 n n
n . 360
= —sin —
2
Where we used the trigonometric identity sin(2x) = 2sinxcosx to simplify a,

above.

Proposition 0.5 (Perimeter of a Inscribed Polygon). The perimeter of a regular n-gon
inscribed in the unit circle is given by

. 180
Pp = 2n-sin —
n

Using these, Archimedes calculated away all the way to the 96-gon, which provided
him with the estimates

23 2

<<
71 7

This was the best estimate of 7 calculated during the classical period of the Greeks,
but the same method was applied by Chinese mathematician Zu Chongzi in the 400s
CE to much much larger polygons.

Working with the 24, 576-gon, he found

The lower bound here, 355/113 is the best possible rational approximation of
m with denominator less than four digits, and equals 3.14159292---, whereas
m = 3.14159265---. This was the most accurate approximate to x calculated any-
where in the world for over 800 years, and was only surpassed in the late 1300s by
Indian mathematician Madhava, about whom we’ll learn more soon.

13
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Remark 0.1. The next best rational approximation is 22163 "\ hich is a significantly

16604
more complicated looking fraction!

Proving 7 = 27

While impressive, Archimedes’ main goal was not the approximate calculation above,
but rather an exact theorem. He wanted to understand the true relationship between
the area and perimeter of the circle, and wished to use these approximations as a
guide to what is happening with the real circle, “out at infinity”.

To understand this case, Archimedes argues that as n goes to infinity, the sequences
of inscribed and circumscribed polygons approach the circle, and so in the limit, the
sequences of areas must tend to the area of the circle () and the sequences of perime-
ters must tend to the perimeter of the circle (7).

But, now look carefully at the form of the expressions we derived for the circumscrib-
ing polygons in Proposition 0.2 and Proposition 0.3:

An:n-tan@ Pn:2n-tan@
n n

Here, we do not need to worry about explicitly calculating A, or P,; all we need to
notice is that the perimeter is exactly twice the area, P, = 2A,,! This makes sense:

« Each polygon is built out of n triangles.

« The area of a triangle is half its base times its height

« The height of each triangle is 1 (the radius of the circle)

« Thus, the area the sum of half all the bases, or half the perimeter!

But since this exact relationship holds for every single value of n, Archimedes argued
it must also be true in the limit, so the perimeter is twice the area:

Theorem 0.3 (Archimedes).

Troubles With Limits

Archimedes again leaves us with an argument so elegant and deceptively simple that
its easy to under-appreciate its subtlety and immediately fall prey to contradiction.
What if we attempt to repeat Archimedes argument, but with a different sequence of
polygons approaching the circle?

14



The Circle Constant

Remark 0.2. To be fair to the master, Archimedes is much, much more careful in his
paper than I was above, so part of the apparent simplicity is a consequence of my
omission.

For example, what if we start with a square circumscribing the circle, and then at
each stage produce a new polygon with the following rule:

« At each corner of the polygon, find the largest square that fits within the poly-
gon, and remains outside the circle. Then remove this square.

D ﬁ 'h“
L A

Figure 9.: Iteratively removing the largest square outside the circle at each vertex pro-
duces a sequence of right angled polygons which converges to the circle.

Exactly like in Archimedes’ example this sequence of polygons approaches the circle
as we repeat over and over. In fact, in the limit - this sequence literally becomes the
circle (meaning that after infinitely many steps, there are no points of the resulting
shape remaining outside the circle at all). Thus, just as for our original sequence of
polygons, we expect that the areas and perimeters of these shapes approach the areas
and perimeters of the circle itself. That is,

While the behavior of A, takes a bit of work to understand, this sequence of polygons
is constructed to make analyzing the perimeters particularly nice. Look what happens
at each stage near a dent: two edges are turned inward to the circle, but do not change
in length.

15



Troubles with the Infinite

Figure 10.: Removing a square at a vertex does not change the perimeter of the poly-
gon, as it replaces two segments with two other segments of the same
length.

Since adding a dent does not change the length of the perimeter, each polygon in our
sequence has exactly the same perimeter as the original! The original perimeter is
easy to calculate, each side of the square is a diameter of the unit circle, so its total
perimeter is 8. But since this both does not change and converges in the limit to the
circles circumference, we have just derived the amazing fact that

T=28

This is inconsistent with what we learn from Archimedes’ argument which shows
that 7 < 22/7 and 7 = 27, so 7 < 44/7 = 6.2857.... It appears that we have applied
the same argument twice, and found a contradiction in comparing the results!

Exercise 0.7 (Convergence to the Diagonal). We can run an argument analogous
to the above which proves that +/2 = 2, by looking at a sequence of polygons that
converge to a right triangle with legs of length 1. Let T, denote the unit square, and
T,

Prove that as n goes to infinity the area of the polygons T,, do converge to the area of
the triangle (Hint: can you write down a formula for the total error between T,, and
the triangle?) Also, prove that the length of the zig-zag diagonal side of the T,, has
length 2 always, independent of n. Thus, the limit of the zigzag, which becomes the
hypotenuse of the triangle, has length 2!

But the pythagorean theorem tells us that its length must be v/ 12 + 12 = /2, so in fact
we have proven J2 =2, or 2 = 4, a contradiction in mathematics.

Its quite difficult to pinpoint exactly what goes wrong here, and thus this presents
a particularly strong argument for why we need analysis: without a rigorous un-
derstanding of infinite processes and limits, we can never be sure if our seemingly
reasonable calculations give the right answers, or lies!

16



The Circle Constant
Estimating =

With our modern access to calculator technology, the trigonometric formulas above
essentially solves the problem: for example, plug in n = 96 to a calculator (set to
degrees!) to replicate the work of Archimedes in one click.

But this poses a historical problem: of course the ancients did not have a calculator, so
how did they compute such accurate approximations millennia ago? And there’s also
a potential logical problem lurking in the background: inside our calculator there is
some algorithm computing the trigonometric functions, and perhaps that algorithm
depends on already knowing something about the value of 7. If so, using this calcu-
lator to give a from-first-principles estimate of 7 would be circular!

To compute their estimates, both Archimedes and Zu Chongzi landed on an idea sim-
ilar to the Babylonians and their computation of v/2: they found an iterative procedure
that starts with one polygon, and doubles its number of sides. With such a procedure
in hand, they could start with any polygon and rapidly scale it up to better and bet-
ter estimates. Beginning with an hexagon, Archimedes only needed to double four
times:

6 —> 12 = 24 — 48 — 96

Exercise 0.8 (The Doublings of Zu Chongzi). How many times did Zu Chongzi dou-
ble the sides of a hexagon to reach the 24,576 gon?

Following Archimedes, we’ll look at the doubling procedure for the perimeter of
inscribed polygons: given p, we seek a method to compute p,,. By the formula
in Proposition 0.4, it is enough to be able to compute sin(360/(2n)) in terms of
sin(360/n), that is, we need to be able to compute the sine of half the angle. The
half-angle identities from trigonometry prove helpful here:

Definition 0.4 (Half Angle Identities).

(9) /1+c050 . (9) fl—cosﬁ
CoS|— ) = _— sin|—) = —_
2 2 2 2
tan(g)— /1—c059 _sinf  1-—cosf
2/ \N1+4cos® 1—cosf  sinf

Also making use of the pythagorean identity sin 0 + cos? @ = 1, we can compute as
follows:

17



Troubles with the Infinite

Lets write s, = sin(180/n) for brevity. Then, the above formula tells us how to com-
pute sy, if we know s,

1—41-s2

2

S2n

This sort of relationship is called a recurrence relation, or a recursively defined sequence
as it tells us how to compute the next term in the sequence if we have the previous
one. Notice there are no more trigonometric formulas in the recurrence - so if we can
find the value s, for any polygon, we can start with that, and iteratively double.

Example 0.2 (A Recurrence for p,). By Proposition 0.5, we see that p, = 2ns,. Thus
DPon = 2(2n)sy, = 4sy,, and using the recurrence for sy, we see

Don = 4nsyy

1-41-5s2

;

=2n\2 — 24/1 — 52
= 2m\|2 — /4 — 4s?

But, since s, = p,/(2n), substituting this in gives a relation between p,, and p, di-
rectly:

Pan 4—4s

n

Il
&)
S
S

|

|

[\ ]

%]

=2m|2— 4—(

SN———
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The Circle Constant

The incredible fact: even though we used trigonometry to derive this recurrence, we
do not need to know how to evaluate any trigonometric functions to actually use it!
All we need to be able to do is find the perimeter of some inscribed n-gon, and then
we can repeatedly double over and over!

But how can we get started? A beautiful observation of Archimedes was that a regular
hexagon inscribed in the circle has perimeter exactly equal to 6, as it can be decom-
posed into six equilateral triangles, whose side length is the circle’s radius. And with
that, we are off!

Example 0.3 (The Perimeter of an Inscribed 96-gon). Since ps = 6, we begin with a
doubling to find py, :

Using this, we know % =+/2 — /3, and we can double again:

p24:24\/ - J4-(2-+3)
=24\2 -2 +3

Now doubling to the 48 gon,

Pag :48\/2—\/4—(2—\/2+\/§)
=48\/2—\/2+\/2+\E

One more doubling brings us to the 96-gon,

Pog = 96\/2 —\2+V2+V2+43

Numerically approximating this gives 6.282063901781019276222, which is more rec-
ognizable to us if we compute the half perimeter:

% ~ 3.141031950890 ...

19



Troubles with the Infinite

Exercise 0.9. Find a recurrence relation for the area a,, of the inscribed polygon, in
terms of the area a, of a polygon with half as many sides.

Exercise 0.10. Let t, = tan(180/n). Show that ¢, satisfies the recurrence relation

1 1
bn= |1+ ——
2n t,% tn

Hint: you’ll need some trig identities to write everything in terms of tangent! Use this
to find a recurrence relation for P,. Can you use this to find the circumference of an
octagon circumscribing the unit circle?

After all of this are still left with a fundamental question: what sort of number is
7? Archimedes’ calculation out at infinity showed the area and circumference of a
circle were related, but did not give us an exact value for either. These approximate
calculations lead to some pretty scary looking numbers, but we know better than
to trust that: we’ve already seen an infinite series of archimedes that summed to a
nice rational number, and soon we will meet a nested sequence of square roots that
collapses to a single root at infinity:

T+V1+V1+ = 1+2f5

Convergence, Concern and Contradiction

Madhava, Leibniz & /4

Madhava was a Indian mathematician who discovered many infinite expressions for
trigonometric functions in the 1300’s, results which today are known as Taylor Series
after Brook Taylor, who worked with them in 1715. In a particularly important exam-
ple, Madhava found a formula to calculate the arc length along a circle, in terms of
the tangent: or phrased more geometrically, the arc of a circle contained in a triangle
with base of length 1.

The first term is the product of the given sine and radius of the desired
arc divided by the cosine of the arc. The succeeding terms are obtained
by a process of iteration when the first term is repeatedly multiplied by
the square of the sine and divided by the square of the cosine. All the
terms are then divided by the odd numbers 1, 3, 5, .... The arc is obtained
by adding and subtracting respectively the terms of odd rank and those
of even rank.
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Convergence, Concern and Contradiction

As an equation, this gives

sinf 1sin’0 [sinf 1sin® 0 [ sin® 6 sin6
0= < ) +

cosf 3 cosf \cosd 5 cos? 0 \ cos? 0 cos

tan®0 tan®0 tan’0 tan’0
+ — + — e
3 5 7 9

=tanf —

If we take the arclength /4 (the diagonal of a square), then both the base and height
of our triangle are equal to 1, and this series becomes

1
4.
7

To1-24
4

W=
(SN

This result was also derived by Leibniz (one of the founders of modern calcuous),
using a method close to something you might see in Calculus II these days. It goes as
follows: we know (say from the last chapter) the sum of the geometric series

Sre ik

n=>0

Thus, substituting in r = —x? gives

Z(_l)nXZn — lxz

n>0 1+

and the right hand side of this is the derivative of arctangent! So, anti-differentiating
both sides of the equation yields

arctan x = J- Z(—l)”xzn dx

n>0

= J(—l)”xzn dx

Finaly, we take this result and plug in x = 1: since arctan(1) = /4 this gives what
we wanted:

This argument is completely full of steps that should make us worried:
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Troubles with the Infinite

« Why can we substitute a variable into an infinite expression and ensure
it remains valid?

« Why is the derivative of arctan a rational function?

« Why can we integrate an infinite expression?

« Why can we switch the order of taking an infinte sum, and integration?

« How do we know which values of x the resulting equation is valid for?

But beyond all of this, we should be even more worried if we try to plot the graphs of
the partial sums of this supposed formula for the arctangent.

The infinite series we derived seems to match the arctangent exactly for a while, and
then abruptly stop, and shoot off to infinity. Where does it stop? *Right at the point
we are interested in, 6 = /4, so tan(f) = 1. So, even a study of which intervals a
series converges in will not be enough here, we need a theory that is so precise, it can
even tell us exactly what happens at the single point forming the boundary between
order and chaos.

And perhaps, before thinking the eventual answer might simply say the series always
converges at the endpoints, it turns out at the other endpoint x = —1, this series itself
diverges! So whatever theory we build will have to account for such messy cases.
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Convergence, Concern and Contradiction

Dirichlet & log 2

In 1827, Dirichlet was studying the sums of infinitely many terms, thinking about the
alternating harmonic series

Like the previous example, this series naturally emerges from manipulations in cal-
culus: beginning once more with the geometric series )50 1" = i We substitute
r = —x to get a series for 1/(1 + x) and then integrate term by term to produce a
series for the logarithm:

log(1 +x) = J N j_xdx = J Z(—l)"x"

n>0

n+1 2 .3 4
ZZ(_l)nx_:x_x__i_x__x__i_“_
& n+1 2 3 4

Finally, plugging in x = 1 yields the sum of interest. It turns out not to be difficult
to prove that this series does indeed approach a finite value after the addition of
infinitely many terms, and a quick check adding up the first thousand terms gives an
approximate value of 0.6926474305598, which is very close to log(2) as expected..

log(z)z1_1+1_1+1_1+1_1+1_i...
2 3 4 5 6 7 8 9 10
What happens if we multiply both sides of this equation by 2?
zlog(z):2_1+g_l+g_l+§_l+§_l
3 2 5 3 7 4 9 5

We can simplify this expression a bit, by re-ordering the terms to combine similar
ones:

1,(2 1\ _ 1 (2 1
2lo 2:2—1——+(——J——+<——J—m
B =C-D-5+373)717 53
1,1 1.1
=l--+---4Z-
2 3 4 5

After simplifying, we’ve returned to exactly the same series we started with! That
is, we’ve shown 21og(2) = log(2), and dividing by log(2) (which is nonzero!) we see
that 2 = 1, a contradiction!
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Troubles with the Infinite

What does this tell us? Well, the only difference between the two equations is the order
in which we add the terms. And, we get different results! This reveals perhaps the most
shocking discovery of all, in our time spent doing dubious computations: infinite
addition is not always commutative, even though finite addition always is.

Here’s an even more dubious-looking example where we can prove that 0 = log 2.
First, consider the infinite sum of zeroes:

0=0+0+0+0+0+--

Now, rewrite each of the zeroes as x — x for some specially chosen xs:

o-t-m (332 -

Now, do some re-arranging to this:

1 1 1 1 1 1 1
1+ —1)+(c+==2)+(=+>-=)+
2 3 4 2 5 6 3
Make sure to convince yourselves that all the same terms appear here after the rear-

rangement!

Simplifying this a bit shows a pattern:

(=2 G-eG-H

Which, after removing the parentheses, is the familiar series Y,
equals log(2) (or, was it 2log 2?) So, if we are to believe that arithmetic with infinite
sums is valid, we reach the contradiction

%. But this series

0=log2

Infinite Expressions in Trigonometry

The sine function (along with the other trigonometric, exponential, and logarithmic
functions) differs from the common functions of early mathematics (polynomials, ra-
tional functions and roots) in that it is defined not by a formula but geometrically.

Such a definition is difficult to work with if one actually wishes to compute: for exam-
ple, Archimedes after much trouble managed to calculate the exact value of sin(sr/96)
using a recursive doubling procedure, but he would have failed to calculate sin(sr/97)
- 97 is not a multiple of a power of 2, so his procedure wouldn’t apply! The search
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Infinite Expressions in Trigonometry

for a general formula that you could plug numbers into and compute their sine, was
foundational to the arithmetization of geometry.

One big question about this procedure is why in the world should this work? We
found a function that sin(x) satisfies, and then we plugged something else into that
function and started iterating: what justification do we have that this should start to
approach the sine? We can check after the fact that it (seems to have) worked, but
this leaves us far from any understanding of what is actually going on. —>

Infinite Product of Euler

One famous infinite expression for the sine function arose from thinking about the
behavior of polynomials, and the relation of their formulas to their roots. As an
example consider a quartic polynomial p(x) with roots at x = a,b,c,d. Then we can
recover p up to a constant multiple as a product of linear factors with roots at a, b, ¢, d.
If the y—intercept is p(0) = k, we can give a fully explicit description

=k =0)(-3)0-0)03)

In 17334, Euler attempted to apply this same reasoning in the infinite case to the
trigonometric function sin(x). This has roots at every integer multiple of , and so
following the finite logic, should factor as a product of linear factors, one for each root.
There’s a slight technical problem in directly applying the above argument, namely
that sin(x) has a root at x = 0, so k = 0. One work-around is to consider the function
%. This is not actually defined at x = 0, but one can prove lim,_, % =1, and
attempt touse k =1

GRAPH

Its roots agree with that of sin(x) except there is no longer one at x = 0. That is, the
roots are ..., =3, =2z, —7, 7, 27, 37, ..., and the resulting factorization is

2 ()1 220D )05

Euler noticed all the factors come in pairs, each of which represented a difference of
squares.

(1-2) (v 5) - (1- )

Not worrying about the fact that infinite multiplication may not be commutative (a
worry we came to appreciate with Dirichlet, but this was after Euler’s time!), we may
re-group this product pairing off terms like this, to yield
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Troubles with the Infinite

: 2 2 2
sinx _ 1_x_)(1_x_)<1_x_
x 2 2252 32572

Finally, we may multiply back through by x and get an infinite product expression
for the sine function:

Proposition 0.6 (Euler).
2 2 2
. x x x
sinx=x(1-—|{1-—|1——]"
( ”2) ( 4712) ( 9712)

This incredible identity is actually correct: there’s only one problem - the argument
itself is wrong!

Exercise 0.11. In his argument, Euler crucially uses that if we know

« all the zeroes of a function
« the value of that functionis 1 at x =0

then we can factor the function as an infinite polynomial in terms of its zeroes. This
implies that a function is completely determined by its value at x = 0 and its zeroes
(because after all, once you know that information you can just write down a formula
like Euler did!) This is absolutely true for all finite polynomials, but it fails spectacu-
larly in general.

Show that this is a serious flaw in Euler’s reasoning by finding a different function
that has all the same zeroes as sin(x)/x and is equal to 1 at zero (in the limit)!

Exercise 0.12 (The Wallis Product for 7). In 1656 John Wallis derived a remarkably
beautiful formula for 7 (though his argumnet was not very rigorous).

T 2244668810101212

2 133557799 111113

Using Euler’s infinite product for sin(x) evaluated at x = /2, give a derivation of
Wallis® formula.
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Infinite Expressions in Trigonometry

The Basel Problem
The Italian mathematician Pietro Mengoli proposed the following problem in 1650:
Definition 0.5 (The Basel Problem). Find the exact value of the infinite sum

22 32 42 52

By directly computing the first several terms of this sum one can get an estimate of

the value, for instance adding up the first 1,000 terms we find 1+ ziz IS S S

32 71,0002
1.6439345 ..., and ading the first million terms gives
1 1
1+ =+ =+ + = 1.64492406 ...
22 32 1,000? 1,000, 0002

so we might feel rather confident that the final answer is somewhat close to 1.64. But
the interesting math problem isn’t to approximate the answer, but rather to figure
out something exact, and knowing the first few decimals here isn’t of much help.

This problem was attempted by famous mathematicians across Europe over the next
80 years, but all failed. All until a relatively unknown 28 year old Swiss mathematician
named Leonhard Euler published a solution in 1734, and immediately shot to fame.
(In fact, this problem is named the Basel problem after Euler’s hometown.)

Proposition 0.7 (Euler).

Zi:ﬁ
n>1 n? 6

Euler’s solution begins with two different expressions for the function sin(x)/x,
which he gets from the sine’s series expansion, and his own work on the infinite
product:

sin x X Xt X0 KB 10

x 3! 5! 7! 9!
2 2 2
R A Y PR Sl T P S
2 2272 3272

Because two polynomials are the same if and only if the coefficients of all their terms
are equal, Euler attempts to generalize this to infinite expressions, and equate the
coefficients for sin. The constant coefficient is easy - we can read it off as 1 from both
the series and the product, but the quadratic term already holds a deep and surprising
truth.
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Troubles with the Infinite

From the series, we can again simply read off the coefficient as —1/3!. But from the
product, we need to think - after multiplying everything out, what sort of products
will lead to a term with x2? Since each factor is already quadratic this is more straight-
forward than it sounds at first - the only way to get a quadratic term is to take one of

the quadratic terms already present in a factor, and multiply it by 1 from another fac-

x* x* x*

tor! Thus, the quadratic terms are —— — 7= — 5= — - Setting the two coeflicients
2°r 3 4°7
equal (and dividing out the negative from each side) yields

11 1 1

30 g2 22p2 3252

Which quickly leads to a solution to the original problem, after multiplying by 7%:

Euler had done it! There are of course many dubious steps taken along the way in
this argument, but calculating the numerical value,

”2

BTl = 1.64493406685 ...

We find it to be exactly the number the series is heading towards. This gave Euler the
confidence to publish, and the rest is history.

But we analysis students should be looking for potential troubles in this argument.
What are some that you see?

Viete’s Infinite Trigonometric ldentity

Viete was a French mathematician in the mid 1500s, who wrote down for the first
time in Europe, an exact expression for 7 in 1596.

Proposition 0.8 (Viéte’s formula for 7).

22+ 2242442 2+\/2+\/2+\/§m
2

2
T2 2 2
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Infinite Expressions in Trigonometry
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Figure 11.: Viete’s original publicaiton of this formula - it predates our modern nota-
tion for square roots!

How could one derive such an incredible looking expression? One approach uses
trigonometric identities...an infinite number of times! Start with the familiar function
sin(x). Then we may apply the double angle identity to rewrite this as

sin(x) = 25in(§) cos (g)

Now we may apply the double angle identity once again to the term sin(x/2) to get

sin(x) = 2sin (g) cos (%)

— tsin () os () cos (£)

and again

sin(x) = 8sin<§) cos (%) cos (%)cos (%)

and again
sin(x) = 16 sin (£> cos (i) cos <£> cos (E) cos (£>
16 16 8 4 2
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Troubles with the Infinite

And so on....after the n" stage of this process one can re-arrange the the above into
the following (completely legitimate) identity:

sin x x x X x x
———— = C0S = COS — COS = COS — *+- COS —
2n sin o 2 4 8 16 2n

Viete realized that as n gets really large, the function 2" sin(x/2") starts to look a lot
like the function x...and making this replacement in the formula as we let n go to
infinity yields

Proposition 0.9 (Viete’s Trigonometric Identity).

sin x x x x x
= COS = COS — COS — COS — +**
X 2 4 8 16

An incredible, infinite trigonometric identity! Of course, there’s a huge question
about its derivation: are we absolutely sure we are justified in making the denom-
inator there equal to x? But carrying on without fear, we may attempt to plug in
x = /2 to both sides, yielding

2 T /4 T T
— = COS — COS — COS — COS — +++
T 4 8 16 32

Now, we are left just to simplify the right hand side into something computable, using

more trigonometric identities! We know cos 7/4 is g, and we can evaluate the other
terms iteratively using the half angle identity:

T V2
COSEZ 1+COSZ: 1+?: /24_\/5
8 2 2 2

N 2+v2
x /1+cos% 1+%F 2 +2+42
B 2 B 2 Bl 2

cos —
16

Substituting these all in gives the original product. And, while this derivation
has a rather dubious step in it, the end result seems to be correct! Computing
the first ten terms of this product on a computer yields 0.63662077105 ..., wheras
2/m = 0.636619772. In fact, Viete used his own formula to compute an approximation
of 7 to nine correct decimal digits. This leaves the obvious question, Why does this
argument work?
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The Infinitesimal Calculus

The Infinitesimal Calculus

In trying to formalize many of the above arguments, mathematicians needed to put
the calculus steps on a firm footing. And this comes with a whole collection of its
own issues. Arguments trying to explain in clear terms what a derivative or integral
was really supposed to be often led to nonsensical steps, that cast doubt on the entire
procedure. Indeed, the history of calculus is itself so full of confusion that it alone
is often taken as the motivation to develop a rigorous study of analysis. Because we
have already seen so many other troubles that come from the infinite, we will content
ourselves with just one example here: what is a derivative?

The derivative is meant to measure the slope of the tangent line to a function. In
words, this is not hard to describe. But like the sine function, this does not provide
a means of computing, and we are looking for a formula. Approximate formulas are
not hard to create: if f(x) is our function, and & is some small number the quantity

G+ h)— f(x)
h

represents the slope of the secant line to f between x and h. For any finite size
in h this is only an approximation, and so thinking of this like Archimedes did his
polygons and the circle, we may decide to write down a sequence of ever better ap-
proximations:

Fle+2) = f@)

1
n

D, =

and then define the derivative as the infiniteth term in this sequence. But this is just
incoherent, taken at face value. If 1/n — 0 as n — oo this would lead us to

Jx+0)-f(x) o0
0 0

So, something else must be going on. One way out of this would be if our sequence
of approximates did not actually converge to zero - maybe there were infinitely small
nonzero numbers out there waiting to be discovered. Such hypothetical numbers
were called infinitesimals.

Definition 0.6 (Infinitesimal). A positive number € is infinitesimal if it is smaller
than 1/n for alln € IN.
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Troubles with the Infinite

This would resolve the problem as follows: if dx is some infinitesimal number, we
could define the derivative as

o [+ — )
dx

But this leads to its own set of difficulties: its easy to see that if € is an infinitesimal,
then so is 2¢, or ke for any rational number k.

Exercise 0.13. Prove this: if € is infinitesimal and k € Q show ke is infinitesimal$.

So we can’t just say define the derivative by saying “choose some infinitesimal dx”
- there are many such infinitesimals and we should be worried about which one we
pick! What actually happens if we try this calculation in practice, showcases this.

Let’s attempt to differentiate x2, using some infinitesimal dx. We get

(x2)' _ (x+ dx)z —x? _ x2 + 2xdx + dx? — x2
dx dx

_ 2xdx + dx?
dx

=2x +dx

Here we see the derivative is not what we expected, but rather is 2x plus an infinites-
imal! How do we get rid of this? One approach (used very often in the foundational
works of calculus) is simply to discard any infinitesimal that remains at the end of a
computation. So here, because 2x is finite in size and dx is infinitesimal, we would
just discard the dx and get (x?)’ = 2x as desired.

But this is not very sensible: when exactly are we allowed to do this? If we can
discard an infinitesimal whenever its added to a finite number, shouldn’t we already
have done so with the (x + dx) that showed up in the numerator? This would have
led to

(x+dx)? —x*  x?—x? _0

dx dx dx

So, the when we throw away the infinitesimal matters deeply to the answer we get!
This does not seem right. How can we fix this? One approach that was suggested
was to say that we cannot throw away infinitesimals, but that the square of an in-
finitesimal is so small that it is precisely zero: that way, we keep every infinitesimal
but discard any higher powers. A number satisfying this property was called nilpo-
tent as nil was another word for zero, and potency was an old term for powers (x?
would be the *second potency of x).

Definition 0.7. A number € is nilpotent if € # 0 but €* = 0.
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The Infinitesimal Calculus

If our infinitesimals were nilpotent, that would solve the problem we ran into above.
Now, the calculation for the derivative of x? would proceed as

(x+dx)* —x*  x%+ 2xdx +dx® — x% 2xdx +0 _

2
dx = dx x

But, in trying to justify just this one calculation we’'ve had to invent two new types
of numbers that had never occurred previously in math: we need positive numbers
smaller than any rational, and we also need them (or at least some of those numbers)
to square to precisely zero. Do such numbers exist?
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Part 1.

Numbers






In Chapter 1 we begin axiomatizing the real numbers by axiomatizing their
operations of addition and multiplication, leading to the field axioms.

In Chapter 2 we define the notion of inequality in terms of the notion of posi-
tivity which we axiomatize, leading to the definition of an ordered field.

In Chapter 3 we look to formalize the notion of limit used by the babylonians
and archimedes, and end up with the Nested Interval Property. This leads us to
introduce new concepts (infima and suprema) and a new axiom: completeness.
In Chapter 4 we define the real numbers as the (unique) complete, ordered field
and study its properties.

In ?@sec-numbers-functions we look at the modern defintion of real valued
functions, and some of the monstrous objects this allows.
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1. Operations

Highlights of this Chapter: We begin axiomatizing the real numbers
by axiomatizing their operations of addition and multiplication, leading
to the field axioms. We give careful definitions of various notations from
arithmetic, and do several example calculations (including a proof that
2+2 =4and (a+b)? = a® + 2ab + b?) to exhibit that all arithmetical facts
are consequences of the field axioms.

The first step to axiomatizing numbers is to give a precise description of addition,
subtraction, multiplication and division. These operations naturally group into two
pairs (addition/subtraction as well as multiplication/division) of operation/inverse, so
first we will formalize the notion of an invertible operation. Furthermore, the two op-
erations are related to one another by the distributive law. Two invertible operations
bonded together by the distributive law form a mathematical structure we call a field,
which is what we axiomatize in this chapter.

1.1. Binary Operations

Definition 1.1 (Binary Operation). A binary operation x on a set S is a rule that
takes any two elements of S and combines them to make a new element of S.

Formally, this is a function * : SxS — S. Whereas we often write functions f : SxS —
S as f(a,b) for a binary operation we traditionally write the function name in the
middle so a * b instead of x(a, D).

Addition is a binary operation on the natural numbers, integers, rationals, and real
numbers. Subtraction is a binary operation on the integers, but not on the natural
numbers, as 4 — 7 = —3 gives an element not in the original set.

Definition 1.2 (Commutativity & Associativity). An operation x is commutative if
the order the elements are combined does not affect the outcome: for all elements
abesS

axb=bxa

An operation is associative if combinations of 3 or more terms can be re-grouped at
will (not changing the order), without affecting the outcome: for all a,b,c € S

(axb)xc=ax((bxc)
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1. Operations

The operation of addition is commutative and associative, but the operation of sub-
traction is neither. The operation of matrix multiplication is associative, but is not
commutative in general.

An operation which is commutative but not associative is given by the children’s
game rock paper scissors: if S = {r, p, s} we may define the operation  to select the
winning element of any pair. Thus, because paper beats rock, we have r x p = p.
Explain why this is commutative, and find an example proving it is not associative.

Definition 1.3 (Identities & Inverses). Let S be a set with binary operation *. Then
an element e € S is an identity for the operation if it does not change any elements
under combination. Formally, for all s € S

exs=s*xe=sS

Given a binary operation * on a set S with identity e € S, an element x € S is invertible
if it can be combined with something to produce the identity. That is, if there exists
ay € S with

X*xy=y*xx=e

This element y is called the inverse of x. An operation x is called invertible if every
element of S has an inverse.

Zero is the identity of the operation of addition, 1 is the identity of multiplication (in
any familiar number system you’d like to take as an example). The identity matrix

39 is the identity of 2x 2 matrix multiplication. Not all operations have an identity.
Can you see why there is no identity operation for exponentiation x¥ on the positive
integers?

The operation of addition is invertible, and its inverse is subtraction. The operation of
multiplication is not invertible, because the number 0 does not have an inverse (you
can’t divide by zero! We’ll prove this soon)

Definition 1.4 (Group). A group is a set G with an associative, invertible binary
operation *.

1.2. Fields

We’ve defined what a nice binary operation is. Numbers have two of these!

Definition 1.5 (Distributive Law). Let S be a set with two commutative binary oper-
ations +,-. Then - distributes over + if for all a, b, c € S we have

a-(b+c)=(a-b)+(a-c)
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1.2. Fields

Definition 1.6 (Field). A Field is a set F with two binary operations denoted + (ad-
dition) and - (multiplication) satisfying the following axioms.

« (Commutativity) If a,b € Fthena+b=b+aanda-b=">0-a.

« (Associativity) If a,b,c € Fthen (a+b)+c=a+(b+c)and (a-b)-c=a-(b-¢c)

« (Identities) There are special elements denoted 0,1 € F where for all a € F,
a+0=aand1-a=a.

« (Inverses) For every a € F there is an element —a such that a + (—a) = 0. If
a = 0, then there is also an element a~! such thata-a~! = 1.

« (Distributivity) If a,b,c € Fthena-(b+c¢) =(a-b) +(a-c)

Example 1.1. The rational numbers Q form a field, but the integers Z do not, as they
do not contain multiplicative inverses.

1.2.1. Shorthand Notation

We will work with fields and their operations throughout the course, so it is useful to
introduce some shorthand notation that is familiar to us from previous mathematics
classes, and put it on rigorous foundations in terms of the field axioms.

« Since addition and multiplication are associative, we will drop parentheses
when three or more terms are combined using the same operation. That is,
we will write a + b + ¢ for both (a + b) + ¢ and a + (b + ¢) when convenient.

« We will adopt the convention that multiplication takes precedence over addition;
that is, we drop parentheses in (a-b) + ¢ to allow ourselves to write a-b + c; but
we require parentheses to write a - (b + ¢).

« We will denote multiplication by simple juxtaposition when convenient, drop-
ping the - symbol. That is, we will write ab for a- b and a(b + ¢) for a- (b + ¢).

« We use a bar £ to denote multiplication by the inverse: that is a(b™1).

« We denote repeated multiplication by powers: that is, for positive integers n
we write x" to mean the product of n copies of x.

« For x # 0 we define the symbol x° = 1 for convenience, and for negative n we
define x™" as 1/x".

We also have a special shorthand for numerals, familiar to all

« The numerals 0 and 1 denote the special elements of any field guaranteed to
exist by the axioms.

« We write 2 as a shorthand for 1 + 1.

« We write 3 as a shorthand for 2 + 1.

« We write 4 as a shorthand for 3 + 1.

For large integers, we use the base 10 system unless otherwise specified. That is, we
interpret 364 as 3 - 102 + 6 - 10! + 4 - 10°.
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1. Operations

Exercise 1.1 (2 + 2 and 2 - 2). Prove, using only the field axioms and the definitions
of the symbols 0,1,2,3,4that 2+ 2=4and 2-2 = 4.

Show that 2 is the only natural number where x + x = x - x.

1.3. Elementary Computations

Example 1.2 (Multiplication by Zero).

0x=0

To prove this for an arbitrary x € F, recall that 0 is the additive identity so for any
field element ¢, we have 0 + ¢ = c¢. Thus, when ¢ = 0 we have 0 + 0 = 0. We can use
this together with the distributive property to get
0x = (0 +0)x
= 0x + Ox

Now, we can take the additive inverse of 0x and add it to both sides:

0x + (—0x) = 0x + 0x + (—0x)

This gives the additive identity 0 by definition on the left side, and cancels one of the
factors of 0x on the right, yielding

0=0x+0

Finally we use again that 0 is the additive identity to see 0x + 0 = 0x, which gives us
what we want:
0x=0

Example 1.3 (The Zero-Product Property). Let a, b be elements of a field and assume
that ab = 0. Then eithera =0 or b = 0.

We assume that both a and b are nonzero, and see that we reach a contradiction. Since
they’re nonzero, they have multiplicative inverses a~! and ™!, so we may multiply
both sides of ab = 0 by these to get

b la7lab = b"1a710

On the left this simplifies to b~'1b = b~'b = 1 by definition, and on the right this
becomes 0(b"'a™!) = 0 by the previous example. Thus, we’ve proven 0 = 1! So this
could not have been the case, and either a or b must have not been invertible to start
with - they must have been zero.
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1.3. Elementary Computations

Example 1.4 (Additive Inverses and Negatives).
—x=(-1x
The definition of the symbol —x is the element of F which, when added to x, gives 0.

Thus, to prove that —x = —1x we want to prove that if you add (—1)x to x, you get 0.
Since 1 is the additive identity, we know 1x = x so we may write

x+ (—1x) = 1x + (—1x)

Using the fact that multiplication is commutative and the distributive law, we may
factor out the x:
Ix+(-Dx=01+(-1))x

Now, by definition 1 + (—1) is the additive identity 0, so this is just equal to 0x. But
by Example 1.2 we know 0x = 0! Thus

x+(-1x)=0

And so —1x is the additive inverse of x as claimed. Thus we may write —x = (—1)x

Example 1.5 (Negative times a Negative).
DD =1

This is an immediate corollary of the above: we know that (—1)x is the additive in-
verse of x, and so (—1)(—1) is the additive inverse of —1. But this is just 1 itself, by
definition!

Exercise 1.2 (Negative of a Negative). For any x € F we have
—(—x)=x

All of the standard arithmetic “rules” learned in grade school are consequences of
the field axioms, and so you are welcome to use all of them in this course, without
comment. To feel justified in doing this, its good to prove a couple of them yourself,
to convince yourself that you could in fact trace and any all such manipulations back
to the rigorous axioms we laid down.
Exercise 1.3 (The difference of squares). Prove that for any a,b € F

(a+b)a—-0b) =d® -1
In your proof you may use the field axioms, the notational shorthands, and any of the

example properties proved above in the notes. Anything else you need, you should
prove from this.
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1. Operations

Exercise 1.4. Prove, using the field axioms and our notational shorthands, for any

a,bandc# 0
a+b

Cc

o1

+

oS

Exercise 1.5. Prove that fraction addition works by finding a common denominator:

for any a, c and nonzero b, d
ad + bc

Lc
d bd

U

In your proof you may use the field axioms, the notational shorthands, and any of the
example properties proved above in the notes. Anything else you need, you should
prove from this.

Exercise 1.6. Fix some number r # 1 in a field, and prove by induction that

9 n 1_rn+1
1+r+ro+-+r" =
1-r
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2. Order

Highlights of this Chapter: We define the notion of inequality in terms
of the notion of positivity which we axiomatize, leading to the definition
of an ordered field. We prove this new axiom is required as not all fields
can be ordered (by looking at the complex numbers), and then we inves-
tigate several important properties and definitions related to order that
are essential to real analysis:

« We define absolute value, and give several characterizations
« We prove the triangle inequality
« We define square roots, and n'h roots

2.1. Defining Inequality

How are we supposed to make sense of a < b? One approach is to start by thinking
about a simpler case: can formalize the idea a > 0? We will give axioms for how the
set of positive numbers should behave:

Definition 2.1 (Positivity). A subset P C F is called the positive elements if

+ (Trichotomy) For every a € F exactly one of the following is true: a = 0, a € P
—a€P.
« (Closure)Ifa,b € Pthena+b € Pandab € P.

Given these, we can define inequality in terms of positivity!

Definition 2.2 (Inequality). Let F be an ordered field and P a set of positive elements
for F. If a,b € F, we write a < b as a shorthand for the statement that b — a € P, and
we write a < b if eithera < bora = 0.

Analogously, we writea >bifa—b € Panda > bif eithera >bora=">.

Definition 2.3 (Ordered Field). An ordered field is a field F together with a fixed
choice of positive elements P (which then gives a precise definition of inequality).
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2. Order

2.1.1. Properties of Ordered Fields

Proposition 2.1 (1 is a Positive Number). If (F, P) is any ordered field, then 1 € P.

Proof. Since 1 # 0 we know that either 1 € P or —1 € P. So, to show 1 € P its enough
to see —1 € P leads to contradiction.

If —1 € P then by closure, (—1)(=1) = 1 € P: so now we have both 1 and —1 in P,
contradicting trichotomy. O

Exercise 2.1 (Squares are Positive). Let F be an ordered field and x # 0 an element.
Then x? > 0.

Proposition 2.2 (C is not ordered). The complex numbers cannot be made into an
ordered field: there is no subset P C C such that P is a positive cone for C.

Proof. The complex numbers contain an element i with the property that i* = —1. If
they were ordered, since i # 0 we know either i € P or —i € P, but both of these lead
to contradiction.

Ifi € P then i® = —1 € P contradicting the previous theorem that 1 € P always. And
—i € P leads to the same problem: (—i)? = (=i)(=i) = — — (i*) = i* = -1,50 -1 € P
again. O

This may seem like a strange example to start with, as the course is about real anal-
ysis. But its actually quite important: every time we introduce a new concept to the
foundations of our theory we should ask ourselves, is this an axiom, or a theorem?
We don’t want to add as axioms things that we can already prove from the existing
axioms, as that is redundant! So before adding a new axiom, we should convince our-
self that its necessary: that it is impossible to prove the existence of this new structure
given the previous. And that’s what this example does. By exhibiting something that
satisfies all the field axioms but cannot be ordered, we see that it is logically impossible
to prove the existence of an order from the field axioms alone, and thus we must take
Definition 2.3 as a new axiom.

Theorem 2.1 (The Rationals are an Ordered Field).

In fact the rationals are uniquely ordered: we know that 1 > 0 and this, together with
the behavior of inequality, determines exactly when one rational number is greater
than any other.

Exercise 2.2. Prove that % < g if and only if ad < bc.

46



2.2. Working with Inequalities

2.1.2. Definitions Requiring an Order

Definition 2.4 (Intervals). Let F be an ordered field. We write [a, b] for the set {x |
a < x < b}, and call this set a closed interval in F. Similarly we write (a,b) for the
set {x | a < x < b}, which we call an open interval. Mixed intervals are also possible,
such as [a,b) = {x | a < x < b}.

An unbounded interval, or a ray is a set of the form {x | x > a} or {x | x > a}. We call
the first an open ray and the latter a closed ray, and often denote them (a, c0) or [aco)
as a shorthand. Similarly with (—co, a) and (-0, a].

Definition 2.5 (Absolute Value). Let F be an ordered field. Then the absolute value
is a function |- | : F — F defined by

X x>0
x| =
—-x x<0

Definition 2.6 (The /- symbol). Let F be an ordered field, and x € F. If there exists
ay >0 in F such that y? = x, we call y the square root of x and denote /x.

We generalize this by defining ¢/x to be the number y with y? = x, when such a
number exists.

Exercise 2.3 (No Square Roots of Negatives). Let F be any ordered field, and let x < 0.
Prove that x does not have a square root in F.

Definition 2.7 (Rational Powers). Leta € F and p/q € Q.
Then if the element af € F has a ¢'" root, we define the fractional power aP/q as

aP/4 = Yqp

2.2. Working with Inequalities

All the standard properties of inequalities from arithmetic hold in an ordered field,
and so you will be able to use them without comment throughout the course. How-
ever, its good to derive a few of these for yourselves from the definitions at first, to
see how it goes.

Example 2.1 (Inequality is antisymmetric). By trichotomy we see that for every
x # y we have either x < yor y < x (as, x — y # 0 implies either x — y € P, so

x —y > 0and x > y or the reverse).

Proposition 2.3 (Inequality is transitive). Let F be an ordered field and a,b,c in F. If
a<bandb<c, thena<ec.
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2. Order

Proof. If a < bthen b —a € P. Similarly, b < ¢ implies ¢ — b € P. Closure then tells us
their sum, (¢ — b) + (b — a) € P, and so after simplifying,

c+(-b+b)—a=c+0—a=c—a€P

This is the definition of ¢ > a. ]

Exercise 2.4 (Adding to an Inequality). Let F be an ordered field and a, b, ¢ € F with
a < b. Then
atc<b+c

Proposition 2.4 (Multiplying an Inequality). Let F be an ordered field and a,b,c € F
witha < b. Then ifc > 0, it follows that ca < cb, and if c < 0 we have instead ca > cb.

Proof. First treat the case ¢ > 0. Since a < bwe know b—a € P,andc € Psoc(b—a) € P
by the closure axiom. Distributing gives cb — ca € P which is the definition of ¢b > ca.

Now, if ¢ < 0, we know ¢ ¢ P, so —c € P. Closure then gives (—c)(b — a) € P, and
simplifying yields —cb + ca € P or ca — ¢b € P, the definition of ca > cb. O

2.2.1. Powers and Roots

Some basic inequalities for powers and roots that will prove useful: like other basic
properties of inequalities, you do not need to prove or cite these when you use them
in this course, but it is good to have a reference seeing why they are true from our
axioms.

Example 2.2 (x — x? is increasing). If F is an ordered field and a, b € F are elements

with 0 < a < b then a? < b2

To prove this, we use both Proposition 2.3 and Proposition 2.4. Since a < band a > 0
we see a> < ab. But since a < band b > 0, we see ab < b?. Putting these together
yields a® < ab < b%, so a® < b2

Its necessary to assume a, b are positive in the theorem above: for example —3 < 1
but (—=3)? = 9is not less than 12 = 1. In fact this proof works in reverse as well (check
this!) to provide the following useful fact:

Proposition 2.5. Ifa,b € F are positive elements of an ordered field, then

a<b = a®<b?

This generalizes to arbitrary powers:
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2.3. Working with Absolute Values

Exercise 2.5 (x — x" is increasing). Prove that if F is an ordered field containing
positive elements a, b, then for alln € N, a < b if and only if a"* < b".

In fact, when n is odd, you may wish to prove that you can remove the assumption
thata, b > 0.

Here’s a quick fact about inequalities that will prove useful to us later on in the
course:

Exercise 2.6 (Bernoulli’s inequality). Let F be an ordered field and x > 0 be a positive
element. Prove by induction that for all natural numbers IN

A1+x)">1+nx

Exercise 2.7 (/- is increasing). Prove that if 0 < x < y in an ordered field F, and F
contains the square roots \/x, /y, then \x < /3.

Proposition 2.6. Ifr € Q,r > 0 is a positive rational number and x, y € F are positive
field elements
x<y = x' <y

Proof. Use that x" = xP/4 = (/xP) to break this into two problems: first x < y implies
xP < yP. Now, ifu = xP andv = y? we have u <v = {fu < ¢v, completing the
proof. O

2.3. Working with Absolute Values

Proposition 2.7 (Absolute Values and Maxima). For all x in an ordered field,

|x| = max{x, —x}

Corollary 2.1. If x,a are in an ordered field, the conditions —x < a and x < a are
equivalent to
|x| < a

Proof. If —x < a and x < a then max{x,—x} < a, so by Proposition 2.7, |x| < a.
Conversely, if |x| < a then max{x, —x} < a so both x < a and —x < a. O

Corollary 2.2 (Defining Feature of the Absolute Value). Let F be an ordered field:
then |x| < a if and only if —a < x < a.
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2. Order

Proof. By the above |x| < a means x < a and —x < a. Multiplying the second inequal-
ity by —1 yields x > —a, and stringing them together results in —a < x < a. O

Finally, we can get a formula for the absolute value in terms of squaring and roots.

Example 2.3. For all x in an ordered field |x| = \@ )

Example 2.4 (Multiplication and the Absolute Value).

[xyl = |x]lyl
x|_ M
vl

The interaction of the absolute value with addition is more subtle, but crucial. One
of the most important inequalities in all of analysis is the triangle inequality of the
absolute value:

Proposition 2.8 (The Triangle Inequality). For any x,y in an ordered field
I + ¥l < |x[ + [y
Proof. It suffices to prove that we have both
x+y < x|+ [yl —(x+y) <|x[+1yl
For the first, note that as x < |x| and y < |y|,
x+y<|x[+y < x|+ |yl
Similar reasoning succeeds for the second as —x < |x| and —y < |y|:

—x =y < x|+ (=y) < |x[+ |yl

Exercise 2.8. Let a; + ay + -+ + a, be any finite sum. Prove that

n n
D4 <) laf
i=1

i=1

The reverse triangle inequality is another very useful property of absolute values,
logically equivalent to the usual triangle inequality, but giving a lower bound for
|a — b| instead of an upper bound for |a + b|.
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2.4. Further Topics

Exercise 2.9 (Reverse Triangle Inequality). Prove that for all g, in an ordered field
F
llal — [bl] < la — bl

Finally, two corollaries of the triangle inequality and its reverse, by replacing y with
-y.

Corollary 2.3 (Corollaries of the Triangle Inequality). For all x,y in an ordered field,

Ix — yl < x|+ [yl

Ix + y| > [lx] = [yl

2.4. Further Topics

2.4.1. x Topology

A final familiar property that arises from ordering a field is the notion of open sets
and closed sets. This in turn is the foundations of the subject of topology or the ab-
stract study of shape, which becomes quite important in advanced applications of
analysis.

We will not require any deep theory in this course, and stop pause briefly to give a
definition of openness and closedness.

Definition 2.8 (Open Set). A set of the form (a,b) = {x | a < x < b} is called an
open interval. A set U C F is called open, if for every point u € U there is some open
interval I containing u which is fully contained in U:

uelcU

One notable property of this definition: the empty set @ = {} is open, as this con-
dition is vacuously true: there are no points of @ so this condition doesn’t pose any
restriction!

Exercise 2.10. Explain why the set U = {x | x > 0 and x # 2} is an open set.

Exercise 2.11. Let {U,} be any collection of open sets. Prove that the union |, Uj, is
also open.

Hint: his collection doesn’t have to be finite, so induction won’t help us here. Can you
supply a direct proof, using the definition of union and open?
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2. Order

Definition 2.9 (Closed Set). A setis K C F is closed, if its complement is an open set.

Exercise 2.12. Show that intervals of the form [a,b] = {x | a < x < b} are closed
sets. This is why we call them closed intervals in calculus courses.

This terminology is rather unfortunate when first learning the subject, as while open
and closed are antonyms in english, they are not in mathematics! Being open is a
special property that most sets do not have, and so being closed (which is defined
relative to an open set) is also a special property. Most sets are neither open nor
closed!

Example 2.5 (A set that is neither open nor closed). The set S = [1,2) is neither
open nor closed. Its not open because the point 1 € S, but there is no open interval
containing 1 which is fully contained in S (every open interval containing 1 contains
numbers smaller than 1 as well).

To see its not closed, we need to show that its complement is not open. Its complement
is the set
S={x|x<1}uix]|x>2}

Here we have the same problem at the number two: 2 € S¢ but there is no open
interval containing 2 which is fully inside S°, as any such interval would contain
points less than 2, and these are not in S°.

Thus, [1, 2) is neither open nor closed.

But perhaps even stranger, not only can sets be neither open nor closed, but they can
also be both open and closed! Such sets are called clopen.

Example 2.6 (A set that is both open and closed). If F is the entire ordered field, F
is both open and closed.

To see it is open, note for any x we can form the interval (x — 1, x + 1) and this lies
inside of F. To see its closed, note that its complement is the empty set and this is
vacuously open as commented above.

52



3. Completeness

Highlights of this Chapter: We look to formalize the notion of limit
used by the babylonians and archimedes, and come to the Nested Inter-
val Property. We see that this property does not hold in Q, so we must
seek another axiom which implies us. This leads us to bounds, infima,
and suprema. We study the properties of this new definition, use it to de-
fine completeness, and show completeness does indeed imply the nested
interval property, as we wished.

Now that we have axiomatized the notion of a ‘number line’ as an ordered field, it’s
time to try and figure out how to describe “completed” infinite processes in a formal
way. This is an inherently slippery notion, as it runs into the difficulty of “talking
about infinity, without saying infinity” that lies at the heart of analysis.

So, before introducing the abstract tools that end up best suited for this task (the
infimum and supremum), we’ll begin with some motivational exploration, and think
about what sort of theorems we would want to be true in a number system that allows
one to do infinite constructions.

3.1. Dreaming of Infinity

Archimedes idea for calculating 7 was to give an upper bound and a lower bound for
the area of a circle, in terms of the area a,, of an inscribed polygon and a circumscribed
polygon A,,. This provided an interval that archimedes hoped to trap  inside of, each
time n grows, a, grows and A, shrinks - so the confidence interval of Archimedes
shrinks!

= [ag, Ag] D a1z, A12] D [agq, Aga] D -
A collection of intervals like this is called nested:

Definition 3.1 (Nested Intervals). A sequence of intervals I1, I, 5, ... in an ordered
field is called nested if for all n, I, C I,.

53



3. Completeness

As these nested intervals shrink in size, the hope is that they zero in on 7 exactly:
mathematically we might express this with an intersection over all intervals (where
the question mark over the equals means we have not proven this, but hope its true)

Man Anl = {1}

n

The babylonian process approximating /2 can also be recast in terms of a sequence
of nested intervals: where we take the two sides wy, h, (width and height) of each
approximating rectangle as a confidence interval around v/2. We of course want, that
in the limit this zeroes in directly on the square root,

(i ol = (V23

In formulating any of these processes (pre-rigorously, say, in antiquity) mathemati-
cians always assumed without proof that if you had a collection of shrinking inter-
vals, they were shrinking around some number that could be captured after infinitely
many steps. We capture this unstated assumption rigorously below, and title it the
Approximation Property based on its use approximating numbers by intervals:

Definition 3.2 (Approximation Property). A number system has the approximation
property if the intersection of any sequence of nested intervals whose lengths go to
zero contains a single element.

How do we tell if our current axioms imply that our number system has the approx-
imation property? In a situation like this, mathematicians may try to ask what sort
of things satisfy the current axioms and look at these for inspiration. Here - the ra-
tional numbers satisfy the axioms of an ordered field, and this provides a big hint:
Pythagoras proved that there is no rational square root of 2, which implies the Baby-
lonian process does not zero in on any number at all, but rather at infinity reaches
nothing!

ﬂ[Wn’ hn] =0

n

Because there is at least one ordered field (the rationals) that does not satisfy the
dream theorem, we know that these axioms are not enough.

Theorem 3.1. The axioms of an ordered field are not enough to deal with completed
infinity: there are ordered fields in which do not have the approximation property.
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3.2. Suprema and Infima

This tells us we must look to extend our axiom system and search out a new axiom
that will help our number system capture the slippery notion of infinite processes.
One might be tempted to just take the approximation property itself as an axiom(!);
but this comes with its own challenges. The property is rather specific (about certain
collections nested intervals), whereas we want axioms to be as general and simple-to-
state as possible, and worse, it contains a currently undefined term lengths tending to
zero which we would have to first make rigorous.

Happily, it turns out a productive approach to this grows naturally out of our discus-
sion of nested intervals. But, to decrease the complexity instead of focusing on the
entire interval [£,,, u,], we will look separately at the sequence of lower bounds £, and
upper bounds u,. Understanding the behavior of either of these will turn out to be
enough to extend our axiom system appropriately.

3.2. Suprema and Infima

A confidence interval like [width,, height, ] or [inscribed,, circumscribed,,] gives us
for each n both an upper bound for the number we are after, and a lower bound.
It will be useful to describe these concepts more precisely.

Definition 3.3 (Bounds). Let S be a nonempty subset of an ordered field. An upper
bound for S is an element u € F greater than or equal to all the elements of S:

VseSs<u

A lower bound for S is an element ¢ € FF which is less than or equal to all the elements
of S:
VseSt<u

S is said to be bounded above if there exists an upper bound, and to be bounded below
if there exists a lower bound. If S is both bounded above and below, then S is said to
be bounded.

Definition 3.4 (Maximum & Minimum). Let S be a nonempty subset of an ordered
field. Then S has a $maximum® if there is an element of M € S that is also an upper
bound for S, and a minimum if some element m is also a lower bound for S.

The maximum and minimum elements of a set are the best possible upper and lower
bounds when they exist: after all, you couldn’t hope to find a smaller lower bound
than the maximum, as the maximum would be greater than it, so it couldn’t be an
upper bound! While maxima and minima always exist for finite sets things get trickier
with infinity. For example, the open interval (0, 1) of rational numbers does not have
any maximum element.

The correct generalization of maximum to cases like this is called the supremum: the
best possible upper bound.
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3. Completeness

Definition 3.5 (Supremum). Let S be a set which is bounded above. The least upper
bound for S is a number ¢ such that

« 0 is an upper bound for S
« If u is any upper bound, then o < u.

When such a least upper bound exists, we call it the supremum of S and denote it
o =supS.

This notion of best possible upper bound allows us to rigorously capture the notion
of endpoint even for infinite sets that do not have a maximum.

Example 3.1 (A set with no maximum). The set (0,1) ={x € Q| 0 < x < 1} has no
maximal element, but it does have a supremum in Q, namely 1 = sup S.

Definition 3.6 (Infimum). The infimum of a set S is the least upper bound: that is,
an element A where

« Ais alower bound for S.
« If £ is any other lower bound for S, then ¢ < A.

If such an element exists it is denoted A = inf S.

Example 3.2.

« The set IN has no upper bounds at all, so supIN does not exist. It has many
lower bounds (like 0, and -14), and its infimum is infIN = 1.

« The rational numbers themselves have no upper nor lower bound, so sup Q and
inf Q do not exist.

3.3. Completeness

Because infima and suprema are such a useful tool to precisely describe the final
state of certain infinite processes, they are a natural choice of object to concentrate
on when looking for an additional axiom for our number system. Indeed - after some
thought you can convince yourself that the statement every infinite process that should
end in some number, does end in some number is equivalent to the following definition
of completeness.

Definition 3.7 (Completeness). An ordered set is complete if every nonempty subset
S that is bounded above has a supremum.
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3.3. Completeness

Remark 3.1. One question you might ask yourself is why we chose supremum here,
and not infimum - or better, why not both?! It turns out that all of these options are
logically equivalent, as you can prove in some exercises below. So, any one of them
suffices

We can formalize Pythagoras’ observation about the irrationality of v/2 in this lan-

guage

Theorem 3.2 (Q is not complete). The set S = {s € Q | s> < 2} does not have a
supremum in Q.

Sketch. A rigorous proof can be given by contradiction: assume that a supremum o =
sup S exists, and then show that we must have ¢ = 2 by ruling out the possibilities
02 < 2and 62 > 2. The calculations required for these steps are more relevant to the
next chapter, so we postpone until then (specifically, Example 4.1 and Exercise 4.2).

Once its known that the supremum must satisfy o> = 2, we apply Pythagoras’ obser-
vation (Theorem 0.1) that there are no rational solutions to this equation, to reach a
contradiction. O

Thus, asking a field to be complete is a constraint above and beyond being an ordered
field. So, this is a good candidate for an additional axiom! But before we too hastily
accept it, we should check that it actually solves our problem:

Theorem 3.3 (Nested Interval Property). Let F be an ordered field which is also
complete, and Iy, I, L, ..., I, ... be a collection of nested closed intervals. Then their
intersection is nonempty:

(5L =0

n=>0

Proof. Let I, = [a,,b,]. We need to use the fact that F is complete to help us find a
number which lies in I, for every n. One idea - consider the set of lower endpoints

A={a,a,as3,...,a,,...}

This set is nonempty, and because the intervals are nested any one of the b,’s serves
as an upper bound for A.

By completeness the supremum must exist: lets call this @ = sup A. Now we just
need to see that @ € I, = [a,,b,] for all n. Fix some n: then as a, € A and « is an
upper bound, we know that a, < a. But b, is an upper bound for A so the least upper
bound must satisfy o < b,. Putting these together

a<a<b, = acl,

And, since this holds for all natural numbers n, we actually have a € (), I,, so the
intersection is nonempty. O
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3. Completeness

Confirm that the property the ancients assumed held of the number line is now a
theorem of our formal system!

Exercise 3.1 (The Approximation Property). Let I, = [a,, b,] be a nested sequence of
intervals and assume sup{a,} = inf{b,}. Then show (), I, contains exactly one point.

3.4. Working with inf and sup

Proposition 3.1 (Uniqueness of Supremum). If the supremum of a set exists, it is
unique.

Proof. Let A be aset. To show uniqueness, we will assume that there are two numbers
x and y which both satisfy the definition of the supremum of A, and then we will
show x = y. Thus, any two possibilities for the supremum are equal, so if theres a
supremum at all there can only be one.

To prove x = y, we will prove x < y and y < x. Once we have these two, we can
immediately conclude that since we can’t simultaneously have x < y and y < x (what
axiom of an ordered field would this violate?) we must have x = y.

If x and y both are least upper bounds for A, then they are both in particular upper
bounds. So, x is an upper bound and y is a least upper bound implies y < x. But
similarly, y being an upper bound while x is a least upper bound implies x < y. Thus
x = y and so the supremum is unique. O

This uses two important proof techniques in analysis.

First, one way to show that something is unique is to show that if you had two of
them, they have to be equal. Second, to show x = y it is often useful to show both
x<yandy<x.

Exercise 3.2. Prove the infimum of a set is unique when it exists.

Proposition 3.2. Let A be a set which is bounded above. An upper bound o for A is
actually the supremum if for every positive € > 0, there exists some element of A greater
than a — €.

Proof. Let’s prove the contrapositive, meaning we assume the conclusion is false and
prove the premise is false. The conclusion would be false if there were some positive
€ where no element of a is larger than o — €. But this means that « — € > a for all
a € A, or that a — € is an upper bound for A. Since this is less than « (remember, €
is positive), we found a smaller upper bound, so « cannot be the least upper bound:
thus its false that o = sup A.
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3.4. Working with inf and sup

Since anytime our proposed condition doesn’t hold, & isnt the supremum, this means
if @ were the supremum, the condition must hold! And this is what we sought to
prove. O

Remark 3.2. The contrapositive is a very useful proof style, especially in situations
where the premise is something short, and the conclusion is something complicated.
By taking a look at the contrapositive, you get to assume the negation of the conclu-
sion, meaning you get to assume the complicated thing, and then use it to prove the
simple thing (the negation of the premise)

Exercise 3.3. Prove the corresponding characterization of infima: a lower bound ¢
for a set A is the infimum if for every positive € > 0 there is some element of A less
than € + €.

Exercise 3.4. Let A, Bbe nonempty bounded subsets of a complete field, and suppose
A C B. Prove that sup A < sup B.

Example 3.3. Let A be a bounded set with supremum sup A and ¢ an element of the
field. Define the set S ={a +c | a € A}. Then

supS=c+supA

To prove this, we need to show two things: (1) that ¢ + sup A is an upper bound for S,
and (2) that its in fact the least upper bound.

First, we consider (1). Since sup A is an upper bound for A, we know Va € A,a < sup A.
Adding c to both sides, we also have c+a < ¢+ sup A for all a, which implies ¢+ sup A
is an upper bound.

Now, (2). Let u be any upper bound for S. This means that u > c+aforalla € A, so
subtracting ¢ from both sides, that u — ¢ > a. Thus, u — ¢ is an upper bound for A, and
this is real progress because we know sup A is the least upper bound. That implies
sup A < u — c and so adding c to both sides, ¢ + sup A < u. Putting this all together,
we assumed u was any upper bound and we proved ¢ + sup A was a smaller one.

Thus, ¢ + sup A is the least upper bound to S, and so by definition we have sup S =
¢ + sup A as required.

Exercise 3.5. Let ¢ > 0 and A be a bounded set with supremum sup A. Define the
set S = {ca | a € A}. Then sup S exists and

supS=csup A
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3. Completeness

Exercise 3.6. Let A, B be two bounded nonempty sets. Assuming that the suprema
and infima of A and B both exist, prove they do for A u B as well and

sup A u B = max{sup A, sup B}
inf A u B = min{inf A, inf B}

Exercise 3.7 (Sup and Inf of Intervals). Let A, B be two open intervals in R, and
assume that sup A = inf B.

True or false: it is possible to add a single point to Au B so the entire set is an interval.
(Explain your reasoning, but you don’t have to write a rigorous proof).

3.5. Problems

Exercise 3.8. Let A, B be subsets of a complete ordered field with sup A < sup B.

« Prove that there is an element b € B which is an upper bound for A.
+ Give an example to show this is not necessarily true if we only assume sup A <
sup B.

Exercise 3.9. Consider the following subsets of the rational numbers. State whether
or not they have infima or suprema; when they do, give the inf and sup.

- [1,3]

- [1,3)
x| x% <1}
x| <1}

- x[1+neN}

cfx 1+ S ne N

Exercise 3.10. For each item, compute the supremum and infimum, or explain why
they does not exist. (You should explain your answers but you do not need to give a
rigorous proof)

. Az{%MEN}?&

« Fix f € (0,1), and define B={f" | n € N}
« Fix y € (1,00) and define C = {y" | n € N}.

Exercise 3.11. The proof of the nested interval theorem used the endpoints of the
intervals crucially in the proof. One might wonder if the same theorem holds for open
intervals (even though the proof would have to change).

Show the analogous theorem for open intervals is false by finding a counter example:
can you find a collection of nested open intervals whose intersection is empty?
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3.5. Problems

Exercise 3.12. Either give an example of each (explaining why your example works)
or provide an argument (it doesn’t have to be a formal proof) why no such example
should exist:

+ A sequence of nested closed intervals, whose intersection contains exactly n
points, for some finite n > 1.

« A sequence of nested closed rays whose intersection is empty. (A closed ray
has the form [a, ) or (=0, a] as in ?@def-intervals).

3.5.1. x Equivalents to Completeness

Here we tackle the natural questions about why we chose suprema to codify com-
pleteness in a series of exercises.

Our goal at the end of these is to show that the following three possible completeness
axioms are all logically equivalent:

+ (1) Any nonempty set thats bounded above has a supremum.
« (2) Any nonempty set thats bounded below has an infimum.
+ (3) Any nonempty set thats bounded has a supremum and infimum.

Exercise 3.13. For a set A let —A denote the set of additive inverses: —A ={—a|a €
A}
Prove that in a complete field if A is nonempty and bounded below then

sup(—A) = —inf(A)

Thus, assuming that suprema exist forces infima to exist, so in our list above, (1)
implies (2).

Exercise 3.14. Prove the converse of the above: if we instead assume that the infi-
mum of every nonempty set thats bounded below exists, show that the supremum of
every nonempty set thats bounded above exists.

This shows (2) implies (1), so all together we know that (1) and (2) are equivalent.
But since (3) is just the conditions (1) and (2) together, we can derive (3) from either
as

(1) = Mand(2)=(3)
(2) = (2)and (1) = (3)
Thus both (1) and (2) imply (3). But since (1) and (2) are themselves special cases of

(3), we already know (3) implies each of them! So, both of (1) and (2) are equivalent
to (3), and all three conditions are logically equivalent to one another.
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4. The Real Numbers

We have now carefully axiomatized the properties that are used in classical math-
ematics when dealing with the number line, defining a the structure of a complete

ordered field.

Definition 4.1. A complete ordered field is an ordered field that satisfies the com-
pleteness axiom. Precisely, it is a set F with the following properties

« Addition: A commutative associative operation +, with identity 0, where ever
element has an additive inverse.

« Multiplication: A commutative associative operation - with identity 1 # 0,

where every nonzero element has a multiplicative inverse.

Distributivity: For all a,b,c € F we have a(b + ¢) = ab + ac

« Order: A subset P C F called the positives containing exactly one of x, —x for
every nonzero x € F, which is closed under addition and multiplication: if
a,be Pthena+bePandab e P.

« Completeness: Every nonempty subset A C F which is bounded above has a
least upper bound.

The subject of real analysis is the study of complete ordered fields and their properties,
so everything that follows in this course logically follows from this set of axioms, and
nothing more. The success and importance of the above definition is best exemplified
by the following theorem:

Remark 4.1. This was very important work at the turn of the previous century; as nei-
ther step is a priori obvious. It’s easy to write down axiom systems that don’t describe
anything because they’re inconsistent (for example, add to ordered field axioms that
all polynomials have at least one zero, and there is no longer such a structure), and its
also common that axioms don’t uniquely pick out a single object but rather describe
an entire class (the axioms of a group define a whole subject, not a single example).

Theorem 4.1 (Uniqueness of the Reals). There exists a complete ordered field, and it
is unique. We call this field the real numbers and denote it by R.

This theorem represents the culmination of much work at the end of the 19th and
beginning of the 20th century to fully understand the real number line.

While not necessarily beyond our abilities, proving existence of a structure satisfying
these axioms is a job for the set theorists and logicians that we will not tackle here.
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4. The Real Numbers

Beyond providing justification for our usual way of speaking, the uniqueness of the
reals is an important result to the history of mathematics. Its statement and proof
in 1903 by Huntington marked the end of the era of searching for the fundamental
principles behind the real numbers, and the beginning of the modern point of view,
completely specifying their structure axiomatically.

Remark 4.2. The completeness axiom is what sets analysis apart from algebra, as it
does not tell us how elements behave with respect to a given operation, but rather
tells us about the existence of new elements. Indeed, this assertive ability of the com-
pleteness axiom is more radical than it seems at first, and can even be captured by
mathematical logic: the other axioms are all first order axioms, whereas the complete-
ness axiom is second order.

We will spend the majority of this course working out the properties of the real num-
ber line from these axioms, but its important to not loose sight of the bigger picture,
why we are doing this. The real numbers provide a foundation for many objects in
modern math:

« Complex numbers can be defined as pairs of real numbers (x, y) : = x +iy with
component-wise addition and a new rule for multiplication

« Real and complex vector spaces can be constructed from n-tuples of real num-
bers, which lie at the foundation of much of modern mathematics, computer
science, and physics.

« Manifolds are spaces which look locally like real vector spaces, and underly the
modern fields of topology and differential geometry.

4.1. Dubious Numbers

Proposition 4.1 (Fields have no Nilpotent Numbers). Let $F be any field, and € some
number where €2 = 0. By the zero-product-property (Example 1.3), this implies € = 0.
Thus there are no nonzero elements that square to zero.

Theorem 4.2 (Infinite Numbers Do Not Exist). There are no infinite elements of R.

Proof. Assume for the sake of contradiction that there is some infinite number: with-
out loss of generality (perhaps after multiplying by —1) we may assume its positive.
Thus, this number is greater than every natural number, and so the natural numbers
are bounded above.

Thus, by the completeness axiom, we find that the natural numbers must have a
supremum. Denote this by X = supIN. So far, everything seems fine. But consider
the number X — 1. This is smaller than X, and since X is the least upper bound, X — 1
cannot be an upper bound to IN. This means there must be some element n € N with
n > X — 1. But this means X < n+ 1, and as n + 1 is a natural number whenever n is,
we’ve run headfirst into a contradiction: X is not an upper bound at all! O
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4.2. The Archimedean Property

It is an immediate corollary of this that infinitesimals also do not exist (but, because
this is such an important result, we call it a theorem on its own.)

Theorem 4.3 (Infinitesimals Do Not Exist). There are no infinitesimal elements of R.

Proof. Let x be a positive element of R, and consider its reciprocal 1/x. By Theo-
rem 4.2 1/x is finite, so there’s some n € N with n > 1/x. Re-arranging the inequality
shows x > 1/n as required, so x is not infinitesimal. O

This argument shows that for a field, containing infinite elements and infinitesimal
elements are logically equivalent: thanks to division, you can’t have one without the
other.

4.2. The Archimedean Property

A useful way to repackage the nonexistence of infinite numbers and infinitesimals
into a usable statement known as the Archimedean property, as Archimedes took it as
an axiom describing the number system in his paper The Sphere and the Cylinder. It
also appears (earlier) as a definition in Euclid’s elements: Book V Definition 4:

Magnitudes are said to have a ratio to one another which can, when mul-
tiplied, exceed one another.

We rephrase this in precise modern terminology below:

Definition 4.2 (Archimedean Field). A field F is archimedean if for every positive
a,b € T there is a natural number n with

na>b

Remark 4.3. While Archimedes himself attributes this to Eudoxus of Cnidus, it was
named after Archimedes in the 1880s.

The important applications of this property all come from the case where b is really
large, and a is really small. In an archimedean field, no matter how small a is you can
always collect enough of them na = a+a+a+ - +ato surpass b. A common way to
remember this property is to poetically rephrase it as you can empty the ocean with a
teaspoon.

Its possible to give an elementary proof (directly from the definition of rational num-

bers as fradtions p/q for p,q € Z, q # 0) that Q is an archimedean field:

Exercise 4.1 (The Rationals are Archimedean). Prove the rationals are an
archimedean field. Hint: write a and b as fractions, can you figure out from the
inequality you want, what n can be?
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4. The Real Numbers

Such a proof is not possible for R as we don’t have an explicit description of its ele-
ments! All we know is its axiomatic properties. However, a proof is immediate using
Theorem 4.2:

Theorem 4.4 (The Reals are Archimedean). Complete ordered fields satisfy the
Archimedean property.

Proof. Let a, b be positive real numbers. Since b/a € R it is finite (by Theorem 4.2), so
there is some n € IN with n > Z and thus na > b. O

Its also a short proof to show that archimedean fields cannot contain infinite elements
(and thus also cannot contain infinitesimals), providing a useful equivalence:

Theorem 4.5. The following three conditions are equivalent, for an ordered field F:

o F is archimedean.
« T contains no infinite elements.
« T contains no infinitesimal elements.

Proof. We already know the existence of infinite elements and infinitesimal elements
are equivalent, so all we need to show is that F is archimedean if and only if all
elements are finite.

But the proof of Theorem 4.4 already provides an argument that a field with only
finite elements is necessarily archimedean, so we seek only the converse.

If F is archimedean, then for any positive b € F we may take a = 1 and apply the
archimedean property to get an n € IN with n- 1 > b. For negative b, applying the
ame to —b results in a n € N where —n < b, and together these imply all elements of
F are finite. O

Remark 4.4. In fact one can be more precise than this: it turns out that the real num-
bers are the largest possible archimedean field - and every archimedean field fits some-
where between the rationals and the reals.

4.3. Irrationals

Definition 4.3 (Irrational Numbers). A number x € R is irrational if it is not rational.

66



4.3. Irrationals

4.3.1. Existence of V2

Our first goal is to prove that irrational numbers exist, by exhibiting one. We will use
the example of the square root of two, and rigorously prove that /2 is a real number.
(Just so you don’t brush this off as trivial, its not immediately obvious: after all, J=2
is not a real number!)

Theorem 4.6. Let T be archimedean, and consider the set
S={reF|r’ <2}

Then ifo = sup S exists, > = 2.

We prove this rather indirectly, showing that both 62 > 2 and ¢? < 2 are impossible,
so the only remaining option is o = 2.

Example 4.1 (6? > 2 is impossible.). To show this is impossible, we will show if you
have any upper bound b € F with b? > 2, it’s not the least upper bound, as we can
make a smaller one.

Let b be any upper bound with b? > 2. To find a smaller upper bound, one idea is to
try and find a natural number n where = b — 1/n works. That is,

2
(-1)'>2
n

Expanding this out, we see b — 2b/n+ 1/ n® > 2, or after moving terms around,
b? — 2> 2b/n— 1/n?. Now we need a little ingenuity: notice that 2b/n — 1/n? is less
than 2b/n (because we’re subtracting something) so in fact, if we can find an n where
2b/n < b? — 2 we're already good. Re-arranging this equation, we need to find n with

®? —2)n > 2b

But this is possible using the Archimedean property! Since A = b? —2 and B = 2b are
both positive numbers, we can always find an n € IN where nA > B. Thus, we may
choose this value of n, and note that f = b — % is an upper bound for S that is smaller
than b. Thus b was not the least upper bound!

Exercise 4.2 (02 < 2 is impossible.). Can you preform an argument similar to Exam-
ple 4.1, to prove that 2 < 2 also leads to contradiction?

Since both the real numbers and the rationals are archimedean, the above applies to
a consideration of either field

However applying the same knowledge to the reals yields the opposite conclusion,
by virtue of the completeness axiom.
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4. The Real Numbers

Theorem 4.7 (V2 is a Real Number). There exists a positive real number which squares
to 2.

Proof. Let S = {r € R | r? < 2}. Then, S is nonempty, as 0 € S since O? = 0 and 0 < 2.
Next, we show that S is bounded above by 10:

Letr € S is arbitrary. Without loss of generality we may assume r > 0 as if r < 0 then
certainly r < 10. By the definition of S, we know r? < 2 and thus clearly r*> < 100.
But recall Proposition 2.5: for positive a, b if a® < b? then a < b, so from r? < 100 we
may conclude r < 10.

Knowing that S is both nonempty and bounded above, the completeness axiom ap-
plies to furnish us with a least upper bound o = sup S. And knowing its existence,
Theorem 4.6 immediately implies that o® = 2, so ¢ is by definition a square root of
2. O

Theorem 4.8 (The Rationals are Incomplete). Within the field of rational numbers,
the set S = {r € Q | r? < 2} is bounded above and nonempty, but does not have a
supremum.

Proof. The argument that S is nonempty and bounded above is identical to that in
Theorem 4.7. And, Theorem 4.6 implies that if the supremum exists it must square
to 2. But we know by Theorem 0.1 that there is no such rational number. Thus, the
supremum must not exist, and so Q fails the completeness axiom. O

There is nothing special about 2 in the above argument, other than it is easy for us
to work with. We could stop right now to prove the more general statement that all
square roots exist:

Theorem 4.9 (Square Roots Exist). Ifx € R is positive, then \/x is a real number.

Though to not be too repetitive, we will hold off and prove this a different way, to
illustrate more powerful tools in CITE.

Exercise 4.3. Prove that the product of a nonzero rational and an irrational number
is irrational.

Exercise 4.4. The sum of two irrational numbers need not be irrational, as the exam-
ple V2 —+/2 = 0 shows. Prove or disprove: the sum of two positive irrational numbers
is irrational.
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4.3.2. Density

Definition 4.4 (Density). Let S be a subset of an ordered field F. Then S is dense in
F if between any two elements a, b € F with a < b there is some s € S with

a<s<b

Theorem 4.10 (Density of the Rationals). The rational numbers are dense in the real
numbers.

Proof. We need to start with two arbitrary real numbers a < b, and find a rational
number r between them. Let’s do some scratch work: if r = m/n and we want a <
m/n < b then it suffices to find an integer m between na and nb. This sounds doable!

Precisely, since b — a > 0, we can use the archimedean property to find some n € N
with n(b — a) > 1. Now since nb — na > 1, we just need to prove there’s an integer m
between them, and this’ll be the number we want!

To rigorously prove this m exists, we can reason as follows: we know there are inte-
gers greater than na (since R has no infinite elements), so let m be the smallest such.
Then by definition m > na, so all we need to show is m < nb. Since m is the smallest
integer greater than na, we know m—1 < na,orm < na+1. Butna+1 <nbsom < nb
as required.

Now we have a natural number n and an integer m with na < m < nb. Dividing
through by n gives
m
a< —=<b
n

O

As we have gotten used to being very careful in our arguments, you may think while
working out the above argument to fill in a little lemma showing that every set of
integers bounded below has a minimum. And, you could indeed do so by induction
(try it - but fair warning, the argument is a little tricky! It’s easiest with “strong
induction” - what are we inducting over?). However this fact is actually logically
equivalent to the principle of induction, and in foundations of arithmetic things are
often reversed: we take this as an axiom, and prove induction from it! The statement
is called the well ordering principle.

Definition 4.5 (The Well Ordering Principle). Every nonempty subset of IN has a
least element.

Exercise 4.5 (Density of the Irrationals). Use ?@thm-rationals-are-dense above
to prove that the irrationals are also dense in the reals.
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Exercise 4.6. The dyadic rationals are the subset of Q which have denominators that
are a power of 2 when written in lowest terms.

Prove the dyadic rationals are dense in R.

4.4. Uncountability

We can use this to prove the uncountability of the reals using Cantor’s original argu-
ment. (We will give the better known Cantor diagonalization argument later, once
we’ve introduced decimals)

Theorem 4.11 (R is Uncountable). There is no bijection between N and R

Proof. Let f: IN — [0, 1] be any function whatsoever. We can use this function to
produce a sequence of points as follows:

f) =%, f(2) = x, f3) = x5....

From this we can construct a set of nested intervals.

Let I; C [0,1] be any closed interval that doesn’t contain x;. Then let I, C I; be a
closed interval which does not contain x, (if x, was outside I;, you could just take
I} again, otherwise if its inside I; just take an interval on one side or the other of it).
Continuing, we can easily choose an interval I,,; C I, which doesn’t contain x,, .

This gives us an infinite sequence of closed nested intervals inside a complete ordered
field, so Theorem 3.3 tells us that their intersection must be nonempty. That is, there
is some point y € [0, 1] where y € I, for all n.

What does this mean? Well, since y € I} we know y # x; since I; was purpose-built
to exclude x;. Similarly y € I, guarantees y # x,, and so on...y € I, means y # Xx;.
Thus, y is some point in [0, 1] which is not in our list!

Since y # f(n) for any n, we see that our original (arbitrary) function cannot have
been surjective. And, since bijections are both injective and surjective, this proves
there is no bijection from IN to [0, 1], so [0, 1] is uncountable! Then, as [0,1] C R we
see R is uncountable as well. O

This has some pretty wild corollaries if you have studied countable sets before. Here’s
a couple examples

Corollary 4.1 (Transcendental Numbers). There exist real numbers which are not the
solution of any algebraic equation with rational coefficients.
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Corollary 4.2 (Uncomputable Numbers). There exist real numbers which cannot be
computed by any computer program.

These are additional motivation for why we really need a precise theory of the real
numbers: with very little work we’ve already proven that there is no way to study
this number system with algebra alone - or even with the most powerful computer
you could imagine.

4.5. x Infinity

The real numbers do not contain any infinite numbers, but dealing with the infinite
is a key component of a real analysis course. To help us conduct such discussions rig-
orously we make clear what is meant (and what is not meant) by the infinity symbol
familiar from prevous mathematics courses.

Definition 4.6. The symbol oo is a formal symbol: that is, a symbol that we agree to
write, but do not attach any specific value to.
By default, any expression involving the symbol oo is considered undefined. We will

use define certain contexts where the symbol oo is meaningful below.

Our first use of the symbol oo is to expand interval notation of the real numbers. Right
now, using the order < we have rigorously defined intervals such as (a,b), [a,b) and
[a,b] for a,b € R.

Definition 4.7. For any real number a, we define the following intervals with oo as
an endpoint:

(—0,a) ={xeR|x<a}

(0.l ={x eR|x <a}

(a,00) ={x €R| x> a}

[a,0)={x€eR|x>a}

But we can take this farther, by actually adding the formal symbols +co to our number
system, to create a set called the extended reals.

Definition 4.8 (The Extended Reals). The extended real number line is the set

R = R u {—c0, oo},
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4. The Real Numbers

Definition 4.9 (Ordering on R). The order < on R can be extended to R by the fol-
lowing two rules:

Vx €R, x <o Vx €R, —o0o< x

This allows for interval notation on R where, we may may write intervals such as
[—o01] to mean the points {x | R | x < 1} etc.

In R then, oo is an upper bound for every set, and —co is a lower bound for every set.
On the real numbers alone, the completeness axiom tells us that the supremum of
bounded nonempty sets exist, but unbounded sets do not have a supremum. In the
extended reals, we see that oo naturally satisfy the definitions of

Proposition 4.2 (Unbounded Above means sup = o). Let A be a nonempty subset of
R which is not bounded above. Then as a subset of of the extended reals, sup A = oo.

Proof. By the definition of oo, we see that oo is an upper bound for A always, so we
need only show it is the supremum. Let x € R be any element less than co. Then x
must be an element of R, and since A is not bounded above in R, there is some a € A
with a > x. Thus x is not an upper bound, and so every element less than oo fails to
be an upper bound: that is, oo is the least upper bound as claimed. O

Exercise 4.7 (Unbounded Below means inf = —oo).

Corollary 4.3 (Sup and Inf in the Extended Reals). Every nonempty subset of the
extended real line has both an infimum and a supremum.

Proof. Let A be a nonempty subset of R. First, if A contains co, then sup A = oo as
it is the maximum. So, we can consider the case that co ¢ A. If A is bounded above
by a real number, then sup A is also a real number by completeness, and if A is not
bounded above, then sup A = oo by Proposition 4.2.

The same logic applies to lower bounds: after taking care of the case where inf A =
min A = —oo, if A is bounded below completeness furnishes a real infimum, and if it
is not, Exercise 4.7 shows the infimum to be —oo. O

In the extended reals, it is still common to take the infimum and supremum of the
empty set to be undefined. But there is also another option: one can assign inf@ = oo
and sup @ = —oo: if we do this then every set in the extended reals has an infimum
and supremum!
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4.6. x Topology

One final basic property of R that we will show follows from completeness is that its
“connected” - it really does form a continuous line.

Definition 4.10 (Connected). Let S be a subset of a topological space. Then a sepa-
ration of S is a pair of disjoint open sets U, V whose union is S.

A subset is called disconnected if there is a separation, and connected if there is no
way to make a separation.

Example 4.2 (A disconnected set). Let S={x € R|x > 0,x < 2, and x # 1}. Then S
is disconnected as we can write

S=(0,1)u(1,2)

And note these two intervals are both open, and dont share any points in common
(so they are disjoint).

It’s harder to imagine doing this for the interval (0, 2) however: if you try to imagine
cutting it into two disjoint intervals at some point x, you’re going to end up with
(0,x) u [x,2) or (0,x] u (x,2). In either case, these intervals are not both open! To
make them both open you could try (0, x) u (x, 2) but now they miss the point x (so
their union isnt the whole space) or (0, x+0.01)u(x—0.01, 2) but now they overlap and
aren’t disjoint. Intuitively there’s no way to do it - the interval (0, 2) is connected!

Theorem 4.12 (The Real Line is Connected).

Proof. Assume for the sake of contradiction that U u V is a separation of R (so, U,V
are nonempty open sets and every point of R is in exactly one of them).

Choose some x € U and y € V - we can do this because they’re nonempty - and
without loss of generality assume that x < y. Considering the interval [x,y] we
know the left side is in U and the right in V, so we can define the

Z={zexyll[x,z] cU}

This set is nonempty (as x € Z) and its bounded above (by y), so by completeness it
has some supremum ¢ = sup Z. Now the question is, which set is { in, U or V?

If { € V then we know that since V is open ther’s some small interval ({ — €, + €)
fully contained in V. But this means there’s a number smaller than { contained in V,
which means the interval [0, {] isnt fully contained in U, a contradiction!

If { € U then we know since U is open, that there must be some tiny open interval
({ —€,{ +€) around { contained U. This means there’s a number *larger than ¢ (for
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example, { + €/2) where [x,{ + €/2] is contained in U. So, { can’t even be an upper
bound to the set of all such numbers, a contradiction!

Both cases lead to contradiction, so there must be no such ¢, and hence no such
separation. O

Exercise 4.8 (Open Intervals of R are connected). Prove that every open interval
(a,b) C R is connected, mimicking the proof style above.

This fails for the rational numbers - they are not connected!

Theorem 4.13 (The Rationals are Not Connected). Consider the following two subsets
of the rational numbers:
A={x>0]|x*>2}

B={xecQ|x¢A}
Then A and B form a separation of Q.
Proof. A and B are open intervals in Q (they’re the rational points of the open inter-
vals (v/2,00) and (—o0,+/2)). By definition every point of Q is in either A or B and
they’re disjoint. Since we just showed they are open, they form a separation, so Q is

disconnected. O

In fact, Q is extremely disconnected - this same argument applies at every irrational
number of R.
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Highlights of this Chapter: we briefly explore the evolution of the mod-
ern conception of a function, and give foundational definitions for refer-
ence.

5.1. Freedom from Formulas

The term function was first introduced to mathematics by Leibniz during his devel-
opment of the Calculus in the 1670s (he also introduced the idea of parameters and
constants familiar in calculus courses to this day). In the first centuries of its math-
ematical life, the term function usually denoted what we would think of today as a
formula or algebraic expression. For example, Euler’s definition of function from his
1748 book Introductio in analysin infinitorum embodies the sentiment:

A function of a variable quantity is an analytic expression composed in
any way whatsoever of the variable quantity and numbers or constant
quantities.

As a first step to adding functions to our theory of real analysis, we would somehow
like to make this definition rigorous. But upon closer inspection, this concept, of
“something expressible by a (single) analytic expression” is actually logically incoher-
ent! For example, say that we decide, after looking at the definition of |x|, that it
cannot be a function as it is not expressed as a single formula:

—-x x<0
x| =
X x>0

But we also agree that x? and /x are both (obviously!) functions as they are given
by nice algebraic expressions. What are we then to make of the fact that for all real
numbers x,

Jx? = Ixd
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It seems we have found a perfectly good “single algebraic expression” for the absolute
value after all! This even happens for functions with infinitely many pieces (which
surely would have been horrible back then)

3 +sin(x) x € (0, 7]
f(x)=11+sin(x) x € (r,2n]
3 +sin(x) x € (2x,37]

This can be written as a composition involving just one piecewise function

f(x)=11+sinx|+2

Which can, by the earlier trick, be reduced to a function with no “pieces” at all:

fx)=2+ \/1 + 2sin(x) + sinz(x)

So the idea of “different pieces” or different rules, seemingly so clear to us, is not
a good mathematical notion at alll We are forced by logic to include such things,
whether we aimed to or not. This became clear rather quickly, as even Euler had
altered a bit his notion of functions by 1755:

When certain quantities depend on others in such a way that they un-
dergo a change when the latter change, then the first are called functions
of the second. This name has an extremely broad character; it encom-
passes all the ways in which one quantity can be determined in terms of
others.

The modern approach is to be much more open minded about functions, and define
a function as any rule whatsoever which uniquely specifies an output given an in-
put. This seems to have first been clearly articulated by Lobachevsky (of hyperbolic
geometry fame) in 1834, and independently by Dirichlet in 1837

The general concept of a function requires that a function of x be defined
as a number given for each x and varying gradually with x. The value
of the function can be given either by an analytic expression, or by a
condition that provides a means of examining all numbers and choosing

one of them; or finally the dependence may exist but remain unknown.
(Lobachevsky)

If now a unique finite y corresponding to each x, and moreover in such
a way that when x ranges continuously over the interval from a$ to b,
y = f(x) also varies continuously, then y is called a continuous function
of x for this interval. It is not at all necessary here that y be given in
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terms of x by one and the same law throughout the entire interval, and
it is not necessary that it be regarded as a dependence expressed using
mathematical operations. (Dirichlet)

Through this definitions added generality comes simplicity: we are not trying to po-
lice what sort of rules can be used to define a function, and so the notion can be
efficiently captured in the language of sets and logic.

Definition 5.1. A function from a set X to a set Y is an assignment to each element
of X a unique element of Y. If we call the function f, we write the unique element of
Y assigned to x € X as y = f(x), and the entire function as

f: X->Y

The definition of a function comes with three parts, so its good to have precise names
for all of these.

Definition 5.2. If f is a function, its input set X is called the domain, and the set of
possible outputs Y is called the codomain. The set of actual outputs, thatis R = {f(x) |
x € X} 1is called the range.

If the codomain of a function f is the real numbers, we call f a real-valued function.
We will be most interested in real valued function throughout this course.

5.2. Composition and Inverses

Likely familiar from previous math classes, but it is good to get rigorous definitions
down on paper when we are starting anew.

Definition 5.3 (Composition). If f: X — Yand g: Y — Z then we may use f to
send an element of X into Y, and follow it by g to get an element of Z. The result is
a function from X to Z, known as the composition

gof: X—>Z g° f(x) := g(f(x))

Every set has a particularly simple function defined on it known as the identity func-
tion: idy : X — X is the function that takes each element x € X and does nothing:
idx(x) = x. These play a role in concisely defining inverse functions below:

Definition 5.4 (Inverse Functions). If f: X — Y is a function, and g: Y — X is
another function such that

ge f=idyx feog=idy
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Then f and g are called inverse functions of one another, and we write g = ! if we
wish to think of g as inverting f, or f = g~ ! rather we started with g, and think of f
as undoing it.

Example 5.1. The function f(x) = 2x and g(x) = x/2 are inverses of one another
as functions R — R.

The squaring function s : R — R defined by s(x) = x? has the square root as an in-
verse, only if the domain and codomain are restricted to the nonnegative reals. Oth-
erwise, we see that s(—2) = 4 and J4 = 2so Jes is not the identity: it takes —2 to
2!

5.3. Useful Terminology

Definition 5.5 (Restricting the Domain). Given a function f with domain D, the
restriction to a subset S C D is denoted f|s.

Definition 5.6. Givena function vyith a domain D, an extension of f to aset X D D
is a function f: X — R such that f|p = f.

Definition 5.7 (Increasing / Decreasing). A function f is (monotone) increasing if
for all x < y we have f(x) < f(y). It’s monotone decreasing if instead x < y implies
f(x) = f(y). A function is strictly increasing if x < y impleis f(x) < f(y), and
analogously for strictly decreasing.

Exercise 5.1. If f is a strictly increasing function, then it is one-to-one: every output
y is achieved by a unique input x.

This exercise implies that strict monotone functions are invertible, as the inverse of
any one-to-one function is defined by sending a given y to the unique x that maps to
it.

Definition 5.8 (Convexity). Let f be a function defined on some interval (possibly
all of R). Then f is convex if for any interval [x, y] C domf, the value of f at the
midpoint exceeds the average value of f at the endpoints:

Ve, y f(x;ry) S f(x);rf(y)

A function f is said to be monotone or convex (etc) on a set S if the restriction of f to
S is monotone / convex.
Definition 5.9 (Local Extrema).

« Increasing Decreasing
« Convex
« Local Extrema
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5.4. A Zoo of Examples

Example 5.2 (Polynomial Functions). A polynomial function is an assignment
p: R — R which takes each x to a linear combination of powers of x:

Pp(x) = @, X" + ap_ 1 X"+ agx + ag

The highest power of x appearing in p is called the degree of the polynomial.

The idea of a function defined by a formula can be extended even farther by allowing
the field operation of division; though this time we must be careful about the inputs.

Example 5.3 (Rational Functions). A rational function is a an assignment

p(x)
(=22
/ q(x)
where p and q are polynomials. Rational functions are real-valued, but their domain
is not all of R: at any zero of q the formula above is undefined, a rational function is
only defined on the set of points where g is nonzero.

We already saw that piecewise formulas count in our modern definition, but perhaps
didn’t fully think through the implications: they can be very, very piecewise

Example 5.4 (The Characteristic Function of Q). The function f : R — R defined as
follows
1 x€Q

f<x>={0 eo

Here’s another monstrous piecewise function we will encounter again soon:
Example 5.5 (Thomae’s Function). This is the function 7 : R — R defined by

1 e Qand § is lowest terms.

T(x)ziq
0 x¢Q

We’ve stressed that functions don’t need to be given by explicit formulas, so we should
give an example of that: here’s a function that is defined at each point as a different
limit (using the completeness axiom)

Example 5.6. A function may be defined for each x € R as the limit of a sequence,
such as

nok
. x
E(x) = nllrrolo k:EO a
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A function can also be defined by a less explicit limit procedure, like the limits defin-
ing powers: where we’ve previously seen that any sequence r,, — x of rationals
converging to x produces the same limiting value of a».

Example 5.7 (Exponential as Powers). For any x € R and a > 0 the function f(x) =
a® is defined by
a* =lima™
n

for r,, a sequence of rational numbers converging to x.

A function can also be defined by an existence proof telling us that a certain rela-
tionship determines a function, without giving us any hint on how to compute its
value:

Example 5.8 (/- defined by an existence theorem). We proved that for every x > 0
that there exists some number y > 0 with y> = x, back in our original study of
completeness (Theorem 4.9).

We can easily see that such a number is unique: if y; # y, then by the order axioms
one is greater: without loss of generality 0 < y; < y,. Thus y? < yZ, so we can’t have
both y? = x and y? = x, and x — y = \/x is a function.

Alright - that’s plenty of examples to get ourselves in the right mindset. Let’s give a
non-example, to remind us that while there need not be formulas, the modern notion
of function is not ‘anything goes’!

Example 5.9. The assignment taking an integer to one of its prime factors does not
define a function. This would take the integer 6 to both 2 and 3, and part of the
definition of a function is that the output is unique for a given input.

Exercise 5.2 (Invertibility implies Monotonicity). Let f be an invertible function.
Prove that f is (strictly) monotone increasing, or (strictly) monotone decreasing.
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This part of the text covers the elementary theory of sequences:

In Chapter 6 we define sequences and convergence, and see how to prove
lims, = L directly from the definition.

In Chapter 7 we study the arithemetic of convergent sequences, and prove the
limit laws familiar from an introductory calculus course.

In Chapter 8 we prove the monotone convergence theorem which gives simple
conditions that ensure the convergence of a sequence, and use this to study
infinite processes and the square root calculating algorithm of the babylonians.

In Chapter 9 we extend the reach of our theory to cover non-monotone se-
quences, by decomposing them into subsequences and investigating the result-
ing limits.

In Chapter 10 we define the notion of a Cauchy sequence, and prove it is equiv-
alent to convergence. This lets us study all sorts of new convergent sequences,
such as contraction maps.

In ?@sec-sequences-iterated we get a first look at the complications that
arise when multiple limits interact in a single expression. Such limits underlie
many interesting situations in analysis, from the theory of power series, to the
commutativity of partial derivatives and the ability to differentiate under the
integral.
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Having formalized the number line, we can now get to work. If we want to rigorously
understand any of the approximation efforts of the ancients, we must think about
sequences.

Definition 6.1 (Sequence). A sequence is an infinite ordered list of numbers

(51552553 - » Sp» --+)

Each individual element is a term of the sequence, with an subscript (the index) de-
noting its position in the list.

Most often, we take the set of indices to be 1,2,3,..., but any infinite subset of the
integers will do. For example, the sequence p,, of perimeters of inscribed n-gons starts
with index 3 (the triangle), as this is the smallest polygon. And, the subsequence
Archimedes used to calculate 7 started with the hexagon and then iterated doubling:
Py, Py, Poy, ... so has index set

{6,12,24,48,96,192,384, ...}

Formally, we note all of this is captured using functions, though we will not need this
perspective during our day-to-day usage of sequences.

Remark 6.1. Let I C Z be any infinite set of indices. Then a sequence is a function
s: I —>R

While sequence itself is just an infinite ordered list of numbers, to work with such
an object we often require a way to compute its terms. Sometimes this is hard! For
example, the sequence

7, = the number of prime numbers < n

Is called the prime counting function, and being able to compute its exact values effi-
ciently would be monumental progress in number theory. In practice, sequences that
we can compute with efficiently are often presented to us in one of two ways:

+ Closed Formula For each n, we are given some formula of the type familiar
from high school mathematics, and plugging n into this formula yields the n'"
term of the sequence. Some examples are
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2
n“+1 . (1 n
a, = , bnzsm(—> =41+ Jn
3n—2 n n+1
« Recursive Definition For each n, we are not given a formula to compute s,
directly, but rather we are given a formula to compute it from the previous

value s,_q.

Here’s some example sequences that are important both to us, and the history of
analysis:

Example 6.1 (Babylonians and +/2). Starting from rectangle of width and height w, h,
the Babylonians created a new rectangle whose width was the average of these, and
whose height was whatever is required to keep the area 2:

w+h 2

Whew = 5 hpew =

Whew

This because we can solve for & in terms of w, this induces a recursive sequence for
the widths. Starting from some (w,, h,,) we have

W+ =
Wpth, P w1

W, =

ntl 2 2 2w,

Thus, in modern terminology the babylonian procedure defines a recursive sequence,

given any starting rectangle. If we begin with the rectangle of wdith 2 and height 1,
we get

w =2, Wit = -+ -
Wn

Exercise 6.1 (Babylonians and +/2). Following the same type of reasoning as for
width, use the babylonian procedure to produce a recursive formula for the sequence
of heights hy,, for a rectangle starting with h = 1.

Example 6.2. An infinite sum is a type of recursively defined sequence, built from
another sequence called its terms. Assume that g, is any sequence. Then we build a
sequence s, by

So = do Sp+1 = Sp—1 T ap

Unpacking this, we see that s; = sy +a; = ag +4a;, and thus s, = s; +ay = ay+a; +ay
etc.
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6.1. Convergence

The reason to define a sequence precisely is that we are interested in making rig-
orous the idea of infinitely many steps, the way the Babylonians may have pictured
running their procedure an infinite number of times to produce a perfect square, or
Archimedes who ran his side-doubling procedure infinitely many times to produce a
circle.

In both cases, there was some number L out there at infinity that they were probing
with a sequence. We call such a number L the limit of the sequence.

Definition 6.2 (Convergent Sequence). A sequence s, converges to a limit L if for all
€ > 0 there is some threshold N past which every further term of the sequence is
within € of L. Formally, this is the logic expression

Ve >03INVn> N |s, — L| <e
When a sequene converges to L we write

lims, =L or sp =~ L

A sequence is divergent if its not convergent. The definition of convergence formal-
izes the idea the ancients sought if you keep calculating terms, you’ll get as close
as you like to the number you seek

That is, the definition sets up a challenge between you (the computer of the sequence)
and the error tolerance. Once you set a certain amount of acceptable error e, the
definition furnishes an N and guarantees that if you compute the sequence out until
N you’ll be within the tolerated error - and if you keep computing more terms, the
approximation will never get worse. Its good to look at some specific examples, while
getting comfortable with this:

Exercise 6.2 (Understanding Convergence). Consider the sequence a, = ﬁ Feel
free to use a calculator (even just the google search bar) to experiment and answer

these questions.

« What value L do you think this sequence converges to?
« If e = 1/10, what value of N ensures that a, is always within e of L for,n > N?
« Ife = 1/100, what value of N ensures that a, is always within € of L for,n > N?

Exercise 6.3 (Convergence and v/2). This problem concerns the babylonian sequence
for /2 in Example 6.1. Again, use a calculator to play around and answer the following

« For which value of N are we guaranteed that w, calculates the first two decimal
places /2 correctly, when n > N?

« For which value of N are we guaranteed that w, calculates the first eight deci-
mal places v/2 correctly, when n > N?
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6. Convergence

6.1.1. The e — N Game

To prove a sequence converges, we need to work through the string of quantifiers
VeaNVn... This sets up a sort of imagined battle between an imagined foe setting a
value of €, and you needing to come up with an N such that you can get the sequence
within e of the limit.

Here’s one incredibly useful example, that will serve as the basis of many future cal-
culations.

Proposition 6.1 (1/n converges to 0.). Prove that the sequence s, = 1/n of reciprocals
of the natural numbers converges to 0.

Proof. Let € > 0. Then set N = 1/¢, and choose arbitrary n > N. Since n > 1/e it
follows that 1/n < €, and hence that

1<
n

Since n > N was arbitrary, this holds for all such n, and we have proved for this e,
theres an N with n > N implying the sequence 1/n is within € of the proposed limit
0. Since € was also arbitrary, we have in fact proved this for all positive epsilon, and
thus we conclude

50
n

O

Often when working out such a computation, the scratch work is backwards of the
final proof. In a proof, you need to fix an arbitrary epsilon, then

Exercise 6.4 (# converges to 1).

Sometimes the scratch work takes a bit more thinking or algebraic manipulation. Its
OK if the scratch work isn’t fully rigorous or perfectly written, as long as the eventual
proofis! Here’s an example of some scratch work taking a naive approach (just “solve
for n”) that arrives at an easy bound, and a nice formal proof verifying it.

Example 6.3 ( converges to 0.).

n
n+1

Scratch. We want nzL < €, and we attempt to solve this inequality for n by multiply-
ing through and using the quadratic formula:

n<en*+e = 0<en’—n+e
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6.1. Convergence

The zeroes satisfy

_ 1441 —4€2

2e

n

The larger of these is the one with the + sign, so as long ad n is bigger than this the
proof will work. This term as written is rather annoying to deal with as we have
1 — 4€® under the square root, and to do a formal proof using it as is, we’d need to
ensure this wasn’t negative. But since we are only looking for a bound, we can use

that
1+ 41— 4€? cS1r1 1

2€ 2e €

and just require n > é O

1 1
< —_
n?+1 n?

Formal. Lete > 0 and set N = é For any n > N we see that niz < €, and
1

o < €2. Multiplying by n gives

SO

1
> <ne < - =e¢
n“+1 €

Thus for any n > N we have ‘# - 0‘ < € so the sequence converges to 0 by defini-
tion. O

Example 6.4 (zin — 0). Here’s a sketch of an argument: you should fill in the details.
Let € > 0. Then we want to find an N where n > N implies 1/2" < e. First, we prove
by induction that 2" > n for all n. Thus, 1/2" < 1/n, and so it suffices to find N where
1/n < e. But this is exactly what we did above in the proof that 1/n — 0. So this is
possible, and hence 1/2" — 0.

Exercise 6.5. Give an example of the following, or explain why no such example can
exist.

« A sequence with infinitely many terms equal to zero, but does not converge to
Zero.

+ A sequence with infinitely many terms equal to zero, which converges to a
nonzero number.

« A sequence of irrational numbers that converges to a rational number.

« A convergent sequence where every term is an integer.

Exercise 6.6. Prove, directly from the definition of convergence, that

2n—2 2
—

Sn+1 5
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6.1.2. Divergence

The definition of convergence picks out a very nice class of sequences: those that get
arbitrarily close to a fixed value, as their index grows. The rest of sequences - anything
that does not have this nice property, are all lumped into the category of divergent.

Definition 6.3 (Divergence). A sequence diverges if its not true that for any € you
can find an N where beyond that, all terms of the sequence differ from some constant
(the limit) less than e.

Phrasing this positively: a sequence a, diverges if for every value of a, there exists
some € > 0 where no matter which N you pick, there’s always some n > N where
|a, — a| > €. There’s a lot of quantifiers here! Written out in first order logic:

Va€RI>0VYNIn>N |a,—a|l>¢
Again, its easiest to illustrate with an example:

Example 6.5 ((—1)" Diverges). Here’s the idea: The sequence s, = (—1)" alternates
back and forth from 1 to —1 forever. Assume for the sake of contradiction that it in
fact converges to some real number L. Then (by definition) eventually all terms must
get within € of L, but this is impossible if € is small as every term differs from its
successor by 2.

Proof. Note that for all n, |s, — s,,1| = 2 as when n is even this is |1 — (—1)| = |2| and
when nis odd its | — 1 —(1)| = | — 2|. Assume for the sake of contradiction thats, — L
for some L € R, and set € = % This implies there exists an N such that for alln > N

we have |s, — L| < % Choosing some n > N we use the triangle inequality to see

2=ls,—spp1l =lsp =L+ L—s,41| <lsp—Ll+|L—-s+n+1<e+e=1

Thus we’ve proven 2 < 1 which is a contradiction, so it must not be true that's, — L
for any L: the sequence diverges. O

Definition 6.4 (Diverging to +o). A sequence s, diverges to oo if for all M > 0
there exists an threshold past which the sequence is always larger than M. As a logic
statement,

VM >03Nvn> Ns, > M

Exercise 6.7 (n® diverges to c.).

Exercise 6.8.

« Give an example of two divergent sequences a,, b, where a, + b, is convergent.
« Give an example of two divergent sequences a,, b, where a,b, is convergent.
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6.2. Uniqueness

Theorem 6.1 (Limits are unique). Let a, be a convergent sequence. Then there exists
a unique a € R with a, — a.

Here’s a sketch of the idea, which uses several big ideas that can be recycled in similar
arguments:

« We prove uniqueness by showing that if x and y were both limits, then x = y.
« We prove x = y by showing that for every e > 0 the difference |x — y| < e.
« We prove |x — y| < € by an €/2 argument:

— We add zero in a clever way: |x — y| = |x —a, + a, — y|

— We use the triangle inequality |x — a, + a, — y| < |x — a,| + |a, — ¥

— We use the fact that @, — x and a, — y to make each of |a,, — x| and |a,, — y|
less than /2.

Proof. Assume that a sequence a, converges to two limits a, — x and a,, = y. Then
for any € we can find an N; where n > Nj implies |a, — x| < €/2 and an N, where
n > N, implies |a, — y| < €/2. Setting N = max{N;, N,} we see for any n > N that

|x_Y|=|x_an+an_y‘£|x_an|+|an_))|<§+§:E

Thus for any positive € we know |x — y| < ¢, so in particular |x — y| # €, and |x — y|
can’t be positive. Since absolute values are always nonnegative, the only remaining
option is that [x — y| = 0. But this means x — y = 0 and hence x = y: the two limits
are equal. O

There’s one more uniqueness-type theorem about limits that’s useful to get a handle
on. We just saw that the limit is uniquely determined by the sequence, but we can
say something slightly stronger. Its uniquely determined by the end of the sequence:
if you throw away the first finitely many terms, it won’t change the limit.

Definition 6.5. A shifted sequence the result of shifting the indices by a constant k,
deleting the first k terms. Precisely, given a sequence g, and some k € IN, the sequence
Sp = Ak 18 the result of shifting a by k.

So = k> S1 = Gk+15>52 = Qfe+25 -+

Proposition 6.2. Shifting a convergent sequence does not change its limit.
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Scratch Work. Assume that a, converges to a, and define the sequence s, by deleting
the first k terms of a,, that is, s, = a,x. We claim that s, — a.

Let € > 0 and choose an N such that if n > N we know that |a, — a| < € (we know
such an N exists by the assumption a, — a). Now consider [s, — a|. Since s, = a4,
we know |s, — a| < € because we already knew |a,,; — a| < €: we knew this for every
single index bigger than N.

Thus, for all n > N we have |s, — a| < €, which is the definition of s, — a. O

This can be generalized, to show that any two sequences which are eventually the
same have the same limit. Since the first finite part of any sequence is irrelevant
to its limiting behavior, its nice to have a word for “the rest of the sequence, after
throwing away an unspecified amount at the beginning”. This is called the tail.

Definition 6.6 (Tail of a Sequence). The tail of a sequence is what remains after
chopping off an arbitrary (finite) number of terms from the beginning of the sequence.
Two sequences have the same tail if they agree after some point: more precisely, a,
and b, have the same tail if there is an N, and N, such that for all k € N

AN +k = bNb+k

Example 6.6 (Tail of a Sequence). The following two sequences have the same tail:
a,=1,1,4,3,1,5,1,3,1,4,7,8,9,10,11, 12,13, 14, ...

b, = —4,3,9,10,11,12,13,14,15,16,17,18 ...

We can see this because a;3 = b3 = 9, and aj4 = by = 10, and a;5 = b5 = 11...for every
k we have that a;3, = b3 so they agree after chopping the first 12 terms off of a,
and the first two terms off of b,,.

Exercise 6.9 (Convergence only depends on the tail). If two sequences have the same
tail, then they either both converge or both diverge, and if they converge, they have
the same limit.

6.3. Important Sequences

We will soon develop several theorems that let us calculate many limits without te-
diously chasing down an N for every €. But there are still several ‘basic limits’ that we
will need to know, that will prove useful as building blocks of more complicated lim-
its, as well as foundations to further theory in analysis. We compute several of them
here: you should not worry too hard about committing these to memory; but rather
read the proofs as examples of how to play the € — N game in tricky situations.

The first and most important is familiar from above:
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Example 6.7. Asn — oo the sequence 1/n converges to 0.

The next is useful in developing the theory of power series, and other things. We’ll
prove it using Bernoulli’s inequality:

Example 6.8. Let |a| < 1, then the sequence a" of repeated powers of a converges to
0.

Proof. First note that if a = 0 then ¢" = 0" = 0, which clearly converges to zero so
we can assume a # 0 in what follows.

Let € > 0. We wish to find an N such that n > N implies |[a" — 0| = |[@"] = |a|" < e.
Since |a| < 1 by assumption, we know 1/|a| > 1 and so we may write 1/]a] = 1+ x for
some x > 0. This is helpful because Bernouli’s inequality tell us that

(1+x)">1+nx>nx

and so, we know
o= —t <1 <1
(1+x)* = 1+nx ~ nx

For this to be less than €, we need 1/nx < €, orn > é Thus setting N = i will do
it. O

This proof is OK as written because it produces a value of N in terms of epsilon,
and also shows (in the previous line) for larger n that the quantity we are trying to
bound is even smaller. But it might be more readable to rewrite it in “reverse”: first
proposing the value N = 1/xe we discovered, and then showing it works (do this as
an exercise). As another exercise, its useful to look at what happens for a > 1.

Exercise 6.10. If a > 1 then a" diverges to infinity.

This next is an essential building block of the theory of exponential functions: we
again make use of Bernoulli’s inequality in the proof below, but suggest an alternative
(second) proof as an exercise

Example 6.9. Let a > 0. Then the sequence al/n converges to 1.

Proof. We proceed in two cases, starting first with a > 1. Fix an € > 0; we want to
find an N where n > N implies |a!/" — 1| < €. Since a < 1 is positive, it follows that
al/" > 1/" = 1. Call b, = a'/™ — 1 the quantity we are trying to show is small. Then
we can apply Bernoulli’s inequality to see

a= (al/">n =1 +b)" > 1+nb, >nb,$
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6. Convergence

Thus, for all n, we see 0 < b, < % and for this to be less than ¢, we need only assure
a/n < eson>a/e: choosing N = a/e will do.

n>N=2 — b, =ld/"-1<e
€

Now we turn to the second case, which is 0 < a < 1. Note that for any a in this case

1
we know 1/a > 1, so the work we just did applies directly to 1/a, and ( ) /n - 1.

Unpacking this, that means for any € > 0 there is some N wheren > N 1mphes

1
a—n—1‘<6

We can simplify the fraction inside the aboslute value and then multiply the entire
inequality through by a!/" to see

1— l/l’l
‘—a <e = [1-a/" <eal/m

al/n

But since 0 < a < 1 we know a'/" < 11/ = 1 5o the right hand side is already less
than €, and we are done. O

Exercise 6.11. In this problem you give an altenative proof that a'/" - 1 for all
a > 0, using the geometric sum. Recall, this stated that for any |r| < 1 and n € N,

-1 _ l—r"
1—r

T+r+ri+.pm

« First consider only the case that a > 1. Show that the geometric sum can be
rewritten ¥ — 1 = (r — 1)(1 + r + 2 + - + " 1), and use this to prove that
a—12>n(a"/" - 1). Hint: apply it tor = a'/" and do some estimating.

« Use this to show that 0 < a'/"—1 < %! for all n, and then prove (either directly,
or using the squeeze theorem) that thls implies a n 1.

« Now consider the case 0 < a < 1 and show the same. Hint: if 0 < a < 1 then
1/a > 1, and perhaps you can do a similar trick to the textbook?

As a (challenging!) exercise, one might consider what happens if instead of taking
the n'" root of a fixed constant, we take the n'" root of n itself. This

Exercise 6.12. The sequence nl/n converges to 1.
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6.4. x Topology

With an eye to topology, everything about sequences and convergence can be
rephrased in terms of open sets, instead of with talk about € and inequalities.

Definition 6.7 (Neighborhoods). A neighborhood of a point x is any open set U con-
taining x. The e-neighborhood of x is the neighborhood U, = (x — €, x + ¢€)

Definition 6.8 (Convergence and e-Neighborhoods). A sequence a, converges to a
if every € neighborhood contains all but finitely many terms of the sequence.

That this is equivalent to Definition 6.2, because the definition of epsilon neigh-
borhood exactly captures the interval discussed in the original definition of conver-
gence.

Exercise 6.13 (Convergence and e-Neighborhoods). The definition of convergence
in terms of epsilon neighborhoods is equivalent to the usual definition in terms of
absolute values and inequalities.

The definition of an epsilon neighborhood makes sense only somewhere like the real
line, where we can talk about intervals. So, the general topological definition must

dispense with this notion and talk just about open sets:

Definition 6.9. A sequence a, converges to a if every neighborhood contains all but
finitely many terms of the sequence.

Exercise 6.14 (Convergence and Neighborhoods). Prove this is equivalent to con-

vergence using € neighborhoods. Hint: show that every neighborhood contains some
epsilon neighborhood. Can you show that is enough?

6.5. Problems

Exercise 6.15. Come up with a recursive sequence that could be used to formally
understand the infinite expression below:

\/1+\/1+\/1+\/ﬁ

Exercise 6.16. Given two sequences x;, y, that converge to a, show the interleaved
sequence Xi, i, X, Jo, ... converges to a.

Exercise 6.17. Let a, — 0 and let b, be a sequence such that for all n you know
|b, — L| < ay,. Prove that limb, = L.
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7. Limit Laws

Highlights of this Chapter: We develop techniques for bounding lim-
its by inequalities, and computing limits using the field axioms. We use
these techniques to prove two interesting results:

« The Babylonian sequence approximating v/2 truly does converge to
this value.

« Given any real number, there exists a sequence of rational numbers
converging to it.

Now that we have a handle on the definition of convergence and divergence, our
goal is to develop techniques to avoid using the definition directly, wherever possible
(finding values of N for an arbitrary ¢ is difficult, and not very enlightening!)

The natural first set of questions to investigate then are how our new definition inter-
acts with the ordered field axioms: can we learn anything about limits and inequali-
ties, or limits and field operations? We tackle both of these in turn below.

7.1. Limits and Inequalities

Proposition 7.1 (Limits of nonnegative sequences). Let a, be a convergent sequence
of nonnegative numbers. Then lim a,, is nonnegative.

Proof. Assume for the sake of contradiction that a, — Lbut L < 0. Since L is negative,
we can find a small enough epsilon (say, € = |L|/2) such that the entire interval
(L — ¢, L + €) consists of negative numbers.

The definition of convergence says for this €, there must be an N where for alln > N
we know a, lies in this interval. Thus, we’ve concluded that for large enough n, that
a, must be negative! This is a contradiction, as a, is a nonnegative sequence. O

Exercise 7.1. If a, is a convergent a, > L for all n, then lima, > L. Similarly prove
if a, is a convergent a, < U for all n, then lima, <U.

This exercise provides the following useful corollary, telling you that if you can bound
a sequence, you can bound its limit.
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Corollary 7.1 (Inequalities and Convergence). If a, is a convergent sequence with
L <a, <U foralln, then
L<lima, <U

In fact, a kind of converse of this is true as well: if a sequence converges, then we
know the limit ‘is bounded’ (as it exists, as a real number, and those can’t be infinite).
But this is enough to conclude that the entire sequence is bounded!

Proposition 7.2 (Convergent Sequences are Bounded). Let s, be a convergent se-
quence. Then there exists a B such that |s,| < B for alln € IN.

Proof. Lets, — L be a convergent sequence. Then we know for any € > 0 eventually
the sequence stays within € of L. So for example, choosing € = 1, this means there is
some N where for n > N we are assured |s, — L| < 1, or equivalently -1 <'s, — L < 1.
Adding L,

L-1<s,<L+1

Thus, we have both upper and lower bounds for the sequence after N and all we are
left to worry about is the finitely many terms before this. For an upper bound on
these we can just take the max of sq,...,sy and for a lower bound we can take the
min.

Thus, to get an overall upper bound, we can take

M = max{s, sy,...,sn, L+ 1}

and for an overall lower bound we can take

m = min{s;, s5, ..., Sy, L — 1}
Then for all n we have m < s, < M so the sequence s, is bounded. O

Theorem 7.1 (The Squeeze Theorem). Letay,, b, andc, be sequences witha, < b, < c,
for all n. Then if a, and ¢, are convergent, with lima, = limc¢, = L, then b, is also
convergent, and

limb, =L

Proof. Choose € > 0. Since both a,, — L, we can choose N, such that n > N, implies
la, — L| < €, and similarly as ¢, — L there’s an N, with n > N, implying $|c_n-L|<K.
Set N = max{N,, Ny} and note that for any n > N this means —e¢ < a, — L < ¢
and —e < ¢, — L < e. Since g, < ¢, by assumption, we can string these inequalities
together to get

98



7.1. Limits and Inequalities

—-€<a,—L<c¢,—L<e

But we know more than this: in fact, g, < b, < ¢, and subtracting L allows us to
squeeze this directly into the one given above:

—-€<a,—L<b,—L<c,—L<e

Ignoring the terms with a, and ¢,, this says —e < b, — L < ¢, or |b, — L| < €. Thus
b, — L as claimed. O

7.1.1. Example Computations

The squeeze theorem is incredibly useful in practice as it allows us to prove the conver-
gence of complicated looking sequences by replacing them with two (hopefully sim-
pler) sequences, an upper and lower bound. To illustrate, let’s look back at ?@exr-
another-seq-converges, and re-prove its convergence.

Example 7.1 (nz—':l converges to 0.). Since we are trying to converge to zero, we want
to bound this sequence above and below by sequences that converge to zero. Since n
is always positive, a natural lower bound is the constant sequence 0, 0,0, ....

< —_—
2+1 n+1
(as we've made the denominator smaller), and so we have bounded our sequence
0 < a;, < —. Unfortunately this does not help us, as lim T = 1 (Exercise 6.4) so

the two bounds do not squeeze g, to zero!

One first thought for an upper bound may be —: its easy to prove that

Another attempt at an upper bound may be 1/n: we know this goes to zero (Proposi-
tion 6.1) and it is also an upper bound:

Thus since lim 0 = 0 and lim % =
as well.

n
241

This theorem is particularly useful for calculating limits involving functions whose
values are difficult to compute. While we haven’t formally introduced the sine func-
tion yet in this class, we know (and will later confirm) that —1 < sin(x) < 1 for all
x € R. We can use this to compute many otherwise difficult limits:
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Example 7.2 (s, = % converges to 0.). Since —1 < sin(x) < 1 we know 0 <
| sin x| < 1 for all x, and thus
0< sinn

<

B

n

Since both of these bounding sequences converge to zero, we know the original does
as well, by the squeeze theorem.

This sort of estimation can be applied to even quite complicated looking limits:

Example 7.3. Compute the following limit:

) (nz sin(n® — 2n + 1))n
lim
n+n?+n+1

Lets begin by estimating as much as we can: we know |sin(x)| < 1, so we can see
that

n?sin(n® — 2n+ 1) n?
nm+n+n+1 n+n2+1

Next, we see that by shrinking the denominator we can produce yet another over
estimate:

Bringing back the n" power

n
n®sin(n® — 2n + 1) < 1
n+n?+n+1 n"

And, unpacking the definition of absolute value:

1 < (nz sin(n® — 2n + 1))n < 1
n" n+n?+n+1 n"

It now suffices to prove that 1/n" converges to zero, as we ve squeezed our sequence

with it. But this is easiest to do with another squeeze: namely, since n" > 2" we see

0 < 1/n" < 1/2", and we already proved that 1/2" — 0, so we’re done!

n

=0

. (n2 sin(n® — 2n + 1))
lim
n+n?+n+1
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Exercise 7.2. Use the squeeze theorem to prove that

n3—2—i3
lim| ——& =0
3n3 +5

A nice corollary of the squeeze theorem tells us when a sequence converges by esti-
mating its difference from the proposed limit:

Exercise 7.3. Let a, be a sequence, and L be a real number. If there exists a sequence
o, where |a, — L| < &, for all n, and &, — 0, then lima, = L.

This is useful as unpacking the definition of absolute value (Definition 2.5), a sequence
a, with
-0y, <a,—L< o

can be thought of as giving “error bounds” on the difference of a, from L. In this lan-
guage, the proposition says if we can bound the error between a, and L by a sequence
going to zero, then a, must actually go to L.

7.2. Limits and Field Operations

Just like inequalities, the field operations themselves play nicely with limits.

Theorem 7.2 (Constant Multiples). Lets, be a convergent sequence, and k a real num-
ber. Then the sequence ks, is convergent, and

limks, = klims,

Proof. We distinguish two cases, depending on k. If k = 0, then ks, is just the constant
sequence 0,0,0... and klims,, = 0 as well, so the theorem is true.

If k # 0, we proceed as follows. Denote the limit of s, by L, and let € > 0. Choose N

such that n > N implies |s, — L| < ﬁ (we can do so, as s, = L). Now, for this same

value of N, choose arbitrary n > N and consider the difference |ks, — kL|:

lksy — kL| = |k(s, — L)| = |klls, — LI < % =¢
Thus, ks, — kL as claimed! O

To do a similar calculation for the sum of sequences requires an €/2 type argument:
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Theorem 7.3 (Limit of a Sum). Let s,,t, be convergent sequences. Then the sequence
of term-wise sums s, + t,, is convergent, with

lim(s, + t,) = lims, + limt,

This is a great example of a classic proof technique known as an €/2 argument that
we will use many times.

Proof. Let € > 0 be arbitrary. Since we know that both a, and b, converge, we can
provide notation for their limits - specifically, lima, = A, and limb,, = B. Since a, — A,
there exists some N, such that for any n > N, |a, — A| < % Similarly, since b, — B,

there exists some N, so that for any n > N, |b, — B| < g Lets set N equal to the
maximum of the set {N,, N;}. This means that if n > N,

la, — Al + b, — Bl < €
According to the triangle inequality, we also know that
(ay — A) + (b, = B)| < |a, — A + [b, — B
so by combining the previous two inequalities we know that

l(a, —A)+ (b, —B)l <e
= |(a,+b,)—(A+B)|<e

This is equivalent to the convergence definition saying that lim (a, + b,) = A+ B =
lim a, + lim b,,. O

Corollary 7.2 (Limit of a Difference). Let s,,t, be convergent sequences. Then s, —t,
is convergent and
lim(s, —t,) = lims, — lim#t,

Proof. Rewrite s, — t, as s, + (—t,). Note that since #, is convergent we know the
multiple —t, is convergent, with lim¢, = ¢ implying lim(—t,) = —t by Theorem 7.2.
Now using the limit of sums (Theorem 7.3) we see since s, and —t, are convergent so
is s, + (—t,), and
lim(s, + (-t,)) = lims, + lim(—t,) = lims, + (—1) lim¢t, = lim's, — lim#,
O

The case of products is a little more annoying to prove, but the end result is the same
- the limit of a product is the product of the limits.
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7.2. Limits and Field Operations

Theorem 7.4 (Limit of a Product). Let s,,t, be convergent sequences. Then the se-
quence of term-wise products s,t, is convergent, with

lim(s,t,) = (lims,) (lim#,)

Sketch. Lets, — S andt, — T be two convergent sequences and choose € > 0. We
wish to find an N beyond which we know s,t, lies within € of $ST.

To start, we consider the difference |s,t, — ST| and we add zero in a clever way:

suty — ST| = |spty, — $u T + $,T — ST| = |(suty, — spT) + (s,T — ST)|

applying the triangle inequality we can break this apart

|sntn - ST| < |sntn - snT| + |snT - ST| = ‘sn”tn - Tl + |sn - SHT'

The second term here is easy to bound: if T = 0 then its just literally zero, and if T # 0
then we can make it as small as we want: we know s, — S so we can make [s, — S|
smaller than anything we need (like €/T, or even €/2T if necessary).

For the first term we see it includes a term of the form [t, — T| which we know we can
make as small as we need to by choosing sufficiently large N. But its being multiplied
by |s,| and we need to make sure the whole thing can be made small, so we should
worry about what if |s,,| is getting really big? But this isn’t actually a worry - we know
s, is convergent, so its bounded, so there is some B where [s,| < B for all n. Now we
can make |, — T| as small as we like, (say, smaller than ¢/B or €/2B or whatever we
need).

Since each of these terms can be made small as we need individually, choosing large
enough n’s we can make them both simultaneously small, so the whole difference
sut, — ST| is small (less than €) which proves convergence. O

Exercise 7.4. Write the sketch of an argument above in the right order, as a formal
proof.
Corollary 7.3. If p is a positive integer then

. 1
hmn—p—O

Hint: Induction on the power p

The next natural case to consider after sums and differences and products is quotients.
We begin by considering the limit of a reciprocal:
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7. Limit Laws

Proposition 7.3 (Limit of a Reciprocal). Lets, be a convergent nonzero sequence wtih
a nonzero limit. Then the sequence 1/s, of reciprocals is convergent, with

Sketch. For any € > 0, want to show when n is very large, we can make

<e€

Sy S

We can get a common denominator and rewrite this as

1 1] Is—sy

Sy S

[ssp

Since s, is not converging to zero, we should be able to bound it away from zero: that
is, find some m such that |s,| > m for all n € N (we’ll have to prove we can actually
do this). Given such an m we see the denominator |ss,| > m|s|, and so

1 1 |Sn -

S, S

mls|

We want this less than € so all we need to do is choose N big enough that [s, — s| is
less than em|s| and we’re good. O

Exercise 7.5. Turn the sketch argument for limsl = Sl in Proposition 7.3 into a

n n

formal proof.
From here, its quick work to understand the limit of a general quotient.

Theorem 7.5 (Limit of a Quotient). Lets,,t, be convergent sequences, witht, + 0 and
limt, # 0. Then the sequence s, /t, of quotients is convergent, with
S, lims,

lim — = —
t, limt,

Proof. Since t, converges to a nonzero limit, by Proposition 7.3 we know that 1/t,

converges, with limit 1/lim¢,. Now, we can use Theorem 7.4 for the product s,, - tl:

lim o lims, - tl = (lims,) <lim l)

n n tn
1 lims,
=lims, = —
lim#, limtg,
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7.2. Limits and Field Operations

Finally we look at square roots. We have already proven in Theorem 4.9 that non-
negative numbers have square roots, and so given a nonnegative sequence s, we can
consider the sequence .fs; of its roots. Below we see that the limit concept respects
roots just as it does the other field operations:

Theorem 7.6 (Root of Convergent Sequence). Lets, > 0 be a convergent sequence,
and s, its sequence of square roots. Then /s, is convergent, with

lim /s, = {lims,

Sketch. Assumes, — s, andfixe > 0. We seek an N wheren > N implies |./s,—/s| < e.
This looks hard: because the fact we know is about s,, —s and the fact we need is about

N
But what if we multiply and divide by /s, ++/s so we can simplify using the difference
of squares?

\/§+\/§_ |Sn—S|

Vo VS e G = s

This has the quantity [s, — s| that we know about in it! We know we can make this
as small as we like by the assumption s, — s, so as long as the denominator does not
go to zero, we can make this happen!

O

Formal. Let s, be a positive sequence with s, — s and assume s # 0 (we leave that
case for the exercise below). Let € > 0, and choose N such that if n > N we have

s, — s| < evfs.

Now for any n, rationalizing the numerator we see

|Sn _S| |Sn _3|
Sy — \/E = <
e | 3+ /s s

Where the last inequality comes from the fact that /s, > 0 by definition, so y/s+./s, >
Js. When n > N we can use the hypothesis that s, — s to see

|sn_s| 6\/g
—~ —¢

5, — S| < =
IVsn — Vsl NG 7
And so, s, is convergent, with limit \/s. O

Exercise 7.6. Prove that if s, — 0 is a sequence of nonnegative numbers, that the
sequence of roots also converges to zero /s, — 0.

Hint: you don’t need to rationalize the numerator or do fancy algebra like above
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7. Limit Laws

Together this suite of results provides an effective means of calculating limits from
simpler pieces. They are often referred to together as the limit theorems

Theorem 7.7 (The Limit Theorems). Let a, and b, be any two convergent sequences,
and k € R a constant. Then
lim ka, = klima,

lim(a, + b,) = (lima,) + (limb,)
lim a,b, = (lima,)(lim b,)

Ifb, # 0 andlimb, # 0,
I an lima,

My~ Timb,

And, ifa, > 0, then \[a, is convergent, with

lim \/a, = {lima,

7.2.1. Example Computations

Example 7.4. Compute the limit of the following sequence s,,:

6

3 n’—2

o 3n +anr5
=
nd—n?+1

Example 7.5. Compute the limit of the sequence s,

R S s U
" 2n n—-n+1

7.3. Applications

7.3.1. Babylon and V2

We know that /2 exists as a real number (Theorem 4.7), and we know that the babylo-
nian procedure produces excellent rational approximations to this value (Exercise 0.5),
in the precise sense that the numerator squares to just one more than twice the square
of the denominator.

Now we finally have enough tools to combine these facts, and prove that the babylo-
nian procedure really does limit to v/2.
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7.3. Applications

Theorem 7.8. Lets, = %’: be a sequence of rational numbers where both p,,q, — o

and for each p? = 2q% — 1. Then s, — /2.

Proof. We compute the limit of the sequence s2. Using that p? = 2g% + 1 we can
replace the numerator and do algebra to see

2 2

2q, +1 1
R RN
n

ok q
Now, as by assumption g, — co we have that g2 = g,q, also diverges to infinity (Ex-

ercise 7.11), and so its reciprocal converges to 0 (?@prp-diverge-to-infty-equliv-
converge-to-zero). Thus, using the limit theorems for sums,

2
limp—gzlim<2—i2):2—ljmi2:2
an an n

That is, the limit of the squares approaches 2. Now we apply Theorem 7.6 to this
sequence s,%, and conclude that

« s, = \/sZ converges.

. lims, = lim+/s? = lims? = V2
O

This provides a rigorous justification of the babylonian’s assumption that if you are
patient, and compute more and more terms of this sequence, you will always get
better and better approximations of the square root of 2.

Exercise 7.7. Build a sequence that converges to y/n by following the babylonian
procedure, starting with a rectangle of area n.

7.3.2. Rational and Irrational Sequences

Combining the squeeze theorem and limit theorems with the density of the
(ir)rationals allows us to prove the existence of certain sequences that will prove
quite useful:

Theorem 7.9. For every x € R there exists a sequence r,, of rational numbers with
Iy = X.
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7. Limit Laws
Proof. Let x € R be arbirary, and consider the sequence x + % Because the constant

sequence x,x,x ... and the sequence 1/n are convergent, by the limit theorem for
1.
sums we know x + = is convergent and

. 1 .1
11m(x+—>:x+hm—=x
n n

Now for each n € N, by the density of the rationals we can find a rational number r,

withx <r, <x+ % This defines a sequence of rational numbers squeezed between

x and x + %: thus, by the squeeze theorem we hav

1 .
x<r<x+- = limn,=x
n

O

Through a similar argument using Exercise 4.5 we find the existence of a sequence of
irrational numbers converging to any real number.

Exercise 7.8. For every x € R there exists a sequence y, of irrationals with y, — x.

7.4. Problems

7.4.1. x Infinity

Given the formal defintion of divergence to infinity as meaning eventually gets larger
than any fixed number, we can formulate analogs of the limit theorems for such diver-
gent sequences. We will not need any of these in the main text but it is good practice
to attempt their proofs:

Exercise 7.9. If s, — co and k > 0 then ks, — oo.

Exercise 7.10. If t, diverges to infinity, and s, either converges, or also diverges to
infinity, then s, + £, — co.

Exercise 7.11. If t, diverges to infinity, and s, either converges, or also diverges to
infinity, then s,t, — oo.

Note that there is not an analog of the division theorem: if s, — oo and t,, — oo, with
only this knowledge we can learn nothing about the quotient s, /#,.
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7.4. Problems

Exercise 7.12. Give examples of sequences s,,, — o where

s
lim2 =0
tfl
s
lim =2 =2
tn

. Sn
hmt—:oo

These limit laws are the precise statement behind the “rules” often seen in a calculus
course, where students may write 2+ 0o = 00, 00+ 00 = 00, Or 00+ 00 = 00, but they may
not write co/co. (If you are looking at this last case and thinking [’Hospital, we’ll get

there in ?@thm-Lhospital!)

109






8. Monotone Convergence

Highlights of this Chapter: We prove the monotone convergence the-
orem, which is our first theorem that tells us a sequence converges, with-
out having to first know its limiting value. We show how to use this the-
orem to find the limit of various recursively defined sequences, including
two important examples.

« We prove the infinite sequence of roots 14141+

converges to the golden ratio.
n
« We prove the sequence (1 + %) converges to the number
e=2.71828...
« We begin a treatment of irrational exponents, by looking at the limit
of sequences with rational exponents.

8.1. Monotone Convergence

The motivation for inventing sequences is to work with infinite processes, where we
have a precise description of each finite stage, but cannot directly grasp the “com-
pleted” state “at infinity”. In the first section of this chapter we computed a few
specific limits, and then in the second we showed how to find new, more complicated
limits given that you know the value of some simpler ones via algebra.

But what we haven’t done, since our original motivating discussion with the nested
intervals theorem, is actually return to the part of the theory we are most interested
in: rigorously assuring that certain sequences converge, without knowing the value
of their limit ahead of time! The most useful theorem in this direction is the monotone
convergence theorem, which deals with monotone sequences.

Definition 8.1 (Monotone Sequences). A sequence s, is monotone increasing (or
more precisely, monotone non-decreasing) if

m<n = s,<s,

A sequence is monotone decreasing (non-increasing) if
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8. Monotone Convergence

Note: constant sequences are monotone: both monotone increasing and monotone
decreasing.

The original inspiration for a monotone sequence is the sequence of upper bounds or
lower bounds from a collection of nested intervals: as the intervals get smaller, the
lower bounds monotonically increase, and the upper bounds monotonically decrease.
The Monotone convergence theorem guanatees that such sequences always converge.
Its proof is below, but could actually be extracted directly from Theorem 3.3.

Theorem 8.1 (Monotone Convergence). Lets, bea monotone bounded sequence. Then
s, is a convergent sequence.

Proof. Here we consider the case that s, is monotone increasing, and leave the de-
creasing case as an exercise. Let S = {s, | n € IN}. Then S is nonempty, and is bounded
above (by any upper bound for the sequence s,,, which we assumed is bounded). Thus
by completeness, it has a supremum s = sup S.

We claim that s, is actually a convergent sequence, which limits to s,. To prove this,
choose € > 0, and note that as s is the least upper bound, s — € is not an upper bound
for S, so there must be some N where sy > s — €. But s, is monotone increasing, so
if n > N it follows that s, > sx. Recalling that for all n we know s, < s (since s is an
upper bound), we have found some N where for alln > N we know s —€ < s, <.
This further implies |s, — s| < €, which is exactly the definition of convergence! Thus

S =S

So it is a convergent sequence, as claimed. O

Though straightforward to prove, this theorem has tons of applications, as it assures
us that many of the difficult to describe recursively defined sequences that show up in
practice actually do converge, and thus we may rigorously reason about their limits.
We will give several interesting ones below.

8.2. Application: Defining Irrational Powers

We have already defined rational powers of a number in terms of iterated multiplica-
tion/division, and the extraction of roots: but how does one define a real numbered
power? We can use sequences to do this! To motivate this, let’s consider the example
of defining 2”. We can write 7 as the limit of a sequence of rational numbers, for
instance

3, 3.1, 3.14, 3.141, 3.1415 ...
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8.2. Application: Defining Irrational Powers

And since rational exponents make sense, from this we can produce a sequence of
exponentials

31 314 3141 31415
23,270, 2100, 27000, 210000 , ..,

Then we may ask if this sequence has a limit: if it does, it’s natural to try and define
this value two to the power of pi. To make sure this makes sense, we need to check
several potential worries:

« Does this sequence converge?
+ Does the limit depend on the particular sequence chosen?

For example if you tried to define 32 using the babylonian sequence for /2, and your
friend tried to use the sequence coming from the partial fraction, you’d better get the
same number if this is a reasonable thing to define! Because we are in the section
on monotone convergence, we will restrict ourselves at the moment to monotone
sequences though we will see later we can dispense with this if desired.

Proposition 8.1. Ifr, — x is a monotone sequence of rational numbers converging to
x, and a > 0 then the sequence a’™ converges.

Proof. Recall for a fixed positive base a, exponentiation by rational numbers is mono-
tone increasing, so r < s implies a” < a°.

Thus, given a monotone sequence r,, the exponentiated sequence a'» remains mono-
tone (for monotone increasing we see r, < r,y,; = a™ < d'n1 and the equalities
are reversed if r,, is monotone decreasing).

Now that we know a'* is monotone, we only need to see its bounded to apply Mono-
tone Convergence. Again we have two cases, and will deal here with the monotone
increasing case. Asr, — x and x is a real number, there must be some natural number
N > x. Thus, N is greater than r,, for all n, and so a" is greater than a™: our sequence
is bounded above by a". Thus all the hypotheses of monotone convergence are sat-
isfied, and lim a'» exists. O

Now that we know such sequences make sense, we wish to clear up any potential
ambiguity, and show that if two different sequences both converge to x, the value we
attempt to assign to a* as a limit is the same for each. As a lemma in this direction,
we look at sequences converging to zero.

Exercise 8.1. Let r,, be any sequence of rationals converging to zero. Then for any
a > 0 we have
lima™ =1
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8. Monotone Convergence

Corollary 8.1. Ifr,, s, are two monotone sequences of rationals each converging to x,
then
lima™ = lim g

foranya > 0.

Proof. Let z, = r, — s, so that z, — 0. Because r,, and s, are monotone, we know
lima'n and lima* exist. And by the exercise above, we have a® — 1. Noting that
I, = S, + 2z, and that the laws of exponents apply for rational exponents, we have

an = g = gghn

But as all quantities in question converge we can use the limit theorems to compute:

lima'n = lim g%t
= lim @’ a*
= (lim a*)(lim a*)

= lim a*
]

Thus, we can unambiguously define the value of a* as the limit of any monotone
sequence a’» without specifying the sequence itself.

Definition 8.2. ## Irrational Powers Let a > 0 and x € R. Then we define a¢* as a
limit
a* = lima™

For r,, any monotone sequence of rational numbers converging to x.

Perhaps upon reading this definition to yourself you wonder, is the restriction to
monotone sequences important, or just an artifact of our currently limited toolset?
Once we build more tools we will see the latter is the case; you will show on home-

work that arbitrary convergent sequences r, — x can be used to unambiguously
define a*.

8.3. Applicaiton: Recursive Sequences

The monotone convergence theorem is particularly adept to working with recursive
sequences, as one may aim to prove such a sequence is monotone and bounded by
induction. This guarantees the limit exists, at which point we can rigorously give
that limiting value a name, and use limit theorems to find its value.
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8.3. Applicaiton: Recursive Sequences

8.3.1. The Golden Ratio

Consider the recursive sequence defined by s,,1 = /1 + s, starting from sy = 1:

80:1

§1 = 1+\/T

sy =\1+V1+V1

Because such sequences follow a regular pattern, we can use a shorthand notation
with ellipsis for their terms. For example, in the original sequence above, writing the
first couple steps of the pattern followed by an ellipsis

1+V1+V1+.

we take to mean the sequence of terms s, where s,,1 = /1 + s, itself. Thus, writing
lim+/1 ++/1 + --- means the limit of this sequence, implicitly defined by this infinite

expression.

Exercise 8.2. Here are some other infinite expressions defined by recursive
sequences: can you give the recursion relation they satisfy?

\/Eﬁ

1
1

1+ ——

cos(cos(cos(--- cos(5) --)))

In all of these sequences it is not clear at all how to find their limit value from scratch,
or how we could possibly apply any of the limit theorems about field axioms and
inequalities. But, recursive sequences are set up for using induction, and monotone
convergence! We can build a sort of recipe for dealing with them:

Recursive Sequence Operation Manual:

« Prove its bounded, by induction.
« Prove its monotone, by induction.
« Use Monotone convergence to conclude its convergent.
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8. Monotone Convergence

« Use the recursive definition, and the limit theorems, to find an equation satis-
fied by the limit.
« Solve that equation, to find the limit.

A beautiful and interesting example of this operations manual is carried out below:

Proposition 8.2. The sequence\/1+ 1+ -+ converges to the golden ratio.s

Proof. The infinite expression 1+ /1 + -+ defines the recursive sequence s,,; =

J1+s, withs; = 1.

Step 1: s, is monotone increasing, by induction First we show that s, > s;. Using

the formula, s, = \J1+ J1 = /2, which is larger than s; = 1. Next, we assume
for induction s, > s,_; and we use this to prove that s,,; > s,. Starting from our
induction hypothesis, we add one to both sides yielding 1 +s, > 1+s,_; and then we
take the square root (which preserves the inequality, by Proposition 2.5) to get

Ji+s > 145,

But now, we simply note that the term on the left is the definition of s,,; and the
term on the right is the definition of s,. Thus we have s, > s, as claimed, and our
induction proof works for all n.

Step 2: s, is bounded, by induction It is hard to guess an upper bound for s, without
doing a little calculation, but plugging the first few terms into a calculator shows them
to be less than 2, so we might try to prove ¥ns, < 2. The base case is immediate as
s; = 1 < 2, so assume for induction s, < 2. Then1+s, <3 andso/1+s,<VJ1+2=
JV3,and V3 < 2 (as3 < 22 = 4) so our induction has worked, and the entire sequence
is bounded above by 2.

Conclusion: s, converges! We have proven the sequence s, is both monotone in-
creasing and bounded above by 2. Thus the monotone convergence theorem assures
us that there exists some L with s, — L. It only remains to figure out what number
this is!

Step 3: The Limit Theorems Because truncating the beginning of a sequence
does not change its limit, we see that lims, = lims,,; = L. But applying the limit
theorems to s,,.; = /1 +s,, we see that as s, — L, it follows that 1 +s, — 1+ L and

thus that /1 + s, = 1 + L. This gives us an equation that L must satisfy!

N1+L=1L

Simplifying this becomes 1 + L = L2, which has solutions (1 + v/5)/2. This argument
only tells us so far that one of these numbers must be our limit L: to figure out which
we need to bring in more information. Noticing that only one of the two is positive,
and all the terms of our sequence are positive singles it out:
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N N i L PP

This number is known as the golden ratio. O

Example 8.1. The final step of the proof above suggests a way one might find a
recursive sequence to use as a calculating tool: if we started with the golden ratio

_1+45

?=3

we could observe that ¢ solves the quadratic equation 1 + L = L?, and hence L =
V14 L. This sets up a recursive sequence, as we can plug this relation into itself over
and over:

L=v1+L=V1+VI+L=\1+V1+V1+-

Which immediately suggests the recursion s,,; = /1 + s, as a candidate for generat-
ing a sequence that would solve the original equation.

Exercise 8.3. Find a recursive sequence whose limit is the positive real root of x% —
2x — 5. Then prove that your proposed sequence actually converges to this value.

Exercise 8.4. What number is this?

N

8.3.2. /2

Recall the babylonian sequence converging to v/2 was recursively defined, starting
from the side length x; = 2 of a 2 x 1 rectangle and replacing it with the average
of the two sides (a rectangle closer to a square). As a formula this is the process
x> (x+ %) /2 from which we product a recursive sequence

2
X, =
"+x

n

2

Xn+1 =

Our goal here is to provide a proof of convergence using the strategy laid out above.
First, we aim to show that x;, is monotone decreasing. To make the algebra simpler,
we first give a little lemma simplfying the condition:
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8. Monotone Convergence

Exercise 8.5. Let x, be a sequence of positive numbers satisfying the babylonian
recurrence relation.
Show that x,,; < x, if and only if 2 < x2.

Proposition 8.3. Starting from x, = 2, the recursive procedure for x,, defines a mono-
tone decreasing sequence.

2+2
Proof. We proceed by induction. For the base case we compute x; = —% = 2 so
p y P 1 2 2

x; < xg as required. For the inductive step we assume x, < x,_; and aim to show
Xp11 < X,. By the exercise above, this is equivalent to assuming that 2 < x2_, and
using this to prove that 2 < x2.

Writing out the recursive definition of x,, we see

2

Xp— 1+x1
n

&
Il

4
1+4+x§1

4
2
<E>2+1+( 2 )
2 Xn—1

The first term is > 1 by the inductive hypothesis, and so the first two terms sum
to greater than 2. Since the last term is a square its positive and can’t possibly make
things smaller, so the entire thing sums to something strictly larger than 2, as required.
Thus x;, is monotone decreasing. O

The next step in our process is to prove the sequence is bounded.

Exercise 8.6. Prove that the sequence with x, = 2 satisfying the babylonian recur-
rence relation is bounded below by 1.

Now, since x;,, is monotone and bounded it converges to some limiting value L. Since
truncating the beginning of a sequence has no effect on the eventual limit, we know
lim x,,, 1 = lim x, = L, but expanding the first term’s recursive definition, this implies
that
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Since we know x;, — L and L # 0 (since its bounded below by 1), we can use the limit
laws to compute

2 .
. X, + W lim x;,, + my, z
2 2 2

Thus, whatever the limiting value L is it must satisfy the equation

Multiplying by 2L to clear denominators we see

[242=21% = 2=12

We know L is positive, and the only positive solution to this equation is L = 2. So
we have another proof of the convergence of the babylonian procedure!

8.4. x The Number e

In this section we aim to study, and prove the convergence of the following sequence

of numbers
1 n
(1+3)
n

We will later see that the limit of this sequence is the number e (indeed, many authors
take this sequence itself as the definition of e as it is perhaps the first natural looking
sequence limiting to this special value. We will instead define e in terms of exponential
functions to come, and then later show its value coincides with this limit).

We begin by proving a, is monotone as a prelude to applying monotone conver-
gence.

+1\7 . . .
Example 8.2. The sequence a, = ("T) is monotone increasing.

Proof. To show a, is increasing we will show that the ratio aa" is greater than 1.
n—1

Simplifying,

an1 (L)"‘l
n—1

G _ () <n+l)"<n;l)"_l

n
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8. Monotone Convergence

Multiplying by "%1 and its inverse we can make the powers on each of these terms
the same, and combine them:

_(n—l—l)"(n—l)" n -1\ n

n n n—1 n? n—1

Simplifying what is in parentheses, we notice that we are actually in a perfect situa-
tion to apply Bernoulli’s Inequality (Exercise 2.6) to help us estimate this term. Recall

this says that if r is any number such that 1 + r is positive, (1 + r)* > 1 + nr. When
n > 2 we can apply thistor = —%, yielding

a . . .
Thus — > 1, so a, > a,_; and the sequence is monotone increasing for all n, as
n—1

claimed. [

Next we need to show that g, is bounded above. Computing terms numerically, it
seems that g, is bounded above by 3, but of course no amount of computation can
substitute for a proof. And after a bit of trying, it seems hard to prove directly that it
actually is bounded above.

So instead, we will employ a bit of an ingenious trick. We will study a second se-
quence, which appears very similar to the first:

bn _ (n+l>n+1

n

Indeed, this is just our sequence a, multiplied by one extra factor of —' But this
extra factor changes its behavior a bit: computing the first few terms, we see that it
appears to be decreasing:

3 4
by=(1+1) =4, b2=(1+%) :28—7=3.375, b3=(1+§) ~ 3.1604

Indeed, a proof that its decreasing can be constructed following an identical strategy
to a, in Example 8.2.

. +1\"*1 . .
Exercise 8.7. The sequence b, = (nT) is monotone decreasing,.

Now that we understand the behavior of b, we can use it to prove that g, is bounded
above:
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8.4. % The Number e

n
Corollary 8.2. The sequence a, = (1 + %) is convergent
Proof. Note that the sequence b, and g, are related by

n+1 1 n+1
b, = =a,
n n
n+1

Since = > lwesee that b, > a, for all n. But b, is decreasing, so b, < b; = 22 = 4,
and so g, is bounded above by 4. O

Note that we can also readily see that b, is itself convergent (though we did not ac-
tually need that fact for our analysis of a,,): we proved its monotone decreasing, and
its a sequence of positive terms - so its trivially bounded below by zero!

We can also see that a, and b, have the same limit, using the limit theorems. Since

% — 0, we know that 1 + i — 1, and hence that

limb, = lim [an (u)]
n

n+1)

= (limay,) - (lim
=lima,
As mentioned previously, we will later see that this limit is the number called e. But
believing for a moment that we should be interested in this particular limit, having

the two sequences a, and b, lying around actually proves quite practically useful for
estimating its value.

Since lima, = e = limb, and a, < b, for all n, we see that the number e is contained
in the interval I, = [a,, b, ], and hence is the limit of the nested intervals:

Corollary 8.3.

=0 [(1 L) (14 1)"“]

n>1 n

Taking any finite n, this interval gives us both an upper and lower bound for e: for
example

n=10 = 2.59374 <e < 2.85311
n=100 = 2.7048 < e < 2.73186
n=1000 = 271692 <e < 2.71964
n=1,000,000 = 2.71826 < e < 2.71829

Thus, correct to four decimal places we know e = 2.7182
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8. Monotone Convergence

8.5. Problems
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9. Subsequences

Highlights of this Chapter: We define the concept of subsequence,
and investigate examples where subsequences behave much simpler than
the overall sequence with the example of continued fractions. We then
investigate the relationship between the convergence of subsequences
and the convergence of a sequence as a whole. This leads to several nice
theorems:

« A continued fraction description of the golden ratio and v2

« Theorem: a sequence converges if it is a union of subsequences
converging to the same limit.

« Theorem: every bounded sequence contains a convergent subse-
quence.

Definition 9.1. A subsequence is a subset of a sequence which is itself a sequence. As
sequences are infinite ordered lists of real numbers, an equivalent definition is that a
subsequence is any infinite subset of a sequence.

We often denote an abstract subsequence like s, , meaning that we have kept only
the ny terms of the original, and discarded the rest.

Example 9.1 (Example Subsequences). In the sequence of all n-gons inscribed in a
circle, the collection studied by archimedes (CITE EALRIER CHAP) by doubling is
the subsequence

P32k = (P3.21,P3_22,P3.23,P3_24, )
= (Ps, P12, Poa, Pyg, -..)

Archimedes began his estimation of 7 using a simple idea: create a sequence of nested
intervals (upper and lower bounds) from inscribing and circumscribing n-gons. But
then he realized calculations would be much simpler if he focused only on a subse-
quence, namely that generated by side-doubling. We too will often run into situations
like Archimedes, where the overall behavior of a sequence is difficult to understand,
but we can pull out subsequences that are much easier to work with.
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9. Subsequences

9.1. Continued Fractions

In the previous section, we uncovered a beautiful formula for the golden ratio as the
limit of an infinite process of square roots. However, practically speaking (if you were
interested in calculating the value of the golden ratio, as the ancient mathematicians
were) this series is useless. The golden ratio itself involves a square root, so if you
are seeking a method of approximations its fair to assume that you cannot evaluate
the square root function exactly. But what does our sequence of approximations look
like? To calculate the n' term, you need to take n square roots! The very terms
of our convergent sequence are actually much much more algebraically complicated
than their limiting value.

To be practical, we would like a sequence that (1) contains easy to compute terms, and
(2) converges to the number we seek to understand. By ?@thm-rational-sequence,
we know for any real number there exists a sequence of rationals that converges to
it, and so it’s natural to seek a method of producing such a thing.

One method is the continued fraction, which is best illustrated by example. We know
that the golden ratio L satisfies the equation L? = L + 1, and dividing by L this gives
us an equation satisfied by L and 1/L:

L=1+

I

Just like we did above, we can use this self-referential equation to produce a series,
by plugging it into itself over and over. After one such substitution we get

L=1+——
1+ I
And then after another such we get
ere 1
1+ —
1+

I

Continuing this way over and over, we push the L “off to infinity” on the right hand
side, and are left with an infinite expression for L, as a limit of a sequence of frac-
tions.
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9.1. Continued Fractions

Of course, this ‘infinite manipulation’ is not itself rigorous, but we can interpret this
as a recursive sequence exactly as above. Setting s; = 1, we have the rule s, ; = 1+ sl

n

and we wish to understand lims,,.
Example 9.2 (Continued Fraction of the Golden Ratio). The continued fration

1+

defined by the recursive sequence s; = 1, 5,41 = 1 + Sl limits to the golden ratio.

n

A continued fraction is a recursive sequence, so we can compute everything with the
starting value and a single simple rule. To get a feel for the sequence at hand, let’s
compute the first few terms:

$1 = 1,32 = 2,33 = §,S4 = E,Ss = §,Sé = 2,86 = E,
2 3 5 8 13
What’s one thing we notice about this sequence from its first few terms? Well - it
looks like the fractions are all ratios of Fibonacci numbers! This won’t actually be
relevant but it’s a good practice of induction with the sequence definition, so we
might as well confirm it:

Example 9.3 (Fibonacci Numbers and the Golden Ratio). Recall that the Fibonacci
numbers are defined by the recurrence relation F; = F; = 2 and F,y, = F,.1 + F,.
Show that the n'" convergent s, of the continued fraction for the golden ratio is the
ratio of the Fibonacci numbers F, /F,.

Proof. This is true for the first convergent which is 1, and F,/F; = 1/1 = 1. Assume
the n'" convergent is s, = F,,;/F,, and consider the n + 1%: this is

1 1
Sip1=1+—=1+
n+1 Sy Frit
F,

By _ Fo1 + B — Fria

Fn+1 Fn+1 Fn+1
O

The more important thing we notice is that looking at the magnitude of the terms, it
is neither increasing or decreasing, but it appears the sequence is zig-zagging up and
down. Its straightforward to prove this is actually the case:
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9. Subsequences

Example 9.4. If nis odd, then s, < s,41. If nis even, s, > s,.1.

Proof. Again, we proceed by induction: we prove only the first case, and leave the

second as an exercise. Note first sy = 1, sy = 2 and s3 = % s0 51 < sp and sy > s3: the
base case of each is true.

Now, assume that n is odd, and s, < s, 1. Computing from here

1 1 1 1
S < Spypp = — > = 1+—>1+

Sn Sn+1 Sn Sn+1

The last line of this computation is the definition of s,,{ > s,.2,50 we see the next
one is decreasing as claimed. And applying the recurrence once more:

1 1 1 1
< = 1+ <1+

Sn+1 Sn+2 Sn+1 Sn+2

Snt1 > Sz =

Where now the last line of the calculation is the definition of 5,5 < 5,43, fininshing
our induction step! O

While the overall sequence isn’t monotone, it seems to be built of two different mono-
tone sequences, interleaved with one another! In particular the odd subsequence
S1, 53, S5, ... s monotone increasing, and the even subsequence s, 54, S, ... is monotone
decreasing.

To study these subsequences separately, we first need to find a recurrence relation
that gives us s, 5 in terms of s,: applying this to either s; or s, will then produce the
entire even or odd subsequence.

-1+
Sn+1 1+ =

Sz = 1+

Example 9.5. The subsequence sy, s3, S5, $7, ... is monotone increasing.

Proof. We prove this by induction. Starting from s; = 1, we compute

1_3
1 2 2

So s; < s3, completing the base case. Next, assume for induction that s,,5 > s,. We
wish to show that s,,4 > s,4o. Calculating from our assumption:
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9.1. Continued Fractions

1 1
Sne2 > Sn = <=
Sn+2 Sn
1 1
= 1+ <1l+—=
Sn+2 Sn
1 1
- T 1
1+ 1+3
Sn+2 Sn
1 1
= 1+ T >1+ T
1+ 1+ =
Sn+2 n

= Sn44 > Sp42

This completes the induction step, so the subsequence of odd terms is monotone in-
creasing as claimed! O

A nearly identical argument applies to the even subsequence:
Exercise 9.1. The subsequence s, s4, S4, Sg, ... is monotone decreasing,.

Exercise 9.2. Let f(x) = 1+ % Show that if x < y then f(x) > f(y); thatis, f
reverses the ordering of numbers. Use this to give a more streamlined proof that the
even and odd subsequences are both monotone, but the overall sequence zigzags.

Now that we know each sequene is monotone, we are in a position similar to the
previous chapter where we played two sequences off one another to learn about e.
The same trick works to show they are bounded.

Example 9.6. The odd subsequence of s, is bounded above, and the even subse-
quence is bounded below.

Proof. The even subsequece is monotone decreasing, but consists completely of pos-
itive terms. Thus, its bounded below by zero. Now we turn our attention to the odd
subsequence: if n is odd, we know that s, is bounded above by s,., but 5,1 is a
member of the monotone decreasing even subsequence, so s,.; < sy = 2. Thus, for
all odd n, s,, is bounded above by 2. O

Now we know by monotone convergence that both the even and odd subsequences
converge! Next, we show they converge to the same value:

Example 9.7. Both the even and odd subsequences converge to the same value.
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9. Subsequences

Proof. Let e, = sy, be the even subsequence and o,, = sy,,_; the odd subsequence, and
write lime, = E and lim o, = ©. We wish to show E = 0.

Using the recurrence relation we see

1 1
Opy1 =1+ — e, =1+ —
én On

and so, using the limit laws and the convergence of e, 0,

O=1+1  E=1+=
E (O]
Therefore we see ® —E = % - é, which after getting a common denominator implies
®—E= ©-E
©F

So whatever number © — E is, it has the property that it is unchanged when divided
by the number ©F. But the only number unchanged by multiplication and division
is zero! Thus

©—-E=0

O

Now we know that not only the even and odd subsequences converge but that they
converge to the same limit! Its not too much more work to show that the entire
sequence converges.

Example 9.8. The sequence s, converges.

Proof. Call the common limit of the even and odd subsequences L. Let € > 0 Since
son—1 — L we know there is an N; with n > N; implying |sy,_; — L| < €. Similarly
since sy, — L we can find an N, where n > N, implies |sy, — L| < €.

Set N = max{Nj, N,}. Then if n > N we see both the even and odd subsequences are
within € of L by construction, and thus all terms of the sequence are within € of L.
But this is the definition of convergence! Thus s, is convergent and lims, = L. [

Finally! Starting with a zigzag sequence where monotone convergene did not ap-
ply, we broke it into two subsequences, each of which were monotone, and each of
which we could prove converge. Then we showed these subsequences have the same
limit and hence the overall sequence converges. We made it! Now its quick work to
confirm the limit is what we expected from our construction: the golden ratio.

Example 9.9. The sequence s, converges to the golden ratio.
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9.1. Continued Fractions

Proof. Since throwing away the first term of the sequence does not change the limit,
we see lims,,; = lims, = L. Using the recurrence relation and the limit laws, this
implies
. . 1
lims,;; =lim1+—=1+
Sn

=

THus, the limit L satisfies the equation L = 1+ 1/L or L2 = L + 1. This has two
solutions

1+45
2
Only one of which is positive. Thus this must be the limit
1
1+ 1 1 -7 V5
1+ 1 2
1+ :
1+ T
1+ T
1+ T
1+ T
o
s O

We can apply this same process to discover another sequence of rational approxi-
mations to /2, by algebraic means (in contrast wtih the geometric approach of the
babylonians). To start, we need to find a recursive formula that is satisfied by V2, and
involves a reciprocal: something like

1

V2 = Rational stuff +
Rational stuff and /2

We can get such a formula through some trickery: first, using the difference of squares
a?>—b? = (a+b)(a—b) we see that 1 = 2—1 = (J2+1)(v/2—1), which can be re-written

1
V2-1=
1+42
Now, substitute this into the obvious V2 =1 ++2 — 1 to get
1
V2=1+
1+42

This is a self-referential equation, meaning /2 appears on both sides.

Example 9.10 (Continued Fraction of v/2). The continued fraction

1+ !

2+

2+ T

converges to the square root of 2.
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9. Subsequences

9.2. Subsequences and Convergence

Hopefully this exploration into continued fractions has shown the usefulness of look-
ing for easy-to-work-with subsequences, when theorems such as monotone conver-
gence don’t automatically apply. It is then our goal to try and piece this information
back together: if we know the limits of various subsequences, what can we say about
the entire sequence?

A direct generalization of the even/odd case from our example above shows that if s,,
can separated into two subsequences which we can (separately) prove have the same
limit, then the entire sequence converges to that

Proposition 9.1 (Union of Two Subsequences). If's, is the union of two subsequences
Sn, and sp, which both converge to the same limit, then s, converges to that limit.

Proof. Let L be the common limit of s, and s, and fix and € > 0. Then there is an
Nj such that for all k > N; we are assured that |s, — L| < € and there is an N such
that for all € > N, we know |s, — L| < €. Choosing any particular k > N; and £ > N,
we set N = max ny, ny.

Now choose arbitrary n > N. The term s, is a a member of one of our two subse-
quences, but by design if n = ny then k > N; and if n = ny then £ > N, so we know
s, — L| < €, and our sequence converges as claimed. O

Theorem 9.1. Lets, be a sequence, and assume that s, is the union of N subsequences,
all of which converge to the same limit L. Then s, is convergent, with limit L.

Sketch. One can prove this directly, but choosing useful notation is tedious. The
idea is as follows: for each of the N sequences, let M;, M,,... My be the threshold
beyond which the subsequence is within € of L for some fixed € > 0. Then set M =
max{Mj, ..., My} and note that for all n > M each of the subsequences is within € of
L. Because the entire sequence is just the union of these N subsequences, this means
that every term of the sequence is within € of L. But this is precisely the definition of
s, = L. So we are done. O

However, a simple example shows its not enough to simply say a sequence is a union
of convergent subsequences: we do have to know they all have the same limit!

Example 9.11. The sequence s, = (—1)" diverges, but its even and odd subsequences
form constant (thus convergent) subsequences:

Son = (=1)%" =1,1,1, ...

Sona1 = (1)1 = —1,-1,—1, ...
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9.3. Bolzano-Weierstrass
Or, more generally

Exercise 9.3. Prove that if a sequence s, has two subsequences which converge to
different values, then the overall sequence diverges. Rephrasing this positively gives
a useful criterion: If's, is a convergent sequence, then all of its subsequences converge,
and have the same limit.

Remark 9.1. This can be turned into a useful technique to prove two sequences ay, b,
have the same limit: interleave their terms ay, by, as, by, a3, b3, -+ and try to prove the
resulting sequence converges. If it does, then we know all subsequences have the
same limit, and so both a,, and b,, converge to L.

9.3. Bolzano-Weierstrass

What about sequences that don’t converge? The theorem above says that it cannot
be true that all their subsequences converge, but Example 9.11 does show that a diver-
gent sequence can still contain convergent subsequences. A natural question then is
- do they always? Alas, a simple counterexample shows us that is too much to ask:

Example 9.12. The sequence s, = n’ diverges, and all subsequences of it diverge.

But the problem here is not serious, its simply that the original sequence is unbounded
and cannot possibly contain anything that converges. The perhaps surprising fact
that this is the only constraint preventing the existence of a convergent subsequence is
known as the Bolzano Weierstrass theorem.

Theorem 9.2 (Bolzano-Weierstrass). Every bounded sequence has a convergent subse-
quence

There are many ways to prove this, but a particularly elegant one uses (of course!)
the monotone convergence theorem.

At first this sounds suspicious: we must confront head on the issue we ran into above,
that not every sequence is monotone! However, the weaker property we actually
need is true: while not every sequence is monotone, every sequence contains a mono-
tone subsequence. There is a very clever argument for this, which needs one new
definition.

Definition 9.2 (Peak of a Sequence). Let s, be a sequence and N € IN. Then sy is a
peak if it is larger than all following terms of the sequence:

SN 2= Sm Ym >N
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9. Subsequences

Theorem 9.3 (Monotone Subsequences). Every sequence contains a monotone subse-
quence

Proof. Let s, be an arbitrary sequence. Then there are two options: either s, contains
infinitely many peaks or it does not.

If 5, contains infinitely many peaks, we can build the subsequence of all peaks. This
is monotone decreasing: if p; is the first peak, then its greater than or equal to all
subsequent terms s,, and so its greater than or equal to the second peak p,. (But,
nothing here is special about 1 and 2, this holds for the nth and n + 1% peak without
change).

Otherwise, if s, contains only finitely many peaks, we will construct a monotone
increasing subsequence as follows. Since there are finitely many peaks there must be
a last peak, say this occurs at position N. Then sy is not a peak, and we will take
this as the first term of our new sequence (let’s call it g;). Because its not a peak, by
definition there is some term farther down the sequence which is larger than sy, -
say this happens at index N, and call it g,. But g, is also not a peak (as there were
only finitely many, and we are past all of them), so there’s a term even farther down
- say at index N3 which is larger: call it g3. Now we have q; < g5 < g3, and we can
continue this procedure inductively to build a monotone increasing subsequence for

all n. O

Now, given that every sequence has a monotone subsequence, we know that every
bounded sequence has a monotone and bounded subsequence. Such things converge by
MCT, so we know every sequence has a convergent subsequence! This is the Bolzano
Weierstrass Theorem.

We will use this often in whats to come to produce examples of convergent subse-
quences where it might otherwise be difficult to do so. Here’s a first example of such
an argument

Proposition 9.2 (Analyzing All Convergent Subsequences). If's, is a bounded se-
quence such that every convergent subsequence converges to the same value, then s,
converges.

Proof. Assume that every convergent (proper) subsequence of s, converges to L, but
that s,, itself does not. Then fixing some € > 0 for each n = 1,2,3, ... we can find an k
such that s, —L| > €. This is an infinite sequence of terms all of which are farther than
€ from L, and is bounded as s, itself was bounded. Thus, by the Bolzano Weierstrass
theorem there is a subsequence of this that converges. Its limit cannot be L because all
terms in the sequence are more than € away from L, so we’ve found a subsequence of
the original sequence that converges to a different value, contradicting the original
assumption. O
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9.4. Limsup and Liminf

In addition to applications like the above, in time will come to appreciate it as one
of the most elegant tools available to us. There will come many times (soon, when
dealing with functions) where we can easily produce a sequence of points satisfying
some property, but to make progress we need a convergent sequence of such points.
The BW theorem assures us that we don’t have to worry - we can always make one
by just throwing out some terms, so long as the sequence we have is bounded.

9.4. Limsup and Liminf

When a sequence doesn’t converge, it can have various subsequences that converge to
different limits. One way to reign in the complexity of such things is via the concepts
of limit supremum and limit infimum.

Definition 9.3 (Limsup and Liminf). Let s, be a bounded sequence, and for each
N € N define uyy = sup,5 n1{s,}. Then we define the limit superior of s, as

limsups, :=limuy = lim sup{s,}
N—oo n>N

Similarly, with €y = inf,,> n{s,} we define the limit inferior of s, to be

liminfs, :=limfy = lim inf{s
n N N—roo nZN{ n}

We will have occasional use for this definition during the course, mostly because of
the following: that the limsup and liminf exist for all (bounded) sequences, not just
convergent ones.

Proposition 9.3 (Existence of Limsup, Liminf). Let s, be a bounded sequence. Prove
that lim sup s, and liminf's, both exist

Proof. We verify for the limsup case, and leave the analgoous liminf as an exercise.
For each N let uy = sup,>n{s,} and notice that uy is a monotone decreasing se-
quence as we are taking the supremum over smaller and smaller sets (Exercise 3.4).
Its easy to construct a lower bound for up: since s, is bounded we may take any lower
bound L and note for any N this is a lower bound for the tail {s, | n > N}. As the
supremum is an upper bound and all lower bounds are < all upper bounds we see
L < sup,snisq} = un. Thus uy is a monotone decreasing sequence that is bounded
below, which converges by the Monotone Convergence Theorem. O

One use of these quantities is to bound the possible values of subsequential limits:
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Exercise 9.4 (Bounding Subsequential Limits). Let s, be any bounded sequence and
Sp, @ convergent subsequence with limit L. Then

liminfs, <L <limsups,

Proposition 9.4. A sequence s, converges if and only if

limsups, = liminfs,

Proof. For any N we have {5 = inf,sns, < sy < sup,sny s, = uy. Butlimey =
liminfs, = limsups, = limuy by assumption, so the squeeze theorem (Theorem 7.1)
implies sy also converges, and has the same limit. O

It is often useful to broaden our use of limsup and liminf to the extended reals
R u {£oo}. Here its true that every sequence has a limsup and liminf: either the se-
quence is bounded and they exist as proven above, or the sequence is unbounded
with lim sup, lim inf = +oo. This slight generalization makes certain theorems easier
to state, as one can use lim sup and lim inf without first checking they exist.

Exercise 9.5 (Subsequences & Limsup, Liminf). Let s, be a bounded sequence. Then
there exists a subsequence which converges to the limsup and a subsequence which
converges to the liminf.

9.5. Problems

Exercise 9.6. For any fixed n, prove that the following continued fraction exists, and

find its vallue. .

Exercise 9.7 (Continued Fractions for Roots). Let p be any prime number, find the
continued fraction for \/p.

Knowing such sequences is extremely useful for computation, in the age before com-
puters: if n is a composite number we can find 4/n by multiplying together the square
roots of its prime factorization

Exercise 9.8. Find a rational approximation to v/6 by calculating the first three terms
in the continued fraction expansions for v/2 and /3.
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We could also find a continued fraction directly for cases like this, with a little more
care:

Exercise 9.9. Find the continued fraction expansion for \/pq if p and g are primes.
What happens to your procedure when p = g?

9.5.1. Limsup and Liminf

Exercise 9.10. Let a,, b, be bounded sequences. Prove that
lim sup(a, + b,) < limsup a, + lim sup b,
liminfa, + liminfb, < liminf(a, + b,)

Provide counterexamples to show that equality does not always hold.

Exercise 9.11. Let a, be convergent and b, be an arbitrary bounded sequence. Show
that

lim sup(a, + b,) = lima, + limsup b,

liminf(a, + b,) = lima, + liminfb,

Exercise 9.12. Let a, be convergent and b, be an arbitrary bounded sequence. Show
that

lim sup(a,b,) = (lim a,)(lim sup b,,)
lim inf(a,b,) = (lim a,)(lim infb,)

9.5.2. » An Alternative Proof of Bolzano-Weierstrass

An alternative argument for the BW theorem proceeds via the nested interval prop-
erty. Here’s an outline of how this works

« If's, is bounded then there is some a,b with a < s,; < b for all n. Call this interval
Iy, and inductively build a sequence of nested closed intervals as follows

- At each stage I, = [a,b], bisect the interval with the midpoint my = @.
This divides I into two sub-intervals, and since I contains infinitely many
points of the sequence, one of these two halves must still contain infinitely
many points. Choose this as the interval I ;.

« Now, this sequence of nested intervals has nonempty intersection by the Nested
Interval Property. So, let L € R be a point in the intersection.
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« Now, we just need to build a subsequence of s, which converges to L. We build
it inductively as follows: let the first term be s;, and then for each k choose
some point s, € I that is distinct from all previously chosen points (we can do
this because there are infinitely many points available in [, and we have only
used finitely many so far in our subsequence).

« This new sequence is trapped between a; and by, which both converge to L.
Thus it converges by the squeeze theorem!

Exercise 9.13. In this problem, you are to check the main steps of this proof to ensure
it works. Namely, given the above situation prove that

o If I = [ag, by ], the sequences a; and by of endpoints converge. Hint: Monotone
Convergence

« lim a; = lim by, so the Squeeze theorem really does apply *Hint: use that at each
stage we are bisecting the intervals: can you find a formula for the sequence
by — a, and prove this converges to zero?

Exercise 9.14 (Simultaneous Bolzano Weierstrass). Given two bounded sequences
Xu» Y there is a subsequence ny of indices such that both x;, and y,, converge. Prove
this, and then use induction to prove that for any finite number of bounded sequences,
one can choose a subsequence of indices so they all converge.
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10. Cauchy Sequences

10.1. Definition

One reasonably ambitious sounding goal in the study of sequences is to find a nice
criterion to determine exactly when a sequence converges or not. We made partial
progress towards this in the previous two chapters, and our goal in this chapter is
to provide an alternative complete characterization, by a single simple property. But
what could such a property be? One (good!) thought is the following

When a sequence converges, terms eventually get close to some limit L.
Thus the terms of the sequence eventually get close to one another.

One way to formalize this is as follows:

Definition 10.1 (Cauchy Sequence). A sequence s, is Cauchy if for all € > 0 there is
a threshold past which any two terms of the sequence differ from one another by at
most €. As a logic sentence,

Ve >0 3IN Vm,n> N [s, —sp| <€

Example 10.1 (Cauchy Sequences: An Example). The sequence s, = % is cauchy:
we can see this because for any n,m

1 1] |1 1
-—=|<|=-0/==
n m n n

And we already know that for any € we can choose N with n > N implying 1/n < e.

Example 10.2 (Cauchy Sequences: A Nonexample). The sequence s, =
1,0,1,0,1,0... is not Cauchy, as the difference between any two consecutive
terms is 1. Thus for € = 1/2 there is no N where past that N, every s, is within 1/2
of each other.
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10. Cauchy Sequences

10.1.1. x Why This Definition?

There are several ways one could have attempted to mathematically make rigorous
the statement the terms of the sequence get close to one another. But not all of them
force a sequence to converge. For example, what if we had only looked at consecutive
terms, and proposed instead

For all € > 0 there is an N where if n > N then |a, — a,,1| <€

Unfortunately this doesn’t work. Perhaps surprisingly, it is possible for consecutive
terms of a sequence to all get within € of one another, but for the overall sequence to
diverge.

Example 10.3 (la, — a,,1| small but a, diverges!). Consider the sequence a, = /n.
Then for all € > 0 there is an N where n > N implies |{/n—+/n + 1| < €, but nonetheless

a, diverges (to infinity).

Proof. We can estimate the difference between consecutive terms with some algebra:

i+ 1+
VT - = (Ja ¥ 1 - ) S
Jn+1+4n
_(n+1)-n
Jn+1+4n
1
_\/n+1+\/ﬁ
Jn
Thus for any € > 0 we can just take N = elzand see that if n > N we have
|a Cl|< L—L—
n+1 — Yn \/— 1
2

Nowever, a, is not converging to any finite number, as for any M > 0, if n > M 2 then
= /n > M, so a, — oo by Definition 6.4 O

Example 10.4 (la, — a,,| small but g, diverges, again!). Perhaps the most famous
example with this property is the harmonic series

1 1 1

Gy =1+=+ =4 +=

2 3 n
Here it is clear that a, — a1 = ﬁ and we know this can be made smaller than
any € > 0. However, as we will prove in future chapters, this sequence nonetheless
diverges to infinity.
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10.2. % Properties

So, we need to ask for a stronger condition. What went wrong? Well, even though
we forced ay, to be close to g, for all n, the small differences between consecutive
terms could still manage to add up to big differences between terms: even if a, was
within 0.01 of a,,, for all n, its totally possible that a,109 00 could differ from a, by
(0.01)(10,000) = 100! So, to strengthen our definition we might try to impose that
all terms of the sequence eventually stay close together:

10.2. % Properties

A good way to get used to a new definition is to use it. This definition looks very sim-
ilar to the limit definition, which means we can often formulate analogous theorems
and proofs to things we’ve seen before:

Note the proofs in this section are not logically required as the next section will render
them superfluous: once we know Cauchy and convergent are equivalent, these all
follow as immediate corollaries of the limit laws! Nonetheless it is instructive to see
their direct proofs:

Proposition 10.1 (Cauchy Implies Bounded). If's, is Cauchy then its bounded: there
exists a B such that |s,| < B for alln € N.

Very similar to proof for convergent seqs Proposition 7.2 in style, where we show
after some N all the terms are bounded by some particular number, and then take
the max of this and the (finitely many!) previous terms to get a bound on the entire
sequence.

Proof. Sete = 1. Since ay, is Cauchy we know there is some N beyond which |a,—a,,| <
1 for all n,m > N. In particular, this means every |a_n-a_{N+1}|<1$ so

an+1 —1<a, <ayyp +1
Thus for the (infinitely many terms!) after ay, we can bound all of them above by
an+1 + 1 and below by an .1 — 1. To extend these to bounds for the whole sequence,
we just take the max or min with the (finitely many!) previous terms:

L = min{a;,ay, ..., aN, a4 — 1}

U = max{ay,ay, ...,an,an+1 + 1}

Now we have for all n, L < a, < U so {a,} is bounded. O

Proposition 10.2 (Sums of Cauchy Sequences). Ifa, andb, are Cauchy sequences, so
isa, + by,.
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10. Cauchy Sequences

Proof. Let € > 0. Then choose N, and N, such that for all n,m greater than N,, N,
respectively, we have |a, — a,,| < €/2 and |b, — by| < €/2. Set N = max{N,, N,} and
let n,m > N. Then each of the above two inequalities hold, and so by the triangle
inequality

|(an + bn) - (am - m)| = |(an - am) + (bn - bm)|

g|a,,—am|+|bn—bm|<§+§=e

Thus, a, + b, is Cauchy as well. O

Exercise 10.1 (Constant Multiples of Cauchy Sequences). Let a, be Cauchy, and
k € R be constant. Then ka, is Cauchy.

Proposition 10.3 (Products of Cauchy Sequences). Let ay,, b, be Cauchy. Thens, =
ayby, is a cauchy sequence.

First, some scratch work: we are going to want to work with the condition |s, —s,| =
layb, — amby,|. But we only know things about the quantities |a, — a,,| and |b, — by,|.
So, we need to do some algebra, involving adding zero in a clever way and applying
the triangle inequality:

lanby, — ambp| = lapb, + (ayby, — anbm) — ambnl
= [(anby — anbm) + (@b — @byl
= lan(by — bm) + bm(an — ap)|
< lan(by = bl + bm(an — @)l
= lapllby — bl + bmllay, — ap|

Because we know Cauchy sequences are bounded, we can get upper estimates for
both |a,| and |b,|. And then as we know that the sequences are Cauchy, we can make
la, — a,,| and |b, — by,| as small as we need, so that this overall term is small. We carry
this idea out precisely in the proof below.

Proof. Let a, and b, be Cauchy, and choose an € > 0. Then each are bounded, so
we can choose some M, with |a,| < M, and M, where |b,| < M, for all n. To make
notation easier, set M = max{M,, M} so that we know both g, and b, are bounded
by the same constant M.

Using that each is Cauchy, we can also get an N, and N, where if n, m are greater than
these respectively, we know that

€

€
— < — b,—b,| < —
an =l < o el <
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10.3. Convergence

Then set N = max{N,, N}, and choose arbitrary n,m > N. Since in this case both of
the above hypotheses are satisfied, we know that
€ € € €
‘angn_bmlSMm = 5 |bm||an_am‘£Mm = 5
Together, this means their sum is less than €, and from our scratch work we see their
sum is already an upper bound for the quantity we are actually interested in:

|anby, — ambm| < layllb, — by | + bplla, — ap| < €

O

Exercise 10.2 (Reciprocals of Cauchy Sequences). Let a, be a Cauchy sequence with
a, # 0 for all n, which does not converge to zero. Then the sequence of reciprocals

Lis Cauchy.

S = Z
Just like for convergence, once we know the results products and reciprocals, quo-
tients follow as an immediate corollary:

Corollary 10.1 (Quotients of Cauchy Sequences). Ifa, andb, are Cauchy withb, # 0
andlimb,, = 0 then the quotients a,, /b, form a Cauchy sequence.

Exercise 10.3. Show the hypothesis b,-0 is necessary in Corollary 10.1 by giving
an example of two Cauchy sequences a,,b, where b, # 0 for all n, yet Z—” is not a

Cauchy sequence.

10.3. Convergence

Now we move on to the main act, where we prove convergence is equivalent to
Cauchy by showing an implication in both directions.

Exercise 10.4 (Convergent Implies Cauchy). If s, is a convergent sequence, then s,
is Cauchy. Hint: The triangle inequality and |a, — a,,| for a sequence converging to L
can tell you....what?

More difficult, and more interesting, is the converse:

Proposition 10.4 (Cauchy Implies Convergent). Ifs, is a Cauchy sequence, then s, is
convergent.
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10. Cauchy Sequences

Proof. Let s, be a Cauchy sequence. Then it is bounded, by Proposition 10.1, so by the
Bolzano Weierstrass theorem (?@thm-thm-bolzano-weierstrass) we can extract a
subsequence s, which converges to some real number L.

Now we have something to work with, and all we need to show is that the rest of the
sequence also converges to L. So, let’s fix an € > 0. Since s, — L there exists an N;
where if nj. > N; we know [s, — L| < €/2. And, since s, is Cauchy, we know there is
an N, where for any n,m > N, we know [s, — s,,| < €/2.

Let N = max{N;, N,}, and choose any n > N. If s, is in the subsequence, we are good
because n > N; and we know for such elements of the subsequence |s, — L| < €/2 < e.
But if s, is not in the subsequence, choose any m such that m > N and s,, is in the
subsequence, and apply the triangle inequality:

|sn—L\:|sn—sm+s+m—L|§|sn—sm|+|sm—L|§g—i-g:e

Where the first inequality is because of the Cauchy condition, and the second is the
convergence of the subsequence. O

Together these imply the main theorem we advertised.

Theorem 10.1 (Cauchy < Convergent). The conditions of being a Cauchy sequence
and a convergent sequence are logically equivalent.

10.4. Problems

1\

Exercise 10.5. Is the sequence s, =1 — % cauchy nor not? Prove your claim.
Exercise 10.6. Let s, be a periodic sequence (meaning after some period P we have
Sp = Sp4n for all n). Prove that if s, is Cauchy then it is constant. Hint: what’s the

contrapositive?

Exercise 10.7. Prove directly from the definition of Cauchy: if s, is Cauchy and s,,
is a subsequence whose limit is L then s, — L.
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11. Contraction Maps

The cauchy condition (that terms “bunch up”) appears in many natural situations,
which makes it a very useful equivalent to convergence. Here we investigate one
such instance, when sequences are generated by iterating certain functions.

Definition 11.1 (Contractive Sequence). A sequence s, is contractive if there is some
positive constant k < 1 such that for all n

|ans1 — anl < kla, — ap_4|

Definition 11.2 (Contraction Map). A function f is a contraction map if there is some
positive constant k < 1 such that for all x, y in the domain of f,

[f () = fI < klx =yl

Proposition 11.1. If f is a contraction map, iterating f starting at any point of the
domain produces a convergent sequence.

Proof. We prove the existence of a fixed point of f by constructing a sequence that
converges to it. Start by choosing any x; € R and set § = | f(xg) — x|. We can define
a sequence X, by iterating f: x,,1 := f(x;). Our goal is to show that x;, is Cauchy by
bounding |x,, — x;,| appropriately. As a starting point, note that as f is a contraction
map we can choose a positive k < 1 where [f(x) — f(y)| < k|x — y| for all x, y and
compute

Xne1 = Xn| = Kl f () = f (1)l

<K fGon1) = -2l
<K' f(x0) — Xl
=k"

AN

This is not the quantity we are really interested in however, we wish to bound |x,, —x;|.
Using the triangle inequality, we can replace this with n—m bounds of the form above:
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11. Contraction Maps

Xm — xn| = |xm “Xm—1t Xm—1 — Xm—2 t Xp—2 — 0~ X1 T Xpp1 — X
< xm = Xt | + [Xnm1 = X + 0+ X1 — 3
KPS+ K25 + -+ k1S

Simplifying this we can factor out the § to get a sum

m—1 m—n—1
5(km71 + kmfz + e 4+ kn) = 5 Z k] = 5kn Z kj
j=n Jj=0

The final sum here we may recognize as a geometric series (Exercise 1.6), where

N _ 1 N+1
Zk]:LSL
1-k 1—-k

Putting this all together, we have managed to bound |x,, — x,| by

m—n—1
o — 5 < 0K Y K < Sk ——
Z 1—k

The numbers § and 1/(1 — k) are both constants, and as |k| < 1 we know by Exam-
ple 6.8, k" — 0. Thus by the limit laws our bound 5k" % — 0, which means for every
€ there is some N where n > N implies this is less than €, and hence that |x,, — x;,,| < e.
This means the sequence of x’s is Cauchy, and hence convergent. Thus there is some
x € R with x;, — x. O

Thinking harder about the limit of this sequence proves a rather important theorem
in analysis:

Theorem 11.1 (The Contraction Mapping Theorem). Let f : R — R be a contraction
map. Then there is a unique real number x such that f(x) = x.

Proof. Starting from any x, in the domain, iterating f produces a sequence converg-
ing to some limit point x. Since lim x;, = lim x,,, ; = lim f(x;,) we see this same point
x is also the limit of the sequence f(x;), so it suffices to prove that f(x,) — f(x).
Then since f is a contraction map, there’s a k < 1 where |f(x,) — f(x)| < klx, — x].
This second sequence converges to 0 by assumption, so f(x,) — f(x) as required
(Exercise 6.17). Finally by uniqueness of limits (Theorem 6.1) since f(x,) — x and
f(x,) = f(x) we conclude x = f(x) is a fixed point.
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Finally, we check uniqueness. Assume there are two fixed points x, y with x = f(x)
and y = f(y). We apply the condition that f is a contraction map to |x — y| to get

Ix — y| < klx —y|

Since k is strictly less than 1, the only solution to this is that [x — y| = 0, so x = y and
there is only one fixed point after all. O

The contraction mapping theorem makes quick work of some proofs that previously
took us rather a lot of work.

Example 11.1 (Proving a” — 0 via contraction mapping). If |a| < 1 the sequence a"
converges to zero.

Proof. This sequence is produced by iteration of the map f(x) = ax starting from
x = latn = 0. When |a| < 1 we see immediately that f is a contraction map as
|f(x) — f(¥)| = |lax — ay| = |al|x — y|, which is less than k|x — y| for any k € (a,1). Its
immediate to see the fixed point of x = ax is x = 0, and the proof above assures this
fixed point is the limit of any sequence of iterates of f. Thus a" — 0. O

Example 11.2 (/1 + /1 ++/1 + ... via Contraction Mapping).

Proof. The recursive sequence /1 ++/1 ++/1 + ... we previously studied with mono-
tone convergence is generated by iterating the function f(x) = +1+ x. This map
sends nonnegative numbers to nonnegative numbers, so we can consider it a func-
tion f : [0,00) — [0, 00).

Furthermore, its straightforward to verify its a contraction map on this domain, by a
clever factoring (difference of squares). Starting with x, y > 0 and noticing |x — y| =
|(1+x) — (1 + y)|, we factor as

(A+x) -1+ =|(VT+x+1+y)(VT+x—1+y)|

Asx,y > 0weseeV1+x > 1, /1+y > 1so the first factor v1+x + 1+ y > 2.
Thus

|x—y|=’\/1+x+\/1+ny/l+x—\/l+y’22’\/1+x—\/1+y‘

Dividng by 2 directly shows f is a contraction map with constatn k = %:

Sx =12 NTHx =T+ = [f@) - )
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11. Contraction Maps

Thus, the contraction mapping theorem applies, and iterating f from any starting
point produces a convergent sequence, whose limit is the unique fixed point of f.
Solving for this fixed point we see

f)=x = x=V1+x = x?=x+1

Which together with the contstraint x € [1, o) (which is the domain we proved f is

1+/5

a contraction on) yields x = = the golden ratio.

Note this proves something stronger than our original claim: we know not just the
sequence starting with x; = 1 converges to the golden ratio, but *any starting point
> 1, for example,

V17, N1+ V171 +V1+ 17, ...

O

Exercise 11.1 (Contraction Maps and v2). The babylonian procedure for approxi-
mating /2 defined the recursive sequence

1 2
Wn+1:5 Wn"';

n

which is generated by iterating the function
=5 (x+2)
2 b

« Show that f maps [1, ) into [1, o).
« Show that on this domain, f is a contraction map.
« Show that if f(x) = x then x? = 2.

Now apply the contraction mapping theorem to re-do a large collection of previous
work; proving that (1) v/2 exists in R and (2) that the babylonian sequence starting
from any possible initial rectangle of area 2 converges to /2. (Before we’d only shown
this for the 2 x 1 rectangle, so wy = 1.)

We can combine the contracting mapping theorem with other techniques to continue
re-proving known results in easier ways. Here we take another look at our argument
for the basic limit a!/" — 1.

Exercise 11.2 (Proving al/m > 1 by Contraction Mapping). Fill in the following
outline to prove al/" > 1foralla > 0:

The sequence al/" is not generated by iterating a function, but it has many subse-
quences that are. For example the subsequence

a, al/z, a1/4, al/g,

Is generated by iterating f(x) = J/x.
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« Prove that this map is a contraction map on the domain [1, ), which guaran-
tees this subsequence converges for every a > 1. Find the limiting value.

« Now, for a > 1 prove the full sequence a'/" is monotone decreasing and
bounded below by 1. This ensures it converges (by monotone convergence).

« Putting these two facts together, we see the entire sequence converges to 1, as
if we have a convergent sequences, all subsequences have the same limit!

« Finally, use the limit laws to argue the same holds even when a < 1.

For some applications, its useful to have around a slight generalization of the contrac-
tion mapping theorem: what can we say about the case where f is not a contraction
map, but some number of iterations £ is? The contraction mapping theorem applies
to fN, showing this map has a fixed point. But that doesn’t directly imply f does: af-
ter all, being fixed by f just means that a point returns to itself after N applications:
it could be a periodic point of f. However, a little deeper thought shows this is not
the case:

Theorem 11.2 (Root of a Contraction). Let f : X — X be a map such that the N-fold
composition fN of f with itself is a contraction map. (That is, “f is the N'th root of a
contraction”). Then the conclusion of the Contraction Mapping Theorem applies to f:
namely f has a unique fixed point, and iterating f on any initial point xy € X produces
a sequence which converges to this fixed point.

Proof. Since fY is a contraction map it has a unique fixed point a € X. Thus one way
of showing that something is equal to a is to show that its fixed by fV. But a clever
trick lets us see that N fixes f(a): since we are just composing f with itself over and
over,

N(f@) = @) = f(N @) = f(a)

where the last inequality follows as fN(a) = a by definition. Thus fV fixes f(a)
so this must be the unique fixed point a itself! f(a) = a as desired. Additionally,
this is the only fixed point of f as any points fixed by f are fixed by all repeated
compositions of f, so would be fixed points of V.

It remains only to see that starting from an arbitrary x;, € X, repeated iteration pro-

duces a convergent sequence with limit a. The trick is to break the sequence f*(a)
down into N subsequences, one for each r € {0,... N — 1}:
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11. Contraction Maps

X0 fN(Xo) fZN(Xo) veey an(XO)
f(xo) f1+N(x0) f1+2N(xO) o, f1+nN(x0)
fZ(.xo) f2+1\'l(x0) f2+21.\l(x0) s f2+n1'\f(x0)
feo) e G e N ()

fN—i(xO) f(N—l).-l—N(xO) f(N—l)-;—ZN(xo) , f(N—l)i—nN(xO)

Each of these sequences is the iteration of ¥ on some initial point f"(x), and so by
the contraction mapping theorem converges to the unqiue fixed point a of f~. Thus,
we’ve written our sequence as the union of N sequences, each of which has the same
limit! So the entire sequence converges to this limit, f"(x,) — a as desired. O
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Part Ill.

Series






In Chapter 12 we define infinite series and inifnite products, and study some
basic examples.

In Chapter 13 we develop theorems (known as convergence tests) to help us
determine when a series converges, even if we cannot find its value.

In ?@sec-series-limits we look at limits of infinite series, a special case of the
iterated limits studied previously.

In Chapter 15 we take a brief look at some advanced techniques for working
with infinite series, including summation by parts and double summation

In ?@sec-series-rearrangement we explore the vast differences between con-
ditionally convergent series and absolutely convergent series.
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12. First Examples

Highlights of this Chapter: We define infinite series and infinite products,
and look at some examples where one can compute the sum exactly: tele-
scoping and geometric series. We study the sums of reciprocal powers
of n, and show that the harmonic series ), i diverges, whereas ), r% con-
verges.

We’ve met several types of sequences so far where its possible to precisely describe
their terms, which basically fall into one of two categories: those with closed forms

like a,, = L3 here each term is given explicitly in terms of n, and recursive se-
quences where each term is given in terms of the previous ones. The simples recursive
sequences are defined by just iterating a single function, which we’ve successfully at-
tacked with monotone convergence and the Contraction Mapping Theorem. Perhaps
the next simplest recursive sequences are from iterating a process like addition or mul-
tiplication, so we will study these now.

Definition 12.1 (Series). A series s, is a recursive sequence defined in terms of an-
other sequence a,, by the recurrence relation s, ; = s, + a,. Thus, the first terms of a
series are

So = 4o, sl+a0+a1 32=a0+a1+a2...

We use summation notation to denote the terms of a series:

n
Sp =0 +ay+ o F @ = Y ag
k=0

Remark 12.1. It is important to carefully distinguish between the sequence a,, of terms
being added up, and the sequence s, of partial sums.

When a series converges, we often denote its limit using summation notation as well.
The traditional ‘calculus notation’ sets n to infinity as the upper index; and another
common notation is to list just the subset of integers over which we sum in as the
lower bound: all of the following are acceptable

lims, zlimzn:ak = iak = Zak
k=0 =

k=0 k>0
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12. First Examples

Remark 12.2. Because the sum of any finitely many terms of a series is a finite num-
ber, we can remove any finite collection without changing whether or not the series
converges. In particular, when proving convergence we are free to ignore the first
finitely many terms when convenient. Because of this, we often will just write Y. a,
when discussing a series, without giving any lower summation bound.

There are many important infinite series in mathematics: one that we encountered
earlier is the Basel series first summed by Euler.

1 2
$L-Z

n>1"n

When the sequences a, consists of functions of x, we may define an infinite series
function for each x at which it converges. These describe some of the most important
functions in mathematics, such as the Riemann zeta function

ORI

n>1

One of our big accomplishments to come in this class is to prove that exponential
functions can be computed via infinite series, and in particular, the standard exponen-
tial of base e has a very simple expression

n
exp(x) = Z x_'
S n!

The other infinite algebraic expression we can conjure up is infinite products:

Definition 12.2 (Infinite Products). An infinite product p, is a recursive sequence
defined in terms of another sequence g, by the recurrence relation p,.; = ppa,. Thus,
the first terms of a series are

So = qp, $1 + apaq S = apaqay ...

We use product notation to denote the terms of a series:_
n
Sn =0 41 ap = Hak
k=0

Again, like for series, when such a sequence converges there are multiple common
ways to write its limit:

n (o]
limp, =lim [ [ pe = [T o = [ ;2
k=0 k=0

k>0
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The first infinite product to occur in the mathematics literature is Viete’s Product for
7T

+
2

|5
i

2
7
This product is derived from Archimedes’ side-doubling procedure for the areas of

circumscribed n-gons; hence the collections of nested roots!

Another early and famous example being Wallis’ infinite product for 2/, which in-
stead is derived from Euler’s infinite product for the sine function.

2
T
- 2
2 wp 4nt —1

224466881010121214 14

13355779 9 1111131315

In 1976, the computer scientist N. Pippenger discovered a modification of Wallis’ prod-
uct which converges to e:

1 1 1 1
e (2)5 (gg)z (gg@)é (8 101012121414 16>E
1

33) \5577/ \9 9111113131515

Pippenger wrote up his result as a paper...but due to the relatively ancient tradition of
mathematics he was adding to - he decided to write it in Latin! The paper appears as
“Formula nova pro numero cujus logarithmus hyperbolicus unitas est”. in IBM Research
Report RC 6217. I am still trying to track down a copy of this! So if any of you are
better at the internet than me, I would be very grateful if you could locate it.

Alluded to above, one of the most famous functions described by an infinite product
is the sine function, which Euler expanded in his proof of the Basel sum

. 2
sin rx H X
= 1— —
X ( n? )

n>1

AAs well as our friend the Riemann zeta function from above, which can be written as
a product over all the primes! (Alluding to its deep connection to number theory)

(=TI —

— p=S
pprime p

Perhaps in a calculus class you remember seeing many formulas for the convergence
of series (we will prove them here in short order), but did not see many infinite prod-
ucts. The reason for this is that it is enough to study one class of these recursive
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12. First Examples

sequences, once we really understand exponential functions and logarithms: we can
use these to convert between the two. Because of this we too will focus most of our
theoretical attention on series, though interesting products of historical significance
will make several appearances.

12.0.1. Elementary Properties

To finish this introduction, we give several properties of infinite series which follow
directly from their definition as limits of sequences of partial sums.

Definition 12.3 (Cauchy Criterion). A seriess, = ). a, satisfies the Cauchy criterion
if for every € > 0 there is an N such that for any n,m > N we have

Exercise 12.1. Prove a series satisfies the Cauchy criterion if and only if its sequence
of partial sums is a Cauchy sequence.

Proposition 12.1 (The Addition of Series). IfY. a, and Y, b, both converge, then the
series Y .(a, + b,) converges and

Z(an+bn)= Zan+zbn

n>0 n>0 n>0

Proof. Foreach N,let Ay = ZnN:O ap and By = ZnN:O b,. Then the value of the infinite
sums are )50 a, = lim Ay and )5 b, = lim By. For any finite N, we can use the
commutativity and associativity of addition to see

N
(ay +by) = (ag + by) + (ag +by) + -+ (ay + by)
n=0

=(ag+ay+ - +an)+ by +b + - +by)
N N
= Z a, + Z by,
n=0 n=0
= AN + BN
Since Ay and By both converge by assumption, we can apply the limit law for sums
to see

Putting this all together we have proven what we want, }},-,(a, + b,) exists, and
equals the sum of ),,,50 a, and )5 by. O
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12.1. Telescoping Series

Exercise 12.2 (Constant Multiple of a Series). Prove thatif ), a, is a convergent series
and k € R a constant, then the series Y, ka,, is convergent, and

Zkanszan

n>0 n>0

Remark 12.3. Multiplying series is more subtle, as the terms of (ZnN:o an) (Z,Ilio b,,)
are not just the pairwise products a,b,: we need to multiply it all out. The resulting
construction is called the Cauchy Product, and we will later show that under the right
conditions if ) a, = A and Y, b, = B then the Cauchy product converges to AB.

Exercise 12.3. Let [[;>; a = a and [[;>; bx = f be convergent infinite products.
Prove that [ [;_; axbr converges, with limit af.

12.1. Telescoping Series

There are rare cases when we can sum a series directly, but these will prove very
useful as basic series much as our basic sequences underlied much of our earlier work.
The simplest way to directly sum a series is to find an exact formula for its partial
sums, and telescoping series are a particularly nice example, where algebra makes this
almost trivial

Definition 12.4 (Telescoping Series). A telescoping series is a series ). a, where
the terms themselves can be written as differences of consecutive terms of another
sequence, for example if $a_n=t_{n-1}-t_n.

Telescoping series are the epitome of a math problem that looks difficult, but is se-

cretly easy. Once you can express the terms as differences, everything but the first
and last cancels out! For example:

n
Sh = Z ay
k=1

= Yt —t1)
k=1

= (ty —ty—q1) + (tg—q — ty—g) + -+ (t2 — 1) + (t; — 1p)
=ty + (g — b))+ (1) + () — 1) — 1

=t — 1

Thus, evaluating the sum is just as easy as evaluating the limit of #,:
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12. First Examples

lims, = lim(¢, — t;) = (limt,) — &,

Thus, once a series has been identified as telescoping, often proving its convergence
is straightforward: you get a direct formula for the partial sums, and then all that re-
mains is to calculate the limit of a sequence. Because there are many ways a sequence
might telescope its easier to look at examples than focus on the general theory.

Example 12.1. The sum Zk>1 k telescopes. Writing out a partial sum s,,

1
Tkl
everything collapses so s, =1 — m

(1 1 > ( 1 1)
s, ==-— + — =)+
n n+1 n—1 n

1 (1 1)
=- +(=—-=)+
n+1 n n

Now we no longer have a series to deal with, as we’ve found the partial sums! All that
remains is the sequence s, = 1 — ﬁ And this limit can be computed immediately
from the limit laws:

=1

s =lims, = 1—lim 7
n

Of course, sometimes a bit of algebra needs to be done to reveal that a series is tele-
scoping;:

Example 12.2. Compute the sum of the series

1
Z n(n+1)

n>1

1 B _
e 1)weseekA B with 4 =

Performing a partial fractions decomposition to

n(n+1) which is satisfied by A = 1, B = —1, so

_r _r 1
nn+1) n n+1

Thus our series telescopes, with partial sums
N 1 1 1 1 1 1 1
S (-G (-3
Zin(n+1) 2 2 3 N-1 N N
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12.1. Telescoping Series

Taking the limit
1 N 1
— =1 =liml——=1
;n(n+l) IJ{InnZ::l n(n+1) 1 N

Telescoping series don’t need to cancel consecutive terms, but rather it can take a bit
of time before the telescoping begins:

Example 12.3. Compute the sum of the series

Z 1
&l k2 + 3k

Doing partial fractions to the term 1/(k? + 3k) we find

12 :1<1_ 1 )
k?+3k k(k+3) 3\k k+3
We’ll ignore the factor of 1/3 while doing some scratch work below but be careful to

bring it back later. Adding up the first two terms we don’t see any cancellations like
we expect of a telescoping series

(=33

But, after more terms the cancellations begin: the sixth term is

(-3 G-3) G5 (G-8)+G-2)+(G-3)

1( 1 1 1 )
(142 — =
3 2 N+1 N+2

So, taking the limit as the number of terms we add goes to infinity we can use the
limit laws together with 1/N — 0 to conclude

1 . 1< 1 1 1 )
Yl cml(ialo L
k2 + 3k 3 2 N+1 N+2
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Exercise 12.4. Show that the following series is telescoping, and then find its sum

1
Z4n2—1

n>1

Hint: factor the denominator, and do a partial fractions decomposition!
A telescoping product is defined analogously

Definition 12.5 (Telescoping Product). A telescoping product is a product []a,
where the terms themselves can be written as ratios of consecutive terms of another

—
sequence, for example a, = -t

Exercise 12.5. Find the value of the following infinte product by showing its tele-
scoping and computing an exact formula for its partial sums:

I1(;)

n>5 n

An example of historical importance is below:

_ VzN2nV2

Example 12.4 (Viete’s Product for x). Viete’s infinite product % = which
we derived back in the introductory historical chapter to this text from an infinite
application of the half angle formula, can also be derived as a telescoping product,
where each term represents the ratio of the area of a circumscribed polygon and and
its side-doubled cousin.

« The first term, v/2/2 is the ratio of the area of an square to a octagon.

« The second term, v/2 + /2/2 is the ratio of the area of a octagon to an 16-gon.
« The n'" term is the ratio of the area of a 2"*!-gon to a 2"*2-gon.

When multiplying these all together, the intermediaries cancel, and in the limit this
gives the ratio of the area of a square to the area of a circle.

12.2. Geometric Series

Definition 12.6. A series ), a, is geometric if all consecutive terms share a common
ratio: that is, there is some r € R with a,/a,_; = r for all n.

In this case we can see inductively that the terms of the series are all of the form ar".
Thus, often we factor out the a and consider just series like )’ r".
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12.2. Geometric Series

Exercise 12.6 (Geometric Partial Sums). For any real r, the partial sum of the geo-

metric series is:
+1
1—r
T+r+r2 44/ = Zr

1—-r

Like telescoping series, now that we have explicitly computed the partial sums, we
can find the exact value by just taking a limit.

Theorem 12.1. If|r| < 1 then ), r" converges, and

Conversely if [r| > 1, the geometric series Y, r" diverges.

Proof. We begin with the case |[r| < 1. By the partial sum formula, we have

Zr —her —hm N

n>0

1
-r
Since |r| < 1, we know that * — 0, and so r"*! = rr — 0 by the limit theorems (or
by truncating the first term of the sequence). Again by the limit theorems, we may

then calculate
Iiml—r”“1—r1—hmr"“_1—0_ 1
= 1-r 1-r 1-r

For |r| > 1, we directly see the sum is unbounded as each rk>1k =150

sv=).rF> 1414+ +1=N+1
k=0
As convergent sequences are bounded, this must diverge. O
Exercise 12.7. Show if r < —1 that Y r* diverges.

Hint: look at the subsequence sg, s, Sy, S --- Of partial sums.

Remark 12.4. Its often useful to commit to memory the formula also for when the
sum starts at 1:
>k

k>1

Example 12.5. What should the infinite decimal 0.99999 --- mean?
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12. First Examples

Because this holds for all values of r between —1 and 1, this gives us our first taste
of a function defined as an infinite series. For any x € (—1,1) we may define the
function

FO)=1+x+x2+x3+ o +x"+

and the argument above shows that f(x) = 1/(1—x). Thus, we have two expressions
of the same function: one in terms of an infinite sum, and one in terms of familiar
algebraic operations. This sort of thing will prove extremely useful in the future,
where switching between these two viewpoints can often help us overcome difficult
problems.

1

1—=1+x+x2+x3+x4+x5+~-~
- X

The theory of geometric series began with Archimedes’ famous paper The Quadrature
of the Parabola, and we can now make his final argument rigorous in a modern form.
(We will not make rigorous the first steps of the argument, which deal mainly in
geometry, but re review them briefly here)

Archimedes’ big idea was to divide a parabolic up into triangles recursively by draw-
ing the largest triangle which inscribes in the segment. This divides the parabolic
segment into a triangle and two smaller parabolic segments, on which the process
repeats.

Je4qq

Figure 12.1.: Archimedes’ infinite construction of the parabolic segment from trian-
gles

Denote by T,, the sum of the areas of the triangles which appear at the n"{th}$ stage of
this process (so Ty is one triangle T; consists of two triangles, T, of four triangles, etc).
Through clever use of the geometry of parabolas, archimedes shows that T,,, ; = iT,,.
And through further clever geometry, Archimedes argues that in the limit as n — oo,
these triangles completely fill the parabola, so its area is the sum of their areas. That
is
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12.3. Summing Reciprocals

Summing this geometric series yields the celebrated result:

Theorem 12.2. The area of the segment bounded by a parabola and a chord is 4/3s
the area of the largest inscribed triangle.

12.3. Summing Reciprocals

Some of the most natural infinite series to consider are the sums of reciprocal natural
numbers and their powers. The simplest of these is simply

1 1 1.1 1
el E e
Sin 2 3 4 n

and called the Harmonic Series (named after a distant connection to music). Other
common examples are Y, nlz or Y, 1n3, etc. These arise everywhere throughout anal-
ysis, and find important applications in physics, number theory and beyond. In this
final section of our introductory chapter we use what we’ve learned to calculate their
values:

Theorem 12.3 (Divergence of the Harmonic Series). The harmonic series ).~ %
diverges.

N . . .
Proof. Let sy = Y=g % denote the partial sums of the harmonic series, and note we
have the following inequality relating s, with sy:

1,1.1,1,1 1 1
SSN=1+-4+>+=+=+=++ +—
2 3 4 5 6 2N-1 2N

l) (1 1) ( 1 1)
o)+ )+ 4+ +—
4 5 6 2N-1 2N

1
3
1 1) (1 1) (1 1)
e Bl o R ol e
4 4 6 6 2N 2N

1 1
=l+-+-+-++—
3 N
1 ( 1 1 1)
=41+ o+ -+t =
2 2 3 N
=14
5 TN
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12. First Examples

Now assume for the sake of contradiction that the harmonic series does converge, so
lim sy = L exists. Then all subsequences converge to the same limit, so restricting to
the even subsequence, lim s, = L as well. But the inequality above ensures sy >
% + sy, and applying the limit theorems yields

lim sy > % =limsy = L> %-I—L
Subtracting L from both sides and multiplying by 2 gives 0 > 1, a contradiction. [J

Exercise 12.8. Give an alternate proof that the harmonic series Y, % diverges, by
comparing it with the partial sums of

1,1/2,1/4,1/4,1/8,1/8,1/8,1/8,1/16, ...

Hint: show that for each N the partial sum of the harmonic series is greater than the
partial sums of this series. But then show the partial sums of this series are unbounded:
for any integer k we can find a point where the sum surpasses k. This means the par-
tial sums of the harmonic series are unbounded: but we know all convergent series are
bounded! Thus the harmonic series cannot be convergent.

Theorem 12.4 (Convergence of the Reciprocal Squares). The series ), % con-
verges.

Proof. Let sy denote the partial sums of the series. Since 1/n? > 0 for all n, we see
the sequence sy is monotone increasing for all N,

1
SN =SN-11T T > SN-1
N2

Thus to prove it converges we need only show its bounded above (and then apply the
Monotone Convergence Theorem). As a first step, note that for every n > 1, we know

1 1 .
n—1<nand so 7 <D Adding these up, we see

,;2 n? Z n(n -1
This latter sum telescopes, so we can compute its partial sums directly:
N N

R N LR S R

n=
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12.4. Problems

Thus, for all N we see Z,JLVIZ niz <1- # <1,s0

N1 N1

E —=1+E —<14+41=2
2 2

n=1" n=2 "

Together, our sequence of partial sums is monotone increasing and bounded above
by 2, so its convergent. l

While proving Y, & is convergent was relatively straightforward, finding its value
is what brought Lehonard Euler his first mathematical fame, when proved it equals
exactly 72 /6.

Exercise 12.9. Prove that for s > 2 that ), % converges.

Hint: show its monotone; and shows its bounded by comparing partial sums with those
of Y, nlz which we know converges.

12.4. Problems

12.4.1. The Koch Fractal

The Koch Snowflake is a fractal, defined as the limit of an infinite process starting
from a single equilateral triangle. To go from one level to the next, every line segment
of the previouslevel is divided into thirds, and the middle third replaced with the other
two sides of an equilateral triangle built on that side.

o ) o o o o o A o

Figure 12.2.: The Koch subdivision rule: replace the middle third of every line seg-
ment with the other two sides of an equilateral triangle.

Doing this to every line segment quickly turns the triangle into a spiky snowflake like
shape, hence the name. Denote by K, the result of the n'" level of this procedure.
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Figure 12.3.: The first six stages Ky, K1, K3, K3, K and Ks of the Koch snowflake pro-
cedure. K, is the fractal itself.

Say the initial triangle at level 0 has perimeter P, and area A. Then we can define
the numbers P, to be the perimeter of the nth level, and A, to be the area of the n'"
level..

Exercise 12.10 (The Koch Snowflake Length). What are the perimeters P, P, and P
of the first iterations? From this conjecture (and then prove by induction) a formula
for the perimeter P, and prove that P, diverges. Thus, the limit cannot be assigned a
length!

Next we turn to the area: recall that the area of an equilateral triangle can be given

in terms of its side length as A = ?52

Exercise 12.11 (The Koch Snowflake Area). What are the areas A;, Ay and Az in
terms of the original area A? Find an infinite series that represents the area of the nth
stage A,, and prove that your formula is correct by induction.

Now, use what we know about geometric series to prove that this converges: in the
limit, the Koch snowflake has a finite area even though its perimeter diverges!
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13. Convergence Tests

Highlights of this Chapter: Finding the value of a series explicitly is dif-
ficult, so we develop some theory to determine convergence without ex-
plicitly finding the limit. In particular, we provide a simple criterion to
determine if a series diverges, formalize the technique of comparison, and
develop the root and ratio tests as means of comparing with geometric
series. We also introduce the notion of absolute convergence, and prove
the convergence of alternating series.

In this section, we build up some technology to prove the convergence (and diver-
gence) of series, without explicitly being able to compute the limit of partial sums.
Such results will prove incredibly useful, as in the future we will encounter many
theorems of the form if' Y. a, converges, then... and we will need to a method of prov-
ing convergence to continue.

13.1. Divergent and Alternating Series

We begin with some low-hanging fruit: easy-to-check conditions on the terms of a
series which either guarantee its convergence or divergence.

Corollary 13.1 (Divergence Test). If a series ), a, converges, thenlima, = 0. Equiva-
lently, if a, 40 then Y. a, diverges.

Proof. Assume the sequence sy = ZnNzo a, of partial sums converges to some limit
L. Then sy_; also converges to L, as truncating the first term of a sequence doesn’t
affect convergence. Thus, we may use the limit law for subtraction to conclude the
sequence sy — sy_1 converges, with limit zero. But

N N-1
SN =SN-1 = Zan_ Z an = an
n=0 n=0
That is, ay converges and limay = 0. O

Here’s an alternative proof using the Cauchy criterion:
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13. Convergence Tests

Proof. Let’s apply the cauchy condition to the single value m. This says for all € > 0
there is some N where for m > N we have

m
Z a| = lam| <€
k=m

But making |a,,| < € for all m > N is exactly the definition of a,, — 0. O

Remark 13.1. The converse of the divergence test is false as the harmonic series ), %
has terms going to zero, but we’ve already seen the overall sum diverges.

Happily, there are some minimal extra conditions one can add to the terms go to zero
that do ensure convergence! The most famous such set of conditions is for the series
to be alternating with terms converging monotonically to zero.

Theorem 13.1 (Alternating Series Test). Let a, — 0 be a monotonically decreasing
sequence. Then Y (—1)"a, converges.

Proof. We will show the sequence s, = ZZZO(—l)kak of partial sums converges by
showing it is Cauchy. Looking at a concrete example

se — s12 = (=1)%ag + (-1)7ay + (—1)8ag + (-1)%ay + (-1)ayo + (-1)!ay; + (-1)*ay,

=ag— a7 +ag—dg+ajp—atap

We can group the terms in two different ways to bound the difference [sg — s15]: first,
= (ag — a7) + (ag — a9) + (a0 — a1) + arz

Here, each parentheses encloses a nonnegative term (since gy is monotone decreas-
ing), so the sum is nonnegative: sq — s;5 > 0. But sliding our groupings down by
one,

= ag + (—a7 + ag) + (—ag + aj) + (—ay; + ar2)

now each pair of parentheses includes a non-positive term, which we are taking away
from ag. Thus sg — s12 < ag. Together these bounds imply [sg — s12| < g4. Indeed, one
can confirm this holds generally, so for m < n, s, —sp,| is bounded above by ay,. Using
that g — 0, for any € > 0 there’s an N beyond which 0 < g, < €, and thus, for any
n>m > N we have

IS, — sml < ap, <€

So, the sequence of partial sums is Cauchy, and thus convergent, as required. O
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Exercise 13.1. Prove the general inequality used in the proof above: if
n k.. . .
Sp = Dp=o(—1) ag is the partial sums of a monotone decreasing sequence a, — 0,
then
Isp —spl < a,, forallm<n

Hint: think about different cases, when m,n are even and odd

Exercise 13.2. Give an alternative proof of the alternating series test, using the
Nested Interval Theorem. Here’s a potential outline:

Let a, — 0 be monotone decreasing and s, = ZZ:O(—l)kak be its partial sums.

« Show the even subsequence s, sy, S3, ... is monotone decreasing

« Show the odd subsequence s, s3, ss, ... is monotone increasing

« Show the intervals [sy,_1, S5, ] are nested, and their lengths are going to zero.

« Show there is a unique point in their intersection, and argue this is the limit of
the partial sums s,.

The monotonicity hypothesis of the Alternating Series test cannot be dropped, as the
following example shows.

Example 13.1 (Monotonicity is Required). Consider the infinite series

1 1 1 1
— + — +...
V2—-1 V2+1 3-1 3+1

This series is alternating and its terms converge to zero, but it is not monotone. To
see it diverges, look at the sum of two consecutive terms:

1 1 Gn+n-Gh-1 2
Jn—1 Jn+1 n—1 Tn-1

Thus, if we add up the first 2N terms of the series we get

<\/§1—1 - \/§1+1)+(\Bl—1 - \/§1+1)+m+<\/ﬁ1—1 - Jﬁl+1>

=(2)+ (@) (55

This is twice the sum of the first n — 1 terms of the harmonic series, which we know
diverges! Thus our series contains a subsequence of partial sums that diverges, and
must diverge as well.
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13.2. Absolute vs Conditional Convergence

Below we will develop several theorems that apply exclusively to series of positive
terms. That may seem at first to be a significant obstacle, as many series involve both
addition and subtraction! So, we take some time here to assuage such worries, and
provide a means of probing a general series using information about its nonnegative
counterpart.

Definition 13.1 (Absolute Convergence). A series Y, a, converges absolutely if the
associated series of absolute values Y, |a,| is convergent.

Of course, such a definition is only useful if facts about the nonnegative series imply
facts about the original. Happily, that is the case.

Theorem 13.2 (Absolute Convergence Implies Convergence). Every absolutely con-
vergent series is a convergent series.

Proof. Let ), a, be absolutely convergent. Then ) |a,| converges, and its partial sums
satisfy the Cauchy criterion. This means for any € we can find an N where

|an| + |an+1| + ot |am‘ <e

But, by the triangle inequality we know that
|an + py1 + 0+ an| < lag| + lape1] + - + lan]

Thus, our original series Y, a; satisfies the Cauchy Criterion, as

n
Z ap| <€
k=m

And, since Cauchy is equivalent to convergence, this implies Y, a is a convergent
series. O

Definition 13.2. A series converges conditionally if it converges, but is not absolutely
convergent.

Such series caused much trouble in the foundations of analysis, as they can exhibit
rather strange behavior. We met one such series in the introduction, the alternating
sum of 1/n which seemed to converge to different values depending on the order we
added its terms. Here we begin an investigation into such phenomena.
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13.3. Comparison
13.3. Comparison

One of the very most useful convergence tests for a series is comparison. This lets
us show that a series we care about (that may be hard to compute with) converges or
diverges by comparing it to a simpler series - much like the squeeze theorem did for
us with sequences. This theorem gives less information than the squeeze theorem (it
doesn’t give us the exact value of the series we are interested in) but it is also easier to
use (it only requires a bound, not an upper and lower bound with the same limit).

Theorem 13.3 (Comparison For Series). Let Y, a, and Y. b, be two series of nonnega-
tive terms, with 0 < a, < b,,.

« IfY. b, converges, then Y, a, converges.
« IfY, a, diverges, then'y, b, diverges.

The proof is just a rehashing of our old friend, Monotone Convergence.

Proof. We prove the first of the two claims, and leave the second as an exercise. If
X, > 0 then the series s, = ZZ:O Xy is monotone increasing (as by definition s, =
Sp—1 + X, and x,, > 0 we see s, > s,_; for all n).

Thus. )’ a, and Y b, are monotone sequences. If Y b, converges, we know by the
Monotone Convergence Theorem that it its limit § is the supremum of the partial
sums, so for all n

n
Z b < B
k=0

But, since g < by for all k, we see the same is true of the partial sums
n n
Z a < Z b
k=0 k=0

Stringing these inequalities together, we see that )’ i is bounded above by f. Since
it is monotone (as the sum of nonnegative terms) as well, Monotone convergence
assures us that it converges, as claimed. O

Exercise 13.3. Let ). a, and Y, b, be two series of nonnegative terms, with 0 < a, <
b,. Prove that if ), a, diverges, then Y. b, diverges.

A very effective means of proving the convergence or divergence of certain series is
to compare them with geometric series, who we understand completely. Such com-
parisons will only work if the terms of our series are shrinking fast enough (quicker
than a geometric progression, so at least exponentially), and coarse methods like this
are bound to prove unhelpful for various particular examples. Nonetheless the ease
of use of such comparisons is unparalleled, making them an essential element of our
toolkit.
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13.3.1. The Root Test

Geometric series are particularly simple to work with, as the n'h term is just a constant
raised to the n" power. Said another way, the n'’* root of the n'* term is constant! This
suggests a concrete way to compare a series with a geometric series: comparing the
roots of its terms with a constant. This is commonly known as the root test.

Proposition 13.1 (The Root Test). Let Y. a, be a series, and assume that lim %|a,|
converges to some limit L. Then

« Y. a, converges if L < 1
o Y. a, diverges if L > 1

Proof. We work in cases, starting with L < 1. Here, for any r strictly between L and
1 we can eventually bound our sequence %/|a,| above by r: (set € = r — L, then there’s
an N beyond which |%/|a,| — L| <€, so #|a,| < L+ € =7).

Taking the nth power of both sides, we see that for all n > N we have |a,| < r", and
so we can compare the series ).,sy |a,| with the geometric series ),sn 1", which
converges as [r| = r < 1. Thus Z_nzN |a,| converges, and as the first finitely many
terms of a series do not affect convergence, )5 |a,| converges as well. But now we
are done: this is exactly the statement that )’ a,, converges absolutely, and absolute
convergence implies convergence.

If L > 1 we can use the same sort of reasoning for any 1 < r < L to eventually bound
our sequence {/|a,| to be greater than r, so that |a,| > r" for all n > N. This sets up
a comparison with a divergent geometric series which causes problems. But even
more directly, if |a,| > r"* and r" > 1, then |a,| > 1 for all sufficiently large n, and its
impossible that a, — 0. Thus Y a, diverges by the Divergence Test. O

Example 13.2 (Using the Root Test). Consider the series

§<3n211>n'

n=1

Applying the root test means we must take the n'” root of the absolute value of a, =

n
(332 1) . Since for all n € N these terms are positive, this is

o) = 2n
" 3n41

VI

Using the limit laws, we can check this limit exists:

2n 2

lim =
3n+1 3
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2n
3n+1

n
Since 2 < 1, the root test guarantees that the series 3 ( ) converges abso-

lutely, and thus converges.

Remark 13.2. When limQ/W = 1 we gain no information, as there are both con-
vergent series (for example ). niz) and divergent series (for example, ), %) with this

property. Recalling that nt/" - 1, we see

Iim%:limi:;zl
n Yn  limnl/n

. . 1 1 1
lim"*|—= =lim = = =1
[z limn2/n (lim nl/n)z

The root test is very powerful when it applies, but one of its hypotheses is that the
limit lim M must exist. This is a rather big ask: and remembering the limsup one
might wonder if we could instead prove an analog of the root test which looks at
lim sup Q/W instead, as we know this quantity always exists so long as the sequence
is bounded. Indeed we can, and after refreshing our memories of the definition of
limsup, we see the proof barely changes either!

Exercise 13.4 (The Root Test with Limsup). Prove that if ). a, is a series and L =
lim sup ¥/|ay|, the series converges if L < 1 and diverges for L > 1. (Here we write

L = oo as a shorthand to mean the sequence /|a,| is unbounded.)

This more general version will be crucial to our understanding of general power series
in the next chapter. It is still not exact, because it does not give any information when
the limsup is exactly 1; but this is the only case of ambiguity

Corollary 13.2. IfY. a,x" is a convergent series, then lim sup ¥|a,| < 1.

Proof. We proceed by process of elimination. If the limsup were not < 1 then it
would either be (1) greater than 1, or (2) not exist. In the first case, the root test di-
rectly proves the series diverges. In the second case, lim sup exists for every bounded
sequence, so this means the sequence of n'h roots is unbounded. Thus the original
sequence of terms is also unbounded, so the series diverges (by the divergence test,
as the terms aren’t going to zero). O

Below is an example in practice where the need for lim sup, over the more familiar
lim may arise.
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13. Convergence Tests

(=) —1)m\"
Example 13.3 (Using the Limsup Root Test). Consider the series ).,_; (%) .

Computing the n'" roots of the absolute values required for the root test,

(1+(3—1)n)

The limit of this sequence does not exist, because it oscillates between two values. Rig-
orously, the even subsequence converges to 2/3 and the odd subsequence converges
to 0 (both are constant sequences), but for a convergent sequence all subsequences
converge to the same limit. Thus, the original form of the root test does not apply, as
the limit does not even exist.

n
n

_ ’1 + (1"
3

2 .
3 if n is even,
0, ifnisodd.

However, the limsup does exist. Let r,, be the sequence of roots, sor, = 2/3 if n is
even and 0 if n is odd. Then for all N

supr, = sup{Z,0,2,0,% }_2

n — s Uy T Uy el —

>N 327373 3

And thus

2
lim supr, = lim sup{r,} = =
P N nzll\)f{ n} 3

as its the limit of a constant sequence.

Because 2/3 < 1, the limsup version of the root test applies without issue, proving
that our series converges absolutely, and hence converges (even though our original
test was not strong enough to say anything at all).

However, while good for building theory, using the root test in practice is rather an-
noying - nobody wants to be computing limits of ' roots of arbitrary things! So its
beneficial to look for another, perhaps simpler method of comparing with a geometric
series, as we do below.

13.3.2. The Ratio Test

Consecutive terms of a geometric series Y, r" have the common ratio r. Thus a natural
means of comparing with a geomeric series is to investigate the common ratio a,,, 1 /a,
of a series’ terms:

Proposition 13.2 (The Ratio Test). Let Y. a, be a series and assume that the sequence

Ant1
[2}

when L > 1

of ratios converges, with limit L. Then Y, a, converges if L < 1 and Y. a, diverges

n
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13.3. Comparison

Proof. We first consider the case L < 1. For any r with L < r < 1, since lim |, /a,| <
r, our sequence is eventually less than r (setting € = r — L there is an N beyond which
llanr1/a, — L| < €, or |ap,1/ay| < L + € = r). But this means that our sequence is
eventually shrinking by a factor of r with each consecutive term:

an+1

<r = l|apyq| <rlayl forn> N

an
Thus, beyond N our series is bounded by a geometric series:

lans1l <rlayl  an+1 < rlansil <rPlanl  lanssl < rlansal < rlay]

continuing inductively yields immediately that for all k, |ay.| < |ay|r*. Thus, by
comparison our series ), |a,| converges:

D lanl = Y lanskl < D lanlr* = layl Y *

n>N k>0 k>0 k>0

Exercise 13.5. Prove the divergence of )’ g, in the case lim |a,{/a,| > 1.

Example 13.4. Consider the series

M
2|

3
1l
—

n
The n'" term is defined by a, = % so applying the ratio test requires us to compute

Z41| - Since all terms involved are positive, we can drop the absolute values and
co;npute
1| _ 3"/t 3mp
4, | 3 /nl 3 (n+ )
Simplifying,
Gpr| 3™ @ 3.3 13
a, | 3" (+1)! 3" an+1 n+1

Now, taking the limit using our limit laws and basic limits

lim =0.

n—oon+ 1

Since 0 < 1, the ratio test guarantees that the series Y, % converges absolutely,
and thus converges. '
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Remark 13.3. When lim

1
ay

= 1 we gain no information, as there are both con-

vergent series (for example ), niz) and divergent series (for example, ), i) with this

property.
1

lim 2L = lim —2— = lim 11= ! T =1
n+1 1+; 1+lim;

=N SN

(n+1)? n 2 n 2
lim—zlim( ) :<lim > =1%2=1
1 (n+1 (n+1

Like the root test, one might seek a version of the root test which doesn’t require the
limit lim |ay,, 1 /ay| to converge. Again, we succeed by replacing lim with lim sup and
barely modifying the proof.

Exercise 13.6 (The Ratio Test with Limsup). Prove that if ). a, is a series and L =

i1
an

lim sup , the series converges if L < 1 and diverges for L > 1.

Example 13.5. Example using ratio test + limsup

The ratio test, while easy to apply, has some obvious failure modes even in this more
general version. What if some of the terms being added up are zero, so that consec-
utive ratios are undefined? (For example, if every other term of the series is zero,
then the consecutive ratios alternate between being zero and undefined, completely
independently of the values of the nonzero terms). One might be tempted to try and
fix this problem by re-indexing; removing all terms that are zero before applying the
ratio test. While this would remove some problems, the fact still remains that com-
paring consecutive ratios just isn’t that fine-grained of a tool to work with, and we
can’t take this as a one size fits all tool.
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14. Power Series

Highlights of this Chapter: we introduce the definition of a power series,
and testing for convergence via ratios.

We have developed some pretty powerful tools to prove the convergence of infinite
series: for example, with little work we can apply the ratio test to immediately see
Y, 21" converges.

Indeed the same technique shows that the more general series ), "20; converges when-

ever |a| < 2. This invites a bit of a change in perspective: we might think of the series
above as a function that takes in one value of « (a parameter), and outputs the limit
of the series. From this perspective, our calculation above actually helped us find the
domain of the function - all the values of @ that make sense to plug in.

Defining functions using sequences and series proves to be an incredibly powerful
tool in analysis, and so we take a break from our more theoretical development to
introduce the simplest and most useful case: power series. Polynomials or finite sums
of multiples of powers of x, are some of the simplest functions we know. So its natural
to wonder about their infinite counterparts: power series, arising as the limit of a
sequence of polynomials of increasing degree

Definition 14.1 (Power Series). A power series is a function defined as the limit of
a sequence of polynomials
fG) = Y ap”
n>0

for a sequence a, of real numbers. For each x, this defines an infinite series; the
domain of a power series is the subset D C R of x values where the series converges.

Of course, polynomials themselves are a special case of power series, with a, = 0
after some finite N. Perhaps the second simplest power series is the one with a, = 1
for all n:

Ff)=1+x+x°+x3 +xt+ o+ x" +-

This is none other than the geometric series in x! So, it converges whenever the com-
mon ratio x satisfies |x| < 1: its domain is the interval (-1, 1).

Power series are an extremely versatile tool to reach beyond the arithmetic of poly-
nomials, while staying close to the fundamental operations of addition/subtraction
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14. Power Series

and multiplication/division. One of our main uses of them will be to provide efficient
means of computing important functions (exponentials, logs, trigonometric functions,
etc).

Definition 14.2 (Power Series Representation). Given a function f(x), a power series
representation of f is a series s(x) = ), a,x" such that s(x) = f(x) whenever s(x)

converges.

Example 14.1. The function f(x) = é has a power series representation on the
interval (—1, 1), where
IRESE

150 1—x

This might not seem like an exciting discovery, as 1/(1 — x) is a function that is easy
for us to compute using the field operations, and now we’ve build a more complicated
looking expression - an infinite series - to compute the same value! The ability to
represent a function as a power series will be much more useful when looking at
functions that are difficult to understand, like the exponential. Our best procedure
for computing an irrational power right now is the definition: the limit of a sequence
of rational powers. But such a limit is ridiculously hard to compute in practice. If we
could instead represent the exponential as a power series, we could replace this limit
with a series made out of just addition and multiplication! We will do exactly this, in
a future chapter.

14.1. Convergence

Here we will study the most general theory of power series Y, a,x" for arbitrary se-
quences a,. The first thing to understand is their domain: for which values of x do
the series converge? One point stands out immediately: for x = 0 the terms a,x" are
all equal to zero, so the partial sums of ), a,x" are 0 + 0 + 0+ + 0 = 0, and so the
series converges to 0. Thus, x = 0 is in the interval of convergence of every power
series.

Proposition 14.1. If a power series Y, a,x" converges at some u > 0, then it converges
at all x € (—u,u).

Proof. If ) a,u™ converges, then by the root test lim sup #/|a,u*| < 1 (by process of
elimination: if this sequence were unbounded or has limsup > 1 then we know it
diverges). Now x € (—u,u) means |x| < |u|. Noting that x = (x/u)u, we may rewrite
the limit we want as follows:

|| x|
Ylanx"| = xlnlay| = =lullay| = —la,u"|
lul [ul
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14.1. Convergence

Because |x|/|u| is a positive constant, we can pull it out of the limsup and compute

lim sup \/ apu’| = hm sup / |a,u"

This is strictly less than 1 as |x|/|u] is strictly less than 1 (since |x| < [u]) and the limsup
term is less than or equal to 1 by our assumption of convergence. Thus, with limit
less than 1, this series converges absolutely by the root test, so Y. a,x" converges as
claimed. O

This motivates the following definition:

Definition 14.3 (Radius of Convergence). The radius of convergence of a power
series is the largest value of r > 0 such that the series converges on (—r,r).

With a more careful use of our convergence tests, we can compute an exact expres-
sion for the radius of convergence in terms of the coefficients. This will be of in-
credible theoretical utility in the chapters to come, and is often known as the Cauchy
Hadamard Theorem.

Theorem 14.1 (Finding the Radius of Convergence Cauchy-Hadamard). Let Y, a,x"
be a power series, and o = limsup¥/|a,|. Then the radius of convergence isr = 1/a

(where & = 0 means convergence on all of R), and if %/|ay| is unbounded (so its lim sup
is undefined, or infinite) then Y. a,x" converges only at x = 0.

Proof. First we deal with the generic case, where « is a nonzero real number. Since
lim sup ¥la,x™ = |x|lim supm = |x|a, we know this series converges whenever
|xle < 1,50 |x| < 1/a. Since the root test further ensures the series diverges whenever
|xle > 1, r = 1/a is the largest number such that the series converges for all |x| < r,
making it the radius of convergence.

The same reasoning works when a = 0, as now for any x we see lim sup {/|a,x"| =
|x] lim sup #/|a,| = |x|e = 0, which is less than 1: thus ) a,x" converges for all x € R.

Finally, if {M is an unbounded sequence, then for any nonzero x # 0 the sequence
|x|2m = {|a,x"| is also unbounded. Taking nth powers shows |a,x"| is unbounded,
and in particular does not converge to zero. Thus a,x" does not converge to zero, so
the series diverges by the divergence test. Since all series converge for x = 0, this
makes {0} the entire domain, so the radius of convergence is zero. O

Corollary 14.1 (Absolute Convergence of Power Series). Let f(x) = Y, a,x" be a
power series with radius of convergence r, and let u € (—r,r). Then f converges abso-
lutely at u.
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14. Power Series

The root test further implies that for a power series with radius of convergence r, at
any x with [x| > |r| the series must diverge. Thus, the domain of a power series has
a very limited form: it must be an interval centered at zero. Because of this we often
call the domain the interval of converence.

Definition 14.4 (Interval of Convergence). The interval of convergence of a power
series ), a,x" is another word for its domain, the set of all x for which the series
converges.

Exercises below show there are no further restrictions: any possible interval centered
at zero is the interval of convergence for some power series: so domains can take the
form {0}, (—r,7), [-r,r], [-7, 1), (=7, 7], or (=00, 0); all of RR.

While the root test is of great theoretical utility to proving the above theorem, in
practice n" roots are rather unweildly to work with, and we might wish to instead
apply hte ratio test. One can make a version of the ratio test specifically adapted to
power series as follows:

. . . a,
Exercise 14.1. Let ) a,x" be a power series, and assume the sequence of ratios =

converges to some « € R. Prove that the radius of convergence is r = 1/a when
a # 0, and converges on all of R when o = 0.

14.1.1. Skipping Terms

The root and ratio tests as proven above apply to series ). a,x", where the n" term
is an n power of x. But there are very many natural series not of this form: for
example, a series with only even powers of x,

x2n
4 e = —
n>0 4

Or only odd powers, or only powers that are multiples of three, etc. It might be
tempting to directly apply the root test (for example) to the coefficients of such a
series and conclude

ofi/an = 1/4

So the series converges for |x| < 4. However this would be wrong! A more careful
application of the root test to the entire series shows

nlx2n/4n - |x2|/4
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So we actually need x2/4 < 1, so x> < 4 so |x| < 2. Being careful and applying the
root test / ratio test to the entire series each time (instead of the shortcut where its
applied to the coefficients) will avoid trouble in such cases.

14.2. Problems

14.2.1. Example Power Series
Power series provide us a means of describing functions via explicit formulas that we

have not been able to thus far, by allowing a limiting process in their definition. For
instance, we will soon see that the power series below is an exponential function.

Exercise 14.2. Show the power series ), ’:l—:l converges for all x € R.

When a power series converges on a finite interval, its behavior at each endpoint
may require a different argument than the ratio test (as that will give 1, and tell you
nothing)

Example 14.2. Show the power series ), 2 has domain [-1,1). This shows that its
possible for power series to have a domain which is closed on the left side and open
on the right side of the interval of convergence.

To finish showing all possible interval types exist, create an example of a power series
which converges on an interval of the form (—a, a] for some a > 0 (and prove your
claim).

Exercise 14.3. Show the power series ), ’;—: has domain [—1, 1].

When the radius of convergence is 0, the power series converges at a single point:
Exercise 14.4. Show the power series Y, n!x" diverges for all x # 0.

Exercise 14.5. Series Y, 2"x" converges on [—1/2, 1/2). Hint: substitution y = 2x

Example 14.3. Where does Y, 2"x" converge? Trickier! Need to worry about the
exponents not being justn
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15. Advanced Techniques

The theory of infinite series is both deep and rich: there is much more
we could say in this short chapter. With an eye towards calculus how-
ever we must march onwards, and so in this final chapter we collect some
odds and ends about series that will prove useful in that quest. In partic-
ular, we prove the dominated convergence theorem allowing one to work
simultaneously with limits and infinite sums, as well as Abel’s Lemma -
an application of summation by parts.

15.1. Switching Limits and Sums

It’s rather common in practice to end up with an infinite sequence of infinite series.
For example, if f(x) = Y a;x* is a power series, then one might be interested in
evaluating this function along a sequence x;, of inputs values within its interval of
convergence. This would produce the sequence of Values FG) = T ar(x)k,

if x, — x, its natural to wonder if ) ak(xn) - Y akx Unpacking this, we are
asking if

p k _ . k
lim ; ap(x,)k = ; ag(lim x,)

By the limit laws this is the same as asking whether lim, ), a(x)k =
>k limy, ak(xn)k, and so more abstractly we are asking if we can switch the
order of a limit and a sum.

QUESTION: If a,) is a sequence depending on two variables n and k, when is
limy, Yopso gk = Do limy, anx?

Unfortunately this is subtle: its sometimes true and sometimes false:

Example 15.1 (When you can switch a limit and a sum). Consider the geometric
series Y r> %k, and let a, be a convergent sequence in (—1,1), with limita € (—1,1).

For each fixed n the series Y, k>0(an) converges, and has hmlt —_ by the formula for

a geometric series. Thus, taking the limit as n — oo of these sums ylelds

1 1 1
hm Z(an)k = hrrln = - =

= 1-a, 1-lima, 1-a
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by the limit theorems. But this is precisely the value of ) ;- d = ﬁ And again,

looking at each term d* individually, by the limit theorems

d* = (lima,)* = lim(a,)*
n n
Putting these together, we see ) ;- lim,,(a,)* = ﬁ and so

. 1 .
i Z) = 7 = B it

Example 15.2 (When you can’t switch a limit and a sum). Written without summa-
tion notation, consider the following

1:1_’_1

2 2

1 1 1 1

=4+ +-+=

4 4 4 4

1 1 1 1 1 1 1 1
=-+-+-+-t+=-+=-+=+4=
g8 8 8 &8 8 8 8 8

Each row sums to 1, but the limit of each term 1/2" — 0. So, if we took the limit of
the terms first, we would get 1 = 0+ 0+ 0+ - + 0 = 0. Nonsense! Writing this
precisely in summation notation, we define

1/2" 0<k<2
ank =
0 else

Then each of the rows above is the sum 1 = ;5 a,x for n = 2,3,4. Since this is
constant it is true that the limit is 1, but it is not true that the limit of the sums is the
sum of the limits, which is zero.

1:111111120n,k¢ Zliman’k:ZO:O

k>0 k>0 k>0

So, its hopefully clear that to be able to use series in realistic contexts, we are in desper-
ate need of a theorem which tells us when we can interchange limits and summations.
The precise theorem giving these conditions is sometimes called Tannery’s Theorem,
but we shall refer to it by its more descriptive name, Dominated Convergence.

Theorem 15.1 (Dominated Convergence for Series). Let a,j be a double sequence
such that lim, a, . exists for each k, and )i~ ay . converges for eachn. Then if

« There is an My with |a, ;| < My for alln.
« Y. My is convergent.
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It follows that Y lim, a,, ;. is convergent, and

1171111 zk: a(n) = zk: lillln ay i

Proof. For simplicity of notation define auj = lim, a, k. First, we show that ), ae
converges. Since for all n, |a, ;| < M, we know this remains true in the limit, so
limy, |a, k| = |aco | < M. Thus, by comparison we see Y’y lae k| converges, and hence
50 does Y doo k-

Now, the main event. Let € > 0. To show that lim,, }}; @, = Yk deo We Will show
that there there is some N beyond which these two sums always differ by less than e.

Since Y ;. My converges, by the Cauchy criterion there is some L where

Z M < %
k>L

For arbitrary n, we compute

Z ank — Z Qoo k| = Z(an,k —a) + Z anj + Z Qoo ko

k>0 k>0 k<L k>L k>L

< Z(an,k — Ao )| + Z anf| + Zaoo,k
k<L k>L k>L

< Z |an,k - aoo,kl + Z |an,k| + Z |aoo,k|
k<L k<L k>L

< Z |an)k — aoo,k| + 2 Z My
k<L k>L

2€

< Z |an,k - aw,k| + ?

k<L

That is, for an arbitrary n we can bound the difference essentially in terms of the first
L terms: the rest are uniformly less than 2e /3. But for each of these L terms, we know
that a,  — @k so we can find an N making that difference as small as we like. Let’s
choose Nj such that |a, ;. — ae k| < €/3L for each k < L and then take

N = maX{No, Nl’ NL—I}
Now, for any n > N we are guaranteed that |a_{n,k}-a_{co,k}|<X/3L$ and thus that

Z |an,k - aw,k' < L% = g
k<L
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Combining with the above, we now have for alln > N,
Z nk — Z oo k| < €
k>0 k>0

as required. O

There is a natural version of this theorem for products as well (though we will not
need it in this course, I will state it here anyway)

Theorem 15.2 (x Dominated Convergence for Products). For each k let a,) be a
function of n, and assume the following:

+ Foreachk, a,j — ae is convergent.

« Foreachn, [[y>q ank is convergent.

« There is an My, with lan k| < My, for alln.
« Y. Mj is convergent.

Then [ [0 lim,(1 + ay, ) is convergent, and

lirrln H(l +ayg) = H(l + Qoo k)

k>0 k>0

15.2. * Double Sums

A useful application of dominated convergence is to switching the order of a double
sum. Given a double sequence, one may want to define an double sum

D, am

m,n>0

But, how should one do this? Because we have two indices, there are two possible
orders we could attempt to compute this sum:

PIDICFIE IPIPILEN

n>0 m>0 m>0n>0
Definition 15.1 (Double Sum). Given a double sequence ay,, its double sum

Y mn>0 mn is defined if both orders of iterated summation converge, and are equal.
In this case, the value of the double sum is defined to be their common value:

P DI ILEDIPIC

m,n>0 n>0 m>0 m>0n>0
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We should be worried from previous experience that in general these two things need
not be equal, so the double sum may not exist! Indeed, we can make this worry
precise, by seeing that to relate one to the other is really an exchange of order of
limits:

Z:lim Z Zzlim

m>0 M o<dmem >0 N odneN

And so, expanding the above with these definitions (and using the limit laws to pull
a limit out of a finite sum) we see

2, D amn=lim D \lm 3 an,

n>0 m>0 0<n<N 0<m<M

= limlim Z Z Ay p | = limlim
N 0<n<N 0<m<M NM o Gmem
0<n<N

Amn

Where in the final line we have put both indices under a single sum to indicate that
it is a finite sum, and the order does not matter. Doing the same with the other order
yields the exact same finite sum, but with the order of limits reversed:

> D amp =limlim 37y,

m2>0n>0 N 0<m<M
0<n<N

Because this is an exchange-of-limits-problem, we can hope to provide conditions
under which it is allowed using Tannery’s theorem.

Theorem 15.3. Letay,, be a double sequence, and assume that either

2D lamal or >, D lamal

m>0n>0 n>0 m>0

converges. Then the double sum Y, ,~o G, meaning both iterated sums exist and are

equal:
PIPICHEDIPILE

m>0n>0 n>0 m>0

Exercise 15.1 (Cauchy’s Double Summation Formula). Use Dominated Convergence
to prove the double summation formula (Theorem 15.3).

Hint: without loss of generality, assume that 5o .50 |amn| converges. Set M,, =
Y150 [amn| and show the various hypotheses of Dominated convergence apply
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15.3. Summation by Parts

Perhaps you remember from calculus 2 the formula for integration by parts, which
states

b b

J udv = uv|z — J' vdu
a a

We will of course prove this later, after we have defined the integral! But there is also
a discrete version of this, for sums, which will prove useful beforehand. In fact this is
a fact about finite sums so we could have proven it way back in the very first chapter
of this book on the field axioms (like we did for the finite geometric series). But we
were busy enough back then and did not, so instead the duty falls to us now in this
odds-and-ends chapter of advanced techniques.

Theorem 15.4. For sequences {a,} and {b,}, we have

n

n
> (@1 = @dbesr + Y, @it — b) = Gya1byr — Gpbpn.

k=m k=m

The good news is the proof is remarkably simple, now that we have the concept of a
telescoping series

Proof. Combining the two terms on the left (which are finite sums, so this is no trou-
ble), we obtain

n n

> G181 = D@ + agbers — aehe) = Y, (Bt — agby)-

k=m k=m

This is a telescoping sum, and it simplifies to a,,1 15,1 —anby, after all the cancellations.

O

Summation by parts is often used in a slightly different form known as Abel’s Lemma,
named after the Norwegian Mathematician Niels Abel.

Theorem 15.5 (Abel’s Lemma). Let {a,} and {b,} be sequences and let s, = Y <, ai
denote the nth partial sum of the series corresponding to the sequence {a,}. Then for
everym < n we have

n n—1

D b = Suby — Sbm — Y, (bt — bio).

k=m+1 k=m
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15.3. Summation by Parts

Proof. We apply the summation by parts formula to the sequences {s,} and {b,}, to

obtain
n—1 n—1

(k1 = s + D ki1 — bie) = Suby — Smbim-

k=m k=m

Since sy is the sequence of partial sums of ai, observe that s, 1 — sx = a1, and so

n—1 n—1
. aesibirr + Y, 5kBrrt = be) = 836y — Sbpn-
k=m k=m

Replacing k with k — 1 in the first sum and bringing the second sum to the right, we
get our result. O

This allowed Abel to produce another powerful test for convergence of a series:

Theorem 15.6 (Abel’s Test). Ifthe series Zk 1 X converges, and if (yy) is a monotone
decreasing nonnegative sequence, then the series Y p; X)) converges.

Exercise 15.2. Prove Abel’s test.

Hint: Use Abel’s Lemma to observe thatzzzl X Ve = SuVntl +ZZ:1 sk (Vk = Vie41), where
Sp = X1 + X + - + x, is the partial sums of x,,. Then use the comparison test to argue
that

[se]

Z sk = V1)

k=1

converges absolutely, and show how this leads directly to a proof of Abel’s Test.

Our main application of this result will be to understanding the continuity of power
series at their endpoints, in a future chapter. But summation by parts makes quick
work of many other calculations that might have otherwise been performed through
a lengthy induction.

Here we take a look at one example: the summing of integer powers.

Example 15.3 (Summing Integers). For any n € IN, Zk 1 k= n(nﬂ)

Let a; = k and b = k — 1. Then each of the differences ay,; — ar and br; — by equals
1, so by summation by parts, we have

S M® + Y00 = (1 + 1)),

k=1 k=1
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This equality can be simplified to

2 Zk =n(n+1).
k=1

Dividing by two gives the claim

n(n+1)
1+2+...+n= 2 .

n(n+1)(2n+1)

Example 15.4 (Summing Squares). For any n € IN, ZZII K = 5

To see this, let qp = k2 and b = k — 1. In this case,
Afes1 —ak:(k+1)2—k2 =2k+1,

and
by1 — b = 1.

So by the summation by parts formula, we have
n n
D@k + Dk + Y. (k)(1) = (n+ 1)°n.
k=1 k=1

Simplifying a bit, we get
n n
32k2+ Zk: (n+1)%n.
k=1 k=1

Since Zzzl k= @ from the previous example, after some algebra we end up with
the desired result

zn:k2:12+22+ +nz:n(n+1)(2n+1)
=1 6

Exercise 15.3 (Summing Cubes). Prove that the following formula holds for the sum
of cubes
P28+t =(1+2++n)°

Hint: follow the suggested steps below:

« Let g = k? and by = (k — 1)?, and apply summation by parts.

« Simplify the left side with algebra, and the sum of squares

« Divide both sides by 4, and recognize the right as the square of what we got
when summing Y_, k.
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15.4. Problems

15.4. Problems

Exercise 15.4. Let E(x) = ) ;> x* /k! Prove that if x,, — x is a convergent sequence,
that
lim E(x;,) = E(x)
n

using dominated convergence.

k
Exercise 15.5. Another nice application involving the series Y}z % is proving

i (143 - 25

k k
Hint: Setting fi.(n) = (Z)x—k, it can be shown that f; = lim, . fi(n) = % and

Dominated Convergence can be applied with the upper bound M, = lz‘, .
Exercise 15.6. Use Dominated Convergence to prove that
1_ .. [ 1+2" 1+2" 1+2" ]
~ = lim
noL2m-3+4  2n.32442  2n.33 443

« Write in summation notation, and give a formula for the terms a;(n)
« Show that lim,, ai.(n) = ¥
« Show that for all n, |ai(n)| < 3%

Use these facts to show that the hypotheses of dominated convergence hold true, and
then use the theorem to help you take the limit.

Exercise 15.7 (Applying the Double Sum). Since switching the order of limits in-
volves commuting terms that are arbitrarily far apart, techniques like double summa-
tion allow one to prove many identities that are rather difficult to show directly. We
will make a crucial use of this soon, in understanding exponential functions. But here
is a first example:

For any k € IN, prove the following equality of infinite sums:

Atk (Z2)1Hk (23)1+k L1tk L2tk 3tk
+oe = + +
1-z 1-z2 1-23 1—zltk - 24k 1 3+
Hint: first write each side as a summation:
Z n(k+1) Z
et 1—2z" Sil- Lm+k
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15. Advanced Techniques

*Then setting a, , = 20 show that Cauchy summation applies to the double sum

Ymn = 0ap, , and compute the sum in each order, arriving that the claimed equality.
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Part IV.

Continuity






In ?@sec-function-continuity we give the definition of continuity and

In ?@sec-function-properties we look at basic properties of continuous func-
tions and their arithmetic.

In Chapter 18 we prove some foundational theorems about continuous func-
tions, including the extreme value theorem and intermediate value theorem.
In Chapter 17 we introduce the theory of power series

In Chapter 20 we give rigorous definitions of the familiar exponential, logarith-
mic and trigonometric functions
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16. Definition & Properties

Highlights of this Chapter: we formalize the concept of continuity, one
of the foundational definitions in the analysis of functions. We provide
an equivalent definition built out of sequences, and use it to prove ‘conti-
nuity analogs’ of the limit theorems. We also give the related definitions
of function limits.

What does continuity mean? In pre-calculus classes, we often first hear something
like “you can draw the graph without picking up your pencil”. This is a good guide to
start with for a formal definition: its clearly capturing some property that is easy to
check by visual inspection! But it’s not precise: terms like “you” and “pencil”, as well
as modal phrases like “can draw” are nowhere to be found in the axioms of ordered
fields! How can we say the same thing, using words we have access to?

16.1. Epsilons and Deltas

First, a function is an input-output machine, so we should rephrase things in terms of
inputs and outputs. When a graph makes a jump (where you’d have to pick up your
pencil), the output changes a lot even when the input barely does. Thus, not having
to pick up your pencil means you change the input by a little bit, the output changes
by a little bit.

This is totally something we can make precise! A good start is by giving names to
things: we want to say for any change in the input smaller than some §, we know the
output cant change that much: maybe its maximum is some other small change e:

Definition 16.1 (Continuity with € — §). A function f is continuous at a point a in
its domain if for every e > 0 there is some threshold § where if x is within § of g, then
f(x) is within € of f(a). As a logic sentence:

Ve > 036 > 0Vx|x—a/ <§ = |f(x)— f(a)l<e

A function is continuous on a set X C R if it is continuous at a for eacha € R. A
function is continuous if it is continuous on its domain.
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16. Definition & Properties

16.1.1. Working with this Definition

This definition looks a lot like the sequence definition, at least in terms of the order
of the quantifiers. And so we can work with it the same way: playing the “e-§ game”
instead of the e-N game.

Example 16.1. Any constant function f(x) = ¢ is continuous at every real number
a.

To prove this, we choose arbitrary € > 0, and observe that for any x € R, f(x)— f(a) =
¢ — ¢ = 0, which is less than €. Thus, for any § > 0 (and if we want to be specific,
choose say § = 1), if [x — a| < § then |f(x) — f(a)| <.

Example 16.2. The function y = cx is continuous at every real number a.

Here’s the scratch work: note that if ¢ = 0 then f(x) = 0 is constant, and we are done
by the previous example. So, we may assume ¢ # 0. Given an aribtrary a € R, choose
€ > 0, and note that [f(x) — f(a)| = [kx — ka| = |k||x — a|. If |x — a| < & this means
|f(x) = f(a)| < |Kk|S, so we may choose § = €/|k|.

Remark: our value of § is allowed to depend on €, as well as properties of our function
(like the k here)

While the € — § definition is nice in that it looks like the sequence definition, we still
end up having to play the € game with every argument. Indeed, while some functions
are well-suited these, for other relatively simple looking arguments, picking the right
d actually turns out to be a bit of work!

Example 16.3. The function f(x) = x? is continuous.

Scratch Work: Given a € R; we will prove f is continuous at a (here we do the
case a > 0; it is only a small modification for a < 0: can you complete it?) Start by
choosing arbitrary € > 0. We seek a § such that when |x — a| < §, we can ensure
|f(x) — f(a)| = |x* — a?| < e. Using difference of squares,

Ix2 —a?| = |x +allx —a| < |x +ald

for our future value of §. To make further progress, let’s decide to always choose a
value of § which is < 1 (if you originally had a larger §, of course taking a smaller
value will also work, so its no trouble to choose a maximal size). Then |x —a| < §
means x is always within 1 of g, so x can never be bigger than a + 1. Thus, x + a can
never be bigger then (a + 1) + a, or 2a + 1 so we know

|x +a|l < (2a+ 1)

For this to be less than €, we can solve for §, and set § = €/(2a+ 1). Writing a rigorous
proof by essentially starting with this claimed value for § and “working backwards”
confirms this works.
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16.1. Epsilons and Deltas

Like any definition, its good after seeing a few examples to also turn and look at
non-examples:

Example 16.4. The step function

0 x<0

h =
() 1 x>0

is discontinuous at 0, but is continuous at all other real numbers.

At 0, we prove discontinuity by fixing € = 1/2, and showing for any § > 0 there are
points within § of 0 whose values under f differ from f(0) by more than e. Indeed
- we can just take x = §/2: this is positive, and |x — 0| < &, but f(x) = 1 whereas
f(0) = 0, so |f(x) — f(0)] = 1 > e. However, for any nonzero a € R, h is continuous
at a. Fixing an arbitrary e > 0, we can take § = |a|, and note that x being within § of
a implies x has the same sign as a (either positive or negative). Thus f(x) = f(a), so
|f(x) — f(a)| = 0 which is certainly less than e.

Thus, a function with a jump in it is discontinuous right at the jump, as we expect.
This shows its possible for a function to be discontinuous at a single point, but things
can get much stranger!

Example 16.5. The characteristic function of the rational numbers is discontinuous
everywhere.

1 x€Q

bex) = 0 x¢Q

Setting € = 1/2, note that proving discontinuity at a means showing that for *any$
6 > 0 we can find an x within § of a where f(x) differs from f(a) by more than
1/2. The proof breaks into two cases depending on the (ir)rationality of a. First, for
irrational a, by the density of rationals we may for any § > 0 find a rational number
xwitha—8 < x <a+34,s0|x—al <§. But, f(a) = 0 since a is irrational and f(x) = 1
since its rational, thus | f(x) — f(a)| = 1 > €. The case of a rational is similar, but now
we use the density of the irrationals to find an appropriate x.

We saw above a function that is discontinuous at a single point, and then one that is
discontinuous everywhere. What’s harder to imagine, is a function that is continuous
at a single point. Try thinking about what this might mean!

Exercise 16.1. Show that the following function is continuous at 0 and discontinuous
everywhere else:

x x€Q

80 = 0 x¢Q
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16. Definition & Properties

There are even stranger functions out there: for instance, the Thomae function

é x € Qand § is lowest terms.

0 x¢0Q

(x) =

is continuous at the irrational numbers, and discontinuous at every rational.

As an example of proving something using continuity, we prove the useful fact that
when an continuous function is nonzero at some point, it actually stays nonzero for a
little bit on each side.

Proposition 16.1 (Nonzero on a Neighborhood). If f is continuous, f(a) # 0 then
there is a small open interval about a where f is nonzero.

Proof. Let f(a) = ¢ with ¢ > 0, and set ¢ = |f(c)|/2. By continuity, there is some
such that if |x—c| < § we know | f(x)— f(c)| < e. Unpacking this, for all x € (c—8, c+6)
we know

If( )| If( I _

<f) - flo) <

And thus

If( )l If(C)I

flO) === <fG) < fle) +

If f(c) is positive, then the lower bound here is f(c)/2 which is still positive, so f(x)
is always positive in the interval. And, if f(c) is negative, the upper bound here is
f(c)/2 which is still negative: thus f(x) is always negative in the interval. O

16.2. Continuity and Sequences

We spent a lot of time working with sequences so far, so it would be nice if we could
leverage some of that knowledge as more than just analogy. And indeed we can! We
give the formal result below, but pause to develop some intuition:

Theorem 16.1 (Sequences and Continuity). Let f be a real function, and a a point of
its domain. Then f is continuous at a if and only if for every sequence a,, in the domain
wtih @, — a, we have f(a,) — f(a).

This theorem is an equivalence of definitions or an if-and-only-if result, so the proof
requires two parts: first we show that continuity implies sequence continuity, and
then we show the converse.
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16.2. Continuity and Sequences

Continuity Implies Sequence Continuity. Let f be continuous at a, and x;,, an arbitrary
sequence converging to a. We wish to show the sequence f(x;,) converges to f(a).
Choosing an € > 0, we use the assumed continuity to get a § > 0 where |x —a| < §
implies that [f(x) — f(a)| <e.

But since x, — a, we know there must be some N such that for n > N we have
|x, — a| < &: thus for this same N we have |f(x,) — f(a)| < €.

Putting this all together, this is just the definition of convergence for the sequence
f(x,) to f(a): starting with e > 0 we got an N which for n > N we can guarantee
|f(x,) — f(a)] < €. So we are done. O

Sequence Continuity Implies Continuity. Here we prove the contrapositive: that if f
is not continuous at a then it is also not sequence continuous there.

If f is not continuous at a then there is some € where for every § > 0 we can find
points within § of a where f(x) is more than € away from f(a). From this we need
to somehow produce a sequence, so we will take a sequence of such §’s and for each
pick some such bad point x.

For example, if we let § = 1/n then call x, the point with |x, — a| < 1/n but |f(x,) —
f(a)| > €. Doing this for all n produces a sequence where

1 1
a-~-<x,<a+ -
n n

And so by the squeeze theorem we see that x, converges, and its limit is a. But we
also know (by our choices of x;,) that for every element of this sequence |f(x_n)-f(a)|>X$,
so there’s no way that f(x,) converges to f(a).

Thus, we’ve shown by example that our function is not sequence continuous at a, as
required. O

When working with this definition of continuity, its important to remember that we
need to check f(limx) = lim f(x,) for all sequences x, — a. If it fails for any indi-
vidual sequence, that is enough to show the function is not continuous at that point.
Thus when proving continuity we will always start with let x,, be an arbitrary sequence
converging to a, and make use of convergence theorems to help us (since we cannot
know the particular sequence), whereas for proving discontinuity all we need to do
is produce a specific example sequence that fails.

With this definition, we can bring all of our theory on limits and put it to work. We
see many of these benefits below; here we pause merely to re-do a single example for
illustrative purposes:

Example 16.6. The function f(x) = x? is continuous on all of R.

Let a € R be arbitrary, and choose an arbitrary sequence a, of real numbers with
a, — a (we know at least one such sequence exists since we have proven every real
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16. Definition & Properties

number is the limit of a sequence of rationals). By the limit theorem for products,
since a, — a we know a, - @, — a-a. And as f(x) = x%, we can rewrite this as
f(a,) — f(a). Since a,, — a was arbitrary, this holds for all such sequences, and so f
is continuous at a. But since a € R was arbitrary, f is continuous on the entire real
line.

16.3. Building Continuous Functions

Because we have an equivalent characterization of continuity in terms of sequence
convergence, and we have many theorems about this, we can use our characterization
to rephrase these as results about continuity.

Proposition 16.2 (Continuity of Constant Multiples). If f is continuous ata € R and
k € R is a constant, then the functionkf : x — kf(x) is continuous at a.

Using € — §. First note if k = 0 we are done as kf(x) = 0 is a constant function.
Otherwise, let € > 0: since f is continuous at a there exists a § > 0 such that |x—a| < §
implies | f(x) — f(a)| < €/|k|. But this implies

kf(x) = kf@)] = [kl f(x) - f(@) < kﬁ =e

So |x — a| < § implies |k f(x) — kf(a)| < €, and k f(x) is continuous at a. O

Using Sequences. Let a € R be arbitrary, and x,, a sequence converging to a. Then by
the limit theorem for multiples, kx, — ka. Rephrasing this in terms of the function
f(x) = kx, this just says that lim f(x,) = f(limx,) so f is continuous at a. O

Theorem 16.2 (Continuity and the Field Operations). Let f, g be functions which are
continuous at a point a. Then the functions f(x) + g(x), f(x) — g(x) and f(x)g(x) are
all continuous at a. Furthermore if g(a) = 0 then f(x)/g(x) is also continuous at a.

Proof. We prove the case for sums, and leave the rest as an exercise. Let f, g be
any two continuous functions and let a € R be a point in their domains. Let x,
be any sequence converging to a. Since f is continuous we know that lim f(x,) =
f(imx,) = f(a) and similarly by the continuity of g, lim g(x,) = f(limx,) = g(a).
Thus by the limit theorem for sums, the sequence f(x,) + g(x;) is convergent, with

lim (f(x,) + g(x,)) = lim f(x,) + lim g(x;,) = f(a) + g(a)
So, f + g is continuous at a. Since a was arbitrary, we see that f + g is continuous at

every point of its domain. The same argument applies for subtraction, multiplication,
and division using the respective limit theorems for sequences. O
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16.3. Building Continuous Functions

Exercise 16.2. Prove the remaining “continuity theorems”.

Exercise 16.3 (Continuity of Polynomials). Prove that every polynomial is a con-
tinuous function on the entire real line. Hint: prove x" is continuous for each n by
induction. Then prove the result for polynomials by induction on their degree!

Exercise 16.4 (Continuity of Rational Functions). A rational function is a quotient
of polynomials r(x) = p(x)/q(x). Prove that every rational function is continuous,
on every point of its domain.

One of the most important operations for functions is that of composition: if f : R —
Rand g: R — R then the function go f : R - Ris defined as g o f(x) := g (f(x)).
More generally, so long as the domain of g is a subset of the range of f, the composi-

tion g o f is well defined.

Theorem 16.3 (Continuity of Compositions). Let f, g be functions such that f is con-
tinuous at a, and g is continuous at f(a). Then the composition g o f(x) := g(f(x)) is
continuous at a.

Proof. Let x,, be an arbitrary sequence converging to a € R: we wish to show that
lim g(f(x,)) = g(f(limx,)) = g(f(a)). Since f is continuous at x = a we see imme-
diately that f(x,) is a convergent sequence with f(x,) — f(a). And now, since g
is assumed to be continuous at x = f(a) and f(x,) is a sequence converging to this
point, we know g(f(x;,)) = g(f(a)) as required. O

Another limit theorem we had was the limit theorem for the square root: which
translates directly to a continuity theorem as well!

Theorem 16.4 (Continuity of Roots). The function R(x) = x is continuous on [0, o).

Proof. We actually already proved this, as a limit theorem about the square root! CITE
states that if x > 0 and x, is any sequence of nonnegative numbers converging to

x, then lim /3, = 4/limx,. Thus /x is continuous at x, and as x is an arbitrary
nonnegative value, its continuous on its domain. O

Corollary 16.1 (Continuity of Absolute Value). The absolute value satisfies |x| = v/ x?
for all real x. This is a composition of two continuous functions, and thus is continuous.
The same is true for n'" roots, though we do not stop to prove it here, you may wish
to for practice! This is a special case of a more general result on the continuity of
inverse functions (as the square root is the inverse of x?)

Theorem 16.5 (Continuity of Inverse Functions). Let f: A — B be a continuous
invertible function for A, B C R bounded subsets. Then f~! is continuous.
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16. Definition & Properties

By Contradiction. Assume for the sake of contradiction that f : A — Bis continuous
and invertible with A, B C R but f~! is not continuous. Then there would be some
sequence convergent sequence b, — b where f~1(b,)-4 f1(b).

This sequence f~1(b,) lies in A which is bounded, so it contains a convergent subse-
quence due to Bolzano Weierstrass. Its further possible to select such a subsequence
f_l(bnk) that converges to some value a # f~1(y) (if this were impossible, all con-
vergent subsequences would converge to f~!(y), and so our sequence would have
converged to this value!)

Now we use the fact that f is continuous. Since f_l(ynk) — a, we see f (f_l(ynk)) —
f(a), and since ! is the inverse of f, this just means that Yn, — f(a). Butsince f is

invertible, its 1 — 1, so the fact that a # f~1(y) means that f(a) # y. That is, we have
found a subsequence y;, of y,, which does not converge to y.

But this implies that the sequence y, itself does not converge to y (else all subsequence
would converge to y!) and this is a contradiction, as we assumed y, — y at the very
start. Thus, f_1 is actually continuous, as desired. O

We can apply this to functions we care about like nth powers, to prove the continuity
of n'* roots.

Corollary 16.2. The function ¥x is continuous on the positive reals.

Proof. Let x > 0, we want to show i is continuous at x. So, we need to choose
bounded sets A, B for our domains, to make sure things work. Taking B = [0, x + 1]
will do, as it contains x, and then A = [0, ¥x + 1], so x™ is an invertible function from
A to B. Its continuous, so its inverse is continuous, meaning o is continuous on the
interval B = [0, x + 1] which contains x. Thus its continuous at x, and as x was an
arbitrary positive real number, O

Exercise 16.5. Our argument above showed #/x is continuous at all positive inputs.
Show its continuous at zero.

Note to students! If you can think of a better proof of this, (especially one
that doesn’t have this awkward boundedness/bolzano weierstrass stuff) let
me know. If its slick enough, I'll replace the proof in the textbook, and thank
you in a footnote of the future editions!

The combination of these theorems allows us to prove many complicated functions
are continuous, that would otherwise have been quite difficult directly from the defi-
nition!
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16.4. Function Limits

Example 16.7. The following function is continuous on the entire real line.

G+ |x% —1D*

1+31+]x—1)

To prove it, we work from inside out, like we do for using the limit laws. Starting with
the numerator, we see x2—11is continuous as its a polynomial, so |x2 +1| is continuous
as the composition of two continuous functions, and x + |x? + 1| is continuous as its
the sum of two continuous functions. For the denominator, we similarly start with
the continuity of x — 1, compose with || to get the continuity of |x — 1|, then compose
with x7 to get |x+1|7 is continuous, add the constant function 1 (which is continuous)
take the cube root (composing with the continuous function 3/x) and finally add the
continuous function 1 once more. So, the numerator and denominator are continuous.
Finally, the denominator is strictly positive for all x (hence nonzero), so the quotient
is continuous.

Exercise 16.6 (Continuity of Max and Min). Prove that for any a,b € R, we have

a+b+la—1b|

max{a, b} = >

Intuitively, notice (a + b)/2 is the midway point between a and b, and |a — b|/2 is half
the distance between them. So (a +b)/2 + |a — b|/2 is the midway point plus half the
distance, so its the larger of the two. But give a rigorous argument, perhaps by cases.

Use this to conclude that if f,g are two continuous functions then M(x) =
max{f(x), g(x)} is also continuous. Propose and prove a similar formula for the
minimum, and show that min{f(x), g(x)} is continuous in x.

16.4. Function Limits

A related but slightly different concept is the limit of a function. We include this here
as the definition and techniques ties very closely to those for continuity; we will have
use for this material when we introduce the derivative, and in other cases where we
need to understand the behavior of a function near a point, without actually being
able to compute the function’s value at that point (perhaps, that point is outside the
functions’ domain).

Definition 16.2 (Limits of Functions). Let f: D — R and a be a limit point of D.
Then we write lim,_,, f(x) = L if for every € > 0 there is a § > 0 such that if x € D
and [x —a| < § then |f(x) - L| <e.

One can alternatively phrase this in terms of sequences:
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Exercise 16.7. Prove the following definition is equivalent to lim,_,, f(x) = L:
Given any sequence {x,} in D with x,, # a for all n, x, - a implies that f(x,) — L.

Example 16.8.

. xt—4
lim
x—2 x—2

Let x, be any sequence converging to 2, for which x,, # 2 for all n. Then since x, # 2
the denominator of (x? — 4)/(x — 2) is never zero, and we can simplify with algebra:

x2 —4 _ (6, + 2)(x, — 2)

=x,+2
Xy — 2 Xy — 2
Thus, for all n we have
2
xX; —4
lim = 5 =limx, +2 =lim(x,)+2=4

Xn

Since x, was arbitrary, this holds for all sequences and

2 _
lim = 4:4
x—=2 x—2

We will be most interested in taking the limit of functions in cases where things are
not actually define at a like the example above: the most important example being
the derivative, defined as the limit f'(a) = lim,_,,(f(x) — f(a))/(x — a). However a
good sanity check with a new definition is to see it performs as expected in known
situations

Theorem 16.6 (Limits of Continuous Functions). If f is continuous at a, then

lim,_,, f(x) = f(a).

Proof. Let x, be a sequence converging to a, but not equal to a at any term. Since
f is continuous at a, we know the sequence f(x,) converges to f(a). Thus by the
sequence definition of function limits lim,_,, f(x) = f(a). O

As an exercise, re-prove this result using the € — § definition.
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16.5. Problems

16.4.1. ¢ One-Sided Limits

The definition of function limit requires understanding all sequences limiting to a but
not equal to a. In applications, its often important to consider more restricted limits,
looking only at what happens when we approach a from above or from below.

Definition 16.3 (Left- and Right-Sided Limits). Let f be a function

Similarly to above, these definitions have sequence counterparts (prove this, as an
exercise):

Definition 16.4. Let f be a function. Then lim,_,,+ f(x) = L if for every sequence
X, — a with x, > a we have f(x,) — L. Similarly lim,_,,- f(x) = L if for every
X, — a with x, < a we have f(x;,) —» L.

Exercise 16.8 (Limit Exists when Both Sides Agree). Let f be a function defined on
an interval containing a (but perhaps not at a). Then lim,_,, f(x) exists if and only
if both lim,_,,+ f and lim,_,,- f both exist, and in this case is equal to their common
value.

Exercise 16.9 (One Sided Limits of Monotone Functions). Let f be a bounded mono-
tone function on the interval (a, b). Then both of the one sided limits exist

lim+ f(x) 111217 f(x)

X—a
Hint: show they are the inf and sup of {f(x) | x € (a,b)}
This proves useful in many cases where we know only that our function is mono-
tone, but cannot compute its values. For us, the most important application is Propo-

sition 24.1 where we show exponential functions are differentiable, when we have
only assumed they are continuous.

16.5. Problems

Exercise 16.10. Let f(x) be a continuous function, and assume that f(x)? is a con-
stant function. Prove that f(x) is constant. To show continuity is an essential as-
sumption, give an example of an f(x) where f(x)? is constant, but f is not.

Exercise 16.11. Recall that a function f is a contraction map if there exists ak € (0, 1)
with | f(x) — f(y)| < k|x — y| for all x, y. Prove that contraction maps are continuous.

Exercise 16.12. If f is continuous at a point a, then |f| is continuous there, by using
the reverse triangle inequality.
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Exercise 16.13. The function

-1 x<0
sgn(x)=40 x=0
1 x>0

is discontinuous at x = 0, but continuous at every other real number.

Exercise 16.14 (Removable and Jump Discontinuities).

0 x<0
f(x)=317 x=0
x x>0
Then lim,_,o f(x) =0
Next consider
0 x<0
glx) =417 x=0

x2+1 x>0

Show that lim,_,, g(x) does not exist.

Exercise 16.15 (The Pasting Lemma). Let f, g be two continuous functions anda € R
is a point such that f(a) = g(a). Prove that the piecewise function below is continu-
ous at a.

f(x) x<a

hix) = gx) x>a
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17. Power Series

Chapter highlights: we prove that a power series is continuous on its
entire domain: this is a combination of two theorems, that (1) its con-
tinuous on the interior and (2) that its continuous at boundary points,
when defined there. Proving the continuity of series provides an oppor-
tunity to use the material we learned in Series: Advanced Techniques. In
particular, we will use Dominated Convergence to prove the continuity
of series within the interval of convergence, and Summation By Parts to
prove continuity at any boundary points.

17.1. Continuity In the Interior

We have proven previously that a power series )}, a,x" either converges only at
{0}, converges on the entire real line, or has a finite radius of convergence, where it
converges on an interval of the form (—r,r), [r,r], (-7, r] or [-r,r). Plotting the partial
sums of such a series shows that outside the radius things quickly blow up to infinity,
but within the radius of convergence the result appears to be continuous. We confirm
this below.

Theorem 17.1 (Continuity within Radius of Convergence). Let f(x) = > i ax be a
power series with radius of convergencer. Then if |x| <r, f is continuous at x.

Proof. Take x > 0 (leaving the trivial modifications for x < 0 as an exercise), and let
x, be an arbitrary sequence in (—r,r) converging to x. We aim to show that f(x,) —

f(0).

As x < r choose some y with x < y < r (perhaps, y = (x +r)/2). Since x, — x there
is some N past which x, is always less than y (take e = y — x and apply the definition
of x;, = x). As truncating the terms of the sequence before this does not change its
limit, we may without loss of generality assume that x,, < y for all n. Thus, we may
define M = akyk, and we are in a situation to verify the hypotheses of Dominated
Convergence:

« Since x;, = x, we have aerlf - akxk by the limit theorems.

« Foreachn, f(x,) =Y ax is convergent as x;, is within the radius of conver-
gence.

o« My = akyk bounds aerlf foralln,as 0 < x, < y.
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17. Power Series

« Xk M converges as this is just f(y) and y is within the radius of convergence.

Applying the theorem, we see

. T k _ p k _ k _
l1rrln f(x,) = hrrln;akxn = ;hm apxy = Zk:akx = f(x)

Thus for arbitrary x, — x we have f(x,) — f(x), so f is continuous at x. O

Remark 17.1. If the power series converges on all of R, the same proof above holds,
taking a sequence x, — x, but its a little easier: we don’t have to be careful choosing
our upper bound y. Any upper bound for the convergent sequence {x,} will do.

We pause to remark this result is something rather special to power series, and is not
true in general: its quite possible to write down a sequence of continuous functions
which converges to a discontinuous function. So the fact a sequence of (continuous)
partial sums of a power series converges to a continuous limit is indeed a big deal!
This is one of many things that makes power series particularly nice.

Exercise 17.1. Let f(x) = \/% and define the sequence of functions f,(x) = f(nx).
X
As n — oo prove that

« If x > 0 then f,(x) —> 1
« If x = 0 then f,(x) > 0
« If x <0 then f,(x) - -1

Thus, while f;, is continuous for each n (its a composition of continuous functions),
the limit is discontinuous.

There is a lot of theoretical work in real analysis to determine more general conditions
under which a sequence of continuous functions converges to a continuous limit. In
this semester long course we won’t have need for such results beyond the power
series case above, but in the eventual extension of this book, we will develop the
notion of uniform convergence for this purpose.

17.2. ¢ Continuity at the Boundary

While we now completely understand a power series on the interior of its radius of
convergence, there’s a little more work to do to complete the picture.

Theorem 17.2 (Continuity at the Boundary: Abel’s Theorem). Let f(x) = Y50 axk
be a power series with radius of convergence r, which converges at an endpoint +r. Then
f is continuous there.
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17.2. ¢ Continuity at the Boundary

The full proof of this theorem is rather more technical than the previous result, and
before proving it through a sequence of steps, we pause to appreciate why. First, note
that some cases of this theorem really are easy: for instance, if the endpoint converges
absolutely, you can carry out the exact same proof using Dominated Convergence as
above.

Exercise 17.2. Let ) ;5 akxk be a power series with radius of convergence 1, and
suppose Yxsq @ converges absolutely. Then

xli)rrll_ Z akxk = Z a

k>0 k>0

The difficulty is then is what happens when ;- ax converges, but does not do so
absolutely. This is a real case, that actually shows up in important situations rather
often: for example the power series

T ey

n20n+1 n202n+1

Both converge at x = 1, but their absolute values diverge. However, the continuity of
these power series at their endpoints will be absolutely essential to us later on in the
course, when deriving the amazing identities

1

10g(2):1—5+ L

1 T
- — 4. —-—=1- + + .-
3 4 4

a| =
|

W=
N -

We also pause to quickly dash any hopes there might be a general sort of proof: (per-
haps one hopes that if a sequence of functions converges on (-1, 1) to a continuous
limit, and also converges at a boundary point then it is automatically continuous at
the boundary).

Example 17.1. Consider the sequence f,(x) = x™. As n — oo this converges on the
interval (—1, 1] and diverges everywhere else. Furthermore for |x| < 1 it converges
to the zero function which is constant - hence continuous. However at x = 1 the
sequence f,(1) = 1" = 1 is constantly equal to 1, so the limit is also 1. Thus the limit
is defined at a boundary point, but not continuous there.

Finally, we proceed with the proof of the theorem. To simplify notation, we prove
it for series with radius of convergence 1, and leave the simple rescaling to series
converging for |x| < r as an exercise. That is, we aim to prove

Proposition 17.1 (Abel’s Theorem for r = 1). Let ) ;> 0a;xk be a power series which
converges for |x| < 1 and assume ) i~ ai also converges. Then

xlinll’ Z akxk = Z akxk

k>0 k>0
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17. Power Series

Throughout the proof, it is useful to introduce the notation Ay = Zszo arand A =
lim Ay = ) k>qa for the partial sums of of the coefficients and their limit. We
begin with a lemma providing a means of rewriting the series within the radius of
convergence.

Lemma 17.1. Let Y, aix* be a power series which converges for x| < 1, and Ay =
k<N @k be the partial sums of the coefficients. Then for any x € (—1,1)

Z agx* =1 -x) Z Apxk

k>0 k>0

Proof. Recall the formulation of summation by parts given in Abel’s lemma:

N N-1
D%k = Xnwn = Xovo — Y, XeOket — %)
k=1 k=0

for Xy the partial sums of the sequence {x;}. We can interpret a power series Y, akxk

as summing a product of two sequences: the sequence g of coefficients and the se-

quence x¥ of monomials. Looking at a partial sum of our power series and summing

by parts

N N
Z akxk =ay+ Z akxk
k=0 k=1

N-1
=aqy+ <ANxN — Apx® — Z Ak — xk))
k=1

Using that Ay = ay and x° = 1, this simplifies

N-1
= AnxN - Z Apxk(x—1)
k=1
N-1
=AnxN +(1-x) Z Apxk
k=1

As we assumed A = ), a converges, Ay — Aas N — oo, And as [x| < 1, we
know xV — 0 by our basic limits. Thus by the limit law for products, AyxN — 0, so
for the full power series
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17.2. ¢ Continuity at the Boundary

N
Z = li}{jnkzz;)akxk

k>0

k=1

N-1
=lim (| AyxN +(1 - Apxk
%n( NxY +( x)z kx)

N-1
=0+(1-x)li Apxk
( X)g[nk;) kX

=(1-x) ) Apxt

k>0

O

Next, we use this new form of the series to convert our problem to something sim-
pler

Lemma 17.2. Let f(x) = ), a,x" be a power series with radius of convergence 1, which
also converges at x = 1. Then f is continuous at 1 if and only if

(1-x) ) (A, — Ax" >0

n>0

asx = 17 for Ay = anN ay, and A = ano ap.-

Proof. The overall goal is to show

lim Z akxk = Z lim akxk = Z a.=A
=1 k=01 k>0

Subtracting A from both sides, we must show lim,_,1- Y}x~ axk — A = 0. Switch-
ing out the series for its alternative expression derived in the previous lemma, our
problem is equivalent to showing

lim ((1 —x)ZAkxk) —-A=0

x—1" >0
To turn this into something useful, we do a sneaky trick. Recall that for |x| < 1 we

know Y i~ xk = é (the geometric series). Clearing the denominator, this means

(1=x) Yo xK = 1, so we “multiply by 17
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17. Power Series

(1—x)ZAkxk—A:(1—x)ZAkxk—A-1

k>0 k>0
:(l—x)ZAkxk—A(l—x)Zxk
k>0 k>0
=(1-x) (Z Akxk - Z Axk)
k>0 k>0

Because both of the sums involved are convergent, we can add them term-by-term
without changing the value (Proposition 12.1), combining the sums.

=(1-x) Z(Akxk — AxF)
k>0

= (1-2) Y (A - Ak

k>0

This is just a rewriting of our original series minus the proposed limit. So proving
this converges to zero is logically equivalent to our desired result O

Finally, we prove Abel’s theorem by showing this does indeed limit to zero, as x —
1.

Proof. We work directly with the limit definition: for arbitrary e > 0 we must provide
ad > 0suchthatif 1 —§ < x < 1, our sum is less than € in absolute value. By the
triangle inequality and limit inequalities,

(1-x) ) (A — Ak

k>0

<[1=x Y A= Al = (1 - x) ) 1A, — AlxF
k>0 k>0

Where the final equality holds as we are concerned with lim,_,;- so we can without
loss of generality assume x > 0. So, our goal is to show the right hand side is smaller
than €, when x is sufficiently close to 1. Since Ay — A by definition, there is an N
such that for allk > N, |A; — A| < €. So, we break our sum into two terms, to estimate
separately:

(1—x)Z|Ak—A|xk =(1-x) Z |Ap — Ak + (1 —x) Z |Ap — Alxk
k>0 0<k<N k>N
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17.2. ¢ Continuity at the Boundary

In the second of these sums, we know that |A; — A| < ¢, so

Z|Ak—A|xk§ Zexk:erkgerk:e !

k>N k>N k>N k>0 1—-x

Substituting back into the full second term,

1-2) Y |4 -AF <(Q-x0)——=¢
k>N 1-x

Thus the second term can be made as small as we like (independently of the value of
x!), and we need only think about the first term. But this is actually easy: its a finite
sum! For any positive x < 1 we know xk <1k =1, s0

D lA-AE < Y A - A

0<k<N 0<k<N

Call the value of this finite sum on the right L. Then to make the term
(1 = %) Yocken 1Ak — Alx* less than € it suffices to make 1 — x less than e/L.
So, set § = €/L: then for any x < 1 with |x — 1| < §, we know

1-x) Y JA-Axk<@-x Y A4 -A=(1-xL<-L=e¢
L
0<k<N 0<k<N

Putting it all back together, we see that for this §, |x — 1| < J implies our sum is less
than 2e. So, we need to go back and replace some epsilons with €/2’s to complete
the proof [Apologies: due to the length of this argument, I prioritized readability, and
reduced clutter by not writing the correct €/2’s everywhere]. O

As a last step, we do the substitutions to return from r = 1 to general radius of
convergence.

Exercise 17.3 (The General Case).

« Let f(x) = )50 a,x" be a power series which converges on (-r,r) and also at
r. Prove that it is continuous at r. *Hint: consider f(rx): show this has radius
of convergence 1 and converges at 1. Then apply the previous theorem, and
re-arrange to yield the result.

« Let f(x) = Y50 @, X" be a power series which converges on (-7, r) and also at
—r. Prove that it is continuous at —r. “Hint: consider f(—x).
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17. Power Series
17.3. 4 Uniqueness

Using this continuity result, we prove a theorem which is very helpful for not getting
lost in the world of power series. Its natural to wonder if two distinct power series
could converge to the same function (as limits of their partial sums). Of course if any
of their coefficients differed no finite partial sums could be equal (as the finite sums
are polynomials, and polynomials are fully determined by their coefficients). But this
doesn’t rule out any coincidence in the limit. After all, this happens with numbers
all the time! Finite decimals are determined by their digits, but infinite decimals are
not! 1.00000... = 0.999999 ..., and 0.5000 = 0.4999 ..., etc.

But this cannot happen for power series: if a function f(x) can be written as a power
series in two ways Y agx* and Y. bx*, then these two are precisely equal: a = by, for
all k. But we can get by with much less information than this: if two power series
agree on a single sequence converging to zero thats already enough information to
completely determine them! This is the content of the theorem below.

Theorem 17.3. Let f(x) = Y15 axx* and g(x) = Dok>0 bex be two power series with
positive radii of convergence (not a priori assumed to be the same). Then if for some
sequence ¢, of nonzero terms converging to zero we have f(c,) = g(c,), it follows that f
and g are the same power series: a; = by for all k.

Proof. We proceed step by step, starting with the constant terms.
Since f(x) is continuous we can compute f(0) as lim f(c,). Similarly, the continuity
of g lets us write g(0) = lim g(c,). But by our assumption that f(c,) = g(c,), this
implies f(0) = g(0). Plugging in zero to our power series shows

f(O) = ay + a10 + 61202 + = ap g(O) = bo + b10 + b202 + = bo

Thus gy = by, so the first two terms of our power series are equal.

This argument was remarkably efficient, so let’s try to repeat it. Subtracting the
constant terms from f and g yields functions divisible by x, and dividing by that x
gives

= + as X + a3x2 + .-

filx) =

f(x)—ay
X

g(x) = by
x

gi(x) = =b; +b2x+b3xz + .

And, as f; and g; are again power series with the same coefficients, they have the
same radius of convergence (exercise!) and so are continuous at 0. This means we
can re-run our trick:

lim fi(¢,) = fi(limg,) = £f1(0) = a;
lim g;(c;) = g1(limg,) = g1(0) = b,
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17.3. 4 Uniqueness

But now think a bit about f; and g;: because a, = b,, we have actually done exactly
the same operation to each function: subtracted the same number and then divided
by x. Thus, the fact that f(c,) = g(c,) immediately implies that f;(c,) = g1(c,). So,
the two sequences we are taking the limit of are the same, meaning their limits are
the same: a; = b;.

You can imagine how we continue from here: induction! O

Corollary 17.1. Let f(x) = Y0 axk and g(x) = Yk>0 bixk be two power series,
which are equal on some neighborhood of zero. Then they are identical, and a = by for
all k.

Proof. Let € > 0 be some small number where f(x) = g(x) for all |x| < e. Take the
sequence 1/n and truncate the first finitely many terms until 1/n < €, producing a
nonzero sequence converging to zero fully contained in (—¢, €). Then by our assump-
tion f and g agree on this sequence, so they are equal by the Identity Theorem. [J
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18. Important Theorems

Highlights of this Chapter: we prove two foundational results about con-
tinuous functions whose proofs have several steps in common:

« Continuous Functions are determined by their values on dense sets.

« The Extreme Value Theorem: a continuous function achieves a max
and min on any closed interval.

« The Intermediate Value Theorem: a continuous function must take
every value between f(a) and f(b) on the interval [a, b].

Just like we have seen various ‘proof styles’ for sequences (recurrent themes in proofs,
like ‘an €/2 argument’) one of the biggest takeaways of this section is a proof tech-
nique for working with continuous functions. It has three steps, summarized be-
low:

« Use whatever information you have to start, to construct a sequence of points.

« Use Bolzano Weierstrass to find a convergent subsequence.

« Apply f to that sequence and use continuity to know the result is also conver-
gent.

This is to vague on its own to be useful, but in reading the proofs of the boundedness
theorem, the extreme value theorem, and the intermediate value theorem below, look
out for these three recurrent steps.

18.1. Dense Sets

Functions determined by values on dense set

Lemma 18.1. If f is a continuous function such that f(r) = 0 for every rational number
r, then f = 0 is the zero function.

Proof. Let f be such a function, and a € R any real number. Then there is a sequence
r, of rational numbers converging to a. Given that f is zero on all rationals, we see
that f(r,) = 0 for all n. Thus f(r,) is the constant zero sequence, and so its limit is
zZero:

lim f(r,) = lim0 =0
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18. Important Theorems

But, since f is assumed to be continuous, we know that we can move the limit inside
of f:
0 =lim f(r,) = f (limr,) = f(a)

Thus f(a) = 0, and since a was arbitrary, we see f is the constant function equal to
zero at all real numbers. O

Proposition 18.1 (Equal on Rationals = Equal). Let f, g be continuous functions
such that for allr € Q they are equal: f(r) = g(r). Then in fact, f = g: forallx € R,
f(x) = g(x)

Proof. Since f and g are continuous, the function h = f — g is continuous using
the theorems for field operations. And, since f(x) = g(x) for all rational x, we see
h(x) = 0 on the rationals. Thus, by ?@prp-zero-on-rationals,  itself must be the
zero function on all of R. Thus for every x, h(x) = f(x) — g(x) = 0, or rearranging,

vx, f(x) = g(x)
O

This has a the pretty significant consequence that if we have a function and we know
it is continuous, then being able to calculate its values at the rational numbers is good
enough to completely determine the function on the real line. In particular, this can be
used to prove various uniqueness results: you can show a certain function is uniquely
defined if you can prove that its definition implies (1) continuity and (2) determines
the rational points (or more generally, the values on a dense set).

Theorem 18.1 (Equal on a Dense Set = Equal). Continuous functions are deter-
mined by their values on a dense subset of their domains: if f,g: X > Rand D C X is
dense with f = g on D, then f(x) = g(x) forall x € X.

Exercise 18.1. Prove this (following the ideas for the special case of rationals)

We will use this property in understanding exponential functions (where their value
at rational numbers are determined by powers and roots) and trigonometric functions
(whose values on certain dyadic multiples of 7 are determined by the half-angle iden-
tities.)

There are many useful theorems of this type, that check a property of a function on
a dense set and use it to conclude the same property holds generally. We give two
more examples below, that prove useful in upcoming work

Proposition 18.2. If f is continuous and monotone on a dense set, then it is monotone
on its entire domain.
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18.2. Extreme Values

Proof. Assume for contradiction that f is monotone increasing on a dense set D in the
domain of f, but that it is not monotone increasing on the entire domain. This means
that there exists a pair x < y in the domain where f(x) > f(y), call the difference
f(y) — f(x) = D and set € = D/3. Then by continuity of f there is a §, about x such
that [x — a| < &, implies | f(x) — f(a)| < ¢, and similarly for a &, about y.

We are going to use these § neighborhoods to choose points in dy,d,, € D near x and
¥, so we need to be careful: we wish to ensure d, < d,, just as x < y, so we want our §
neighborhoods to not overlap. And since we got the values §, and §,, from continuity
we don’t have any control over their size, so they might be rather large! But this is
no serious problem, we can easily shrink them if needed: if § = |y — x| we can set J,
to be the minimum of its original value and §/2, and same for Sy.

Now, by the density of D in the domain, there is a d, € D within 6, of x andady, € D
within 6, of y. Together with the above this implies that f(d,) is at least f(x)—e€ and
f(d,) is at most f(y) + €. But the distance between f(x) and f(y) was D = 3¢, so
f(dy)— f(d)) > € > 0 and hence f(dy) > f(dy). But this contradicts the fact that f is
increasing on D as d, < d,,. O

Exercise 18.2. Modify the above proof to show that if f is continuous and strictly
increasing or strictly decreasing on a dense set, then it is strictly increasing/decreasing
everywhere on its domain.

Exercise 18.3. If f is continuous and convex on a dense set, then it is convex on its
entire domain.

18.2. Extreme Values

Proposition 18.3 (Continuous on Closed Interval = Bounded). Let f be a contin-
uous function on a closed interval [a,b]. Then the image f([a,b]) is bounded.

Proof. Assume for the sake of contradiction that f is not bounded. Then for each
n € N there must be some x, € [a,b] where |f(x,)| > n. This sequence {x,} need
not be convergent, but it lies in the interval [a, b] so it is bounded, and thus contains
a convergent subsequence x, by Bolzano Weierstrass. Say x, — x. Then since
a < xp, < b for all k, by the inequalities of limits we see a < x < b so the limit x lies
in the interval [a, b] as well.

But what is the value f(x)? Since f is continuous and x, — x we know that

fGa) = f(x)

But for each k, x;,_has the property that f(x;, ) > n by definition. Thus, the sequence
f(xy) is not bounded, and cannot be convergent (since all convergent sequences are
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bounded). This is a contradiction, as it implies that f(x) is not defined, even though
we have assumed f is defined on the entire interval [a, b].

Thus, no such sequence x;, is possible, and so there must be some n where |f(x)| < n
for all x € [a,b]. That is, f must be bounded on [a, b]. O

Building off this result, one can prove that a continuous function actually achieves
its upper and lower bounds on any closed interval. This result will play a role sev-
eral times across the theory of functions and derivatives, so we give it a memorable
name: the extreme value theorem (as maxima and minima taken collectively are called
extrema).

Theorem 18.2 (Extreme Value Theorem). Let f be a continuous function on a closed
interval [a,b). Then f achieves a maximum and minimum value: that is, there exists a

point p where f(p) > f(x) forall x € [a,b], and a q where f(q) < f(x) forallx € [a,b].

Proof. We show f achieves a maximum, and leave the minimum case as an exercise.
Let f be continuous on [a,b] and let R = {f(x) | x € [a,b]} be the set of outputs, or
the range of f. Since f is bounded we see that R is a bounded subset of R, and so by
completeness

m = inf R M =supR

must exist. Our goal is to find values x,,,x); € [a,b] for which the infimum and
supremum are realized:

fGan) =m fGaa) =M

Here we show this holds for the supremum, the infimum is left as an exercise below.
Since M is the supremum, for any € > 0 we know that M — € is not an upper bound
for R = {f(x) | x € [a,b]}: thus there must be some x where f(x) > M — €. So letting
€ = 1/n each n, let x, be a point where M — % < f(x,) < M. Asn — oo we know

M - % — M and so by the squeeze theorem we see that f(x,) > M as well.

We don’t know that the points x, themselves converge, but we do know that this en-
tire sequence lies inside the closed interval [a, b] so its bounded and Bolzano Weier-
strass lets us extract a convergent subsequence x,, — x. Andasa < x, < bitfollows
that the limit x € [a,b] as well. Because subsequences of a convgent sequence con-
verge to the same limit, we know that f(x;, ) is convergent, and still has limit M. But
now we can finally use continuity!

Since f is continuous, we know lim f(x,) = f(limx,), and so M = f(x). Thus we
managed to find a point x € [a,b] where f(x) is the supremum: f(x) is an upper
bound for all possible values of f on [a,b], which by definition means its the max
value! So f achieves a maximum on [a, b]. O

Exercise 18.4. Complete the proof by showing a continuous function on a closed
interval achieves a minimum.
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18.3. Intermediate Values
18.3. Intermediate Values

The intermediate value theorem is the rigorous version of “you can draw the graph
of a continuous function without picking up your pencil”.

One note: in the statement below we use the phrase y is between f(a) and f(b) as a
shorthand to mean that either f(a) < y < f(b) or f(b) < y < f(a) (as we don’t know

if f(a) or f(b) is larger).

Theorem 18.3 (The Intermediate Value Theorem). Let f be a continuous function on
the interval [a, b], and let y be any number between f(a) and f(b). Then there exists an
x between a and b such that y = f(x).

Proof. Without loss of generality we will assume that f(a) < f(b) so that y lies in
the interval [ f(a), f(b)] (the other case is analogous, we just instead must write the
interval [ f(b), f(a)]). We wish to find a point x € [a,b] where f(x) = y, so we start
by defining the set of points where f(x) is less than or equal to y:

S={x€[ab]| f(x) <y}

This set is nonempty: a € S as f(a) < y by assumption. And its bounded above by b:
if x € S then x € [a,b] so x < b by definition. Thus, the supremum o = sup S exists,
and o € [a,b]. We will show that f(o) = y, by showing both inequalities f(o) < y
and f(o) > y.

First, we show <. Since o is the supremeum, for each n we know that o — % is not
an upper bound, and so there must be an point x,, € (6 — 1/n,0) where f(x;) < y.
The squeeze theorem assures that x,, = o, and the continuity of f assures that f(x,)
converges (since x, does). But for all n we know f(x,) < y, so by the inequalities of
limits we also know lim f(x,;) = f(o) < y.

Next, we show >. First note that o # b as f(o) < y but f(b) > y. So, 0 < b and so
after truncating finitely many terms, the sequence x, = o + 1/n lies strictly between
o and b. Since this sequence is greater than the upper bound o, we know that none
of the x,, are in S and so f(x,) > y by definition, for all n. But as n — oo the sequence
of x,’s is squeezed to converge to o, and so by continuity we know

f(o) = f(limx,) = lim f(x;)

Applying the inequalities of limits this time yields the reverse: since for all n we know
f(x,) > v, it follows that lim f(x,) > y so f(o) > y.

Putting these together we know that f(o) is some number which must simultaneously
by > y and < y. The only number satisfying both of these inequalities is y itself, so

flo)=y
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18. Important Theorems
Corollary 18.1. Continuous image of a closed interval is a closed interval.

Historically, the intermediate value theorem was one of the reasons for developing
much of analysis: mathematicians knew that whatever the correct formal definition of
continuity was, it should certainly imply this! So, our proof of the intermediate value
theorem (which embodies the intuitive notion of continuity) may be seen as evidence
that we have chosen good definitions of continuity and convergence: they work as
we expect!

Remark 18.1. It may seem at first that the intermediate value theorem is equivalent to
continuity: if a function satisfies the intermediate value property, then its continuous.
Try to prove it! Where do you get stuck?

Example 18.1. Consider the following function

sin(%) x#0

o) = 0 x=0

Then f satisfies the conclusion of the intermediate value theorem on every closed
interval, but f is not continuous at 0.

18.3.1. Useful Corollaries

Continuity is a strong constraint on a function, and the behavior of a continuous
function at one or more points can often be used to gain information about nearby
points. A direct corollary of the intermediate value theorem that is very useful is the
special case when y = 0:

Corollary 18.2 (Positive to Negative implies Zero). If f is a continuous function on
an interval and it is positive one endpoint and negative on the other, then f has a zero
in-between.

This suggests a means of finding the zeros of a function, which narrows in on them
exponentially fast! Called “bisection”: find any two points where function changes
sign. Divide region in half, evaluate at midpoint. Keep interval with different sign
endpoints, repeat.

This argument also suggests simple proofs of various other theroems proving the
existence of a point in the domain having some specified property. Here we give a
classic fixed point theorem as an example

Proposition 18.4 (A Fixed Point Theorem). If f: [0,1] — [0, 1] is continuous then
there is some x € [0, 1] with f(x) = x.
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Proof. Consider the function g(x) = f(x) — x. Since f(0) > 0 we know g(0) =
f(0) —0 >0, and as f(1) < 1 we similarly know that g(1) = f(1)—1<0. O

Like fixed points above, we can also use the IVT to prove the existence of solutions
to various equations. Here, we use it to prove the existence of the square root of 2 - a
calculation that took us quite some fiddling around with algebra and the Archimedean
property originally!

Example 18.2 (Existence of v/2). The function f(x) = x? is continuous on R. But
f(1) = 1 which is less than 2 and f(2) = 4 which is greater than 2. Thus, by the
intermediate value theorem there must be some s € [1, 2] such that f(s) = s? = 2, so

s =42

Exercise 18.5 (Existence of n' roots.). For every x > 0 there exists a unique positive
number y such that y" = x.

Its worth mentioning one additional corollary of the interemediate value theorem
together with the extreme value theorem, which helps us understand the ranges of
continuous functions

Corollary 18.3. If f is a continuous function and I C R is a closed interval, then f(I)
is an interval.

Here we allow the degenerate case [a, a] = {a} to count as an interval, if f is constant.

18.4. Uniform 6 on Closed Intervals

In general the definition of continuity takes place at each x individually, so for a
fixed € we might find different &’s depending on which point we are at. This can be
theoretically bothersome sometimes, as it would be much easier to just pick a § once
and for all and use it in an entire problem.

The following theorem shows this is indeed possible

Theorem 18.4 (Continuous + Closed = Uniform). Let f be a continuous function
defined on the closed interval [a,b]. Then f is in fact uniformly continuous on this
interval.

Proof. Assume for the sake of contradiction that f is not uniformly continuous, and
fix € > 0. Then there is no fixed § that works, so for any proposed §, there must be
some a where it fails.

We can use this to produce a sequence: for § = 1/n let a, € I be a point where this §
fails: there is some x, within 1/n of a, but | f(x;,) — f(a,)| > €.
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18. Important Theorems

Thus, in fact we have two sequences x, and a,! We know very little about either
except that they are in a closed interval I, so we can apply Bolzano Weierstrass to get
convergent subsequences (we have to be a bit careful here, see the exercise below).

We will call the subsequences X, and A, (with capital letters). Now that we know
they both converge, we can see that they also have the same limit: (as, by construction
X — Ayl < 2). Call that limit L.

Then since f is continuous at L, we know that
lim f(X,) = f(lim X,,) = f(L) = f(lim A,) = lim f(A,)

Thus, lim f(X,,) — f(A,) = 0. However this is impossible, since for all values of n we
know |f(X,) — f(A,)| > €! This is a contradiction, and thus there must have been
some uniform § that worked all along. O

In proof, use that we can simultaneously apply bolzano weierstrass to two sequences:
this appears as an Exercise 9.14 back in the chapter on subsequences. If you didn’t
do it then, you should prove this for yourself now.
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19. x Uniform Continuity

Continuity is a local property: to verify that a function is continuous, we look near in-
dividual points. But what if we want a global notion — one that controls the behavior
of a function across its entire domain at once?

This brings us to uniform continuity, a stronger condition that ensures a single &
works for all points in the domain. While every uniformly continuous function is
continuous, the reverse is not always true.

In this chapter, we will: - Define uniform continuity and explore how it differs from
ordinary continuity. - Test whether standard operations like addition, multiplica-
tion, and inversion preserve uniform continuity. - Prove two deep results that make
uniform continuity especially useful: that it ensures extendability and automatically
holds for continuous functions on closed intervals.

Definition 19.1 (Uniform Continuity: € — §). A function f is uniformly continuous
on a domain D C R if for every e there exists a § such that for any x,y € D with
|x — y| < 8, it follows that | f(x) — f(y)| < e.

Here’s an example showing how to use the definition, proving x? is uniformly con-
tinuous on an interval.

Example 19.1. f(x) = x? is uniformly continuous on the interval [1,3].

Scratch. Here’s some scratch work: let e > 0. Then at any a we see that | f(x)— f(a)| =
|x? — a?| = |x + al|x — al. If |x — a| < & and we want |f(x) — f(a)| < €, this tells us that
we want

|x+ald<e

We don’t know what x and a are, but we do know they are points in the interval [1, 3]!
So, the smallest x + a could be is 1 + 1 = 2, and the biggest is 3 + 3 = 6. This means
that

|x +ald < 65

So, if we can make 65 < €, we are good! This is totally possible: just set § = €/6.
Below is the rigorous proof. O
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Rigorous. Let € > 0, and set § = €/6. Note that for any a € [1,3] and any x within §
of a, we know a < 3 and x < 3 so x + a < 6. But this implies that

|x2—a2|=|x+a||x—a|§6|x—a|<65<6§:6

And so f is uniformly continuous, as this single choice of § works for every point

a€(1,3]. O

For normal continuity, we had a way to test using sequences. This proved quite useful
since we are so good at working with sequences these days. There is an analog for
uniform continuity as well

Exercise 19.1 (Sequences and Uniform Continuity). A function f is uniformly con-
tinuous if and only if for every pair of sequences u,, v, in the domain with lim u,—v, =
0, then lim f(u,) — f(v,) = 0.

Uniform continuity is stricter than regular continuity: there are functions which are
continuous but are not uniformly continuous. Here we see x? is such an example,
using the sequence criterion

Example 19.2. The function f(x) = 1/x is continuous, but not uniformly continuous
on (0,1). Looking at the sequence 1/n we see f(1/n) = 1/(1/n) = n. So, consider
the two sequences s, = 1/(n + 1) and t, = 1/n. These have s, —t, — 0 by the limit
theorems (as each individually goes to zero) yet f(s,) — f(t,) = (n+1)—n=1isa
constant sequence not converging to zero.

The sequence 1/n used in this example provides a hint of one way to detect uniformly
continuous functions: 1/n is Cauchy but f(1/n) was not, and we were able to use this
to show f was not uniformly continuous.

These examples show that uniform continuity is genuinely stronger than ordinary
continuity. In particular, the failure of uniform continuity for f(x) = 1/x on (0,1) high-
lights that local control is not enough — behavior near the edges matters, and if the
function “does something crazy” (here a vertical asymptote) we won’t be able to find
a uniform §.

Theorem 19.1 (Uniformly Continuity Preserves Cauchy Sequences). If f is
uniformly continuous and x, is cauchy, then f(x;,) is cauchy.

Proof. Let x;,, be an arbitrary Cauchy sequence in the domain of f, and choose arbi-
trary € > 0. Then by uniform continuity there is a § such that for |x — y| < § we
know |f(x) — f(¥)| < e. Since x, is Cauchy, given this § we can find an N such that
n,m > N implies |x, — x,,| < §, and hence |f(x;) — f(x,)| < €. But this is precisely
the definition of { f(x,)} being a Cauchy sequence, so we are done. O
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Great way to check if a function is not uniformly continuous: can you find a cauchy
seq taken to a non-cauchy sequence?

Example (PICTURE) functions like sin(1/x) are also not uniformly continuous on
(0, 1) even though it is bounded.

WARNING: does not work in reverse: the function x ~ x? takes Cauchy sequences
to cauchy seqs but is not uniformly continuous.

Definition 19.2 (Cauchy Continuous Functions). A real valued function f on a do-
main D C R is Cauchy Continuous if for every cauchy sequence {d,} in D, the se-
quence f(d,) is also Cauchy.

19.1. Properties of Uniformly Continuous Functions

In a previous chapter, we showed that continuous functions behave well under ad-
dition, multiplication, and composition. Now we ask: do these same operations pre-
serve uniform continuity? The answers are a little more nuanced. Let’s go through
them carefully.

Proposition 19.1 (Constant Multiples of Uniformly Continuous Functions). Let f be
uniformly continuous, and k € R. Then kf is uniformly continuous.

Proof. Ifk = 0 then k f is the constant zero function, so we ignore that case. For k # 0,
let € > 0 consider €/|k| and take the corresponding uniform § for f. For |x — y| < §
we see | f(x) — f(y)| < €/|k|, and so

lkf(y) = kf@ol < Ikl f(y) = fFGl < Iklﬁ =€

O

Exercise 19.2 (Sums of Uniformly Continuous Functions). Let f and g be uniformly
continuous. Then f + g is uniformly continuous.

From these it follows that f — g is uniformly continuous (as its equal to f+(—1)g) and
af + bg are for any a,b € R are uniformly continuous as well. It might be tempting
to believe, after seeing the above proofs that all of the limit laws should have analogs
for uniform continuity, just as they did for continuity. But this is not true!

Example 19.3 (Reciprocals need not be Uniformly Continuous). The function y = x
is uniformly continuous and nonzero on (0, 1) but its reciprocal f(x) = 1/x is not.
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Proof. Fx any § > 0, and note that given any 1/n < § we have

1 1 1 1
= ———<><$
n n+l1 nn+1) n

Fg) 7 () =mrrn=s

Thus, fixing any € < 1 there can’t be a uniform §, as its always possible to find points
separated by less than § mapped to points separated by a distance of 1. O

but applying f,

This generalizes directly to reciprocals: if f is uniformly continuous then 1/ f need
not be

Exercise 19.3. Let f be uniformly continuous and bounded away from zero: f(x) >
b > 0 for all x in the domain. Prove that 1/ f is uniformly continuous.

What about products? Again we need a boundedness assumption:

Exercise 19.4 (Uniform Continuity and Products). Let f and g be uniformly contin-
uous bounded functions with the same domain. Then f(x)g(x) is uniformly contin-
uous.

Proof. Since f, g are bounded we chan choose an M > 0 with | f(x)| < M and |g(x)| <
M for all x in the domain. Let € > 0 be arbitrary, and using uniform continuity for
f. g choose &7 such that |x — y| < &7 implies | f(x) — f(y)| < €/2M and an analogous
dy for g. Set § = min{dy, dg} and for any x, y with |x — y| < § we compute

f(e(y) — f)g)| = [f(Mg(y) — fF()g(x) + f(¥)glx) — f(x)g(x)l

<1fE—FEI+ f(Mg()—f()g(] = | fWlg(y) -8+ g (I f ()~ f(x)]

As both |f| and |g| are bounded by M, this is less than or equal to M(|g(y) — g(x)| +
|f(y) — f(x)]), and each of these terms is less than €¢/2M by hypothesis, so

fg() — fx)g)l < M (ﬁ + ﬁ) —e

as required. O

Exercise 19.5. Show that this boundedness assumption is necessary by giving an
example of two uniformly continuous functions whose product is not uniformly con-
tinuous.

Proposition 19.2 (Composition of Uniformly Continuous). Let f and g be uniformly
continuous functions. Then the composition f o g(x) = f(g(x)) is uniformly continuous.
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Proof. Choose € > 0 and let ¢ be a uniform delta for f(x). Use this to select a uniform
d, for g, such that whenever |x — y| < dg, we have |g(x) — g(y)| < 7. This turns out
to be the right uniform value for the composition f ° g, as [g(x) — gV)| < 6 =

If(g() = flgyl <e. O
Like reciprocals, inverses pose a problem:

Exercise 19.6 (Inverses and Uniform Continuity). Give an example of a uniformly
continuous function whose inverse is not uniformly continuous.

Exercise 19.7. Prove that f(x) = x? is not uniformly continuous on the entire real
line, using either the € — & definition or the sequence definition.

19.2. Continuous Extension

So far uniform continuity seems to be a slightly more restrictive definition (requiring
one to prove their choice of § works everywhere) with consequently weaker theorems
(inverses and products need not be uniformly continuous, even though they are con-
tinuous, for one). So why would one care about this harder to verify and harder to
work with notion of continuity? The main reason is that the stricter definition of
uniform continuity allows us to prove some (very useful) things which are just not
true about the standard version! The chief among these is perhaps the continuous
extension theorem.

Roughly speaking, if a function is uniformly continuous on an open interval, then we
can define its values at the endpoints in a way that makes it continuous on the closed
interval. This is not always possible for merely continuous functions, as we saw with
f(x) = 1/x on (0,1). Uniform continuity makes all the difference.

Theorem 19.2 (Extending Uniform Continuity to Endpoints). If f: (a,b) — R is
uniformly continuous, then there exists a continuous extension of f of f to [a, b].

We could stop to prove this here, but in fact the same technique proves a more general
extension theorem of which this is a special case:

Theorem 19.3 (The Continuous Extension Theorem).

Proof. Proof sketch: D dense in X, define f(x) by lim f(d,) for d, — x. Need to check
(1) this defines a value, (2) its well defined, independent of sequence.

For (1): if d, — x then d, is convergent, hence Cauchy. f is uniformly continuous
so it takes Cauchy sequences to cauchy sequences. Thus f(x,) is Cauchy, hence
convergent.
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Next for (2): if ¢,,d, — x are two such sequences, make the interleaved sequence
c1,d1, ¢y, dy, c3,d5 -+ This converges to x as well so is Cauchy. Thus applying f yieldsa
cauchy (hence convergent) sequence, and all subsequences have the same limit. Since
¢, and d,, are subsequences, we see f(c,) and f(d,) converge to the same value. [J

Note in the proof above we only used one property of uniformly continuous functions:
that they take cauchy sequences to cauchy sequences. So this actually applies more
generally, to Cauchy Continuous functions.

Corollary 19.1 (Continuous Extension of Cauchy Continuous Functions). If f is
Cauchy continuous on a set D which is dense in X, then there exists a unique continuous
extension f of f to X.

19.3. Continuous on a Closed Interval

The continuous extension theorems provide a first (of several) motivations for being
interested in this stronger notion of continuity. Hence its useful to develop some re-
sults for telling when a function which known a priori only to be continuous is in fact
uniformly continuous. The most useful of these provides a surprisingly simple con-
dition: so long as the domain is a closed interval, continuity and uniform continuity
are equivalent!

Theorem 19.4 (Continuous + Closed = Uniform). Let f be a continuous function
defined on the closed interval [a,b]. Then f is in fact uniformly continuous on this
interval.

Proof. Assume for the sake of contradiction that f is not uniformly continuous, and
fix € > 0. Then there is no fixed 6 that works, so for any proposed §, there must be
some a where it fails.

We can use this to produce a sequence: for § = 1/n let a, € I be a point where this §
fails: there is some x;, within 1/n of a, but |f(x;,) — f(a,)| > €.

Thus, in fact we have two sequences x, and a,! We know very little about either
except that they are in a closed interval I, so we can apply Bolzano Weierstrass to get
convergent subsequences (we have to be a bit careful here, see the exercise below).

We will call the subsequences X, and A, (with capital letters). Now that we know
they both converge, we can see that they also have the same limit: (as, by construction

|X, — Al < %) Call that limit L.

Then since f is continuous at L, we know that

lim £(X,) = f(lim X,) = f(L) = f(lim A,) = lim f(A,)
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Thus, lim f(X,,) — f(A,) = 0. However this is impossible, since for all values of n we
know |f(X,) — f(A,)| > €! This is a contradiction, and thus there must have been
some uniform § that worked all along. O

In proof, use that we can simultaneously apply bolzano weierstrass to two sequences:
this appears as an Exercise 9.14 back in the chapter on subsequences. If you didn’t
do it then, you should prove this for yourself now.

Exercise 19.8 (Periodic Continuous Functions are Uniformly Continuous). Let f be
a periodic continuous function on R. Then f is uniformly continuous.
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20. Elementary Functions

Highlights of this Chapter: we introduce the idea of defining functions
by a Functional Equation specifying how a function should behave in-
stead of specifying how to compute it. Following this approach, we give
rigorous definitions for exponentials logarithms and trigonometric func-
tions, and investigate some of their consequences. With these definitions
in hand, we are able to define the field of Elementary Functions, familiar
from calculus and the sciences.

At the heart of real analysis is the study of functions. But which functions should
we study? Polynomials are a natural class built from the field operations, and power
series are a natural thing to look at given polynomials and the concept of a limit. But
there are many, many other functions out there, and we should wonder which among
them are worthy of our attention. Looking to history as a guide, we see millennia of
use of trigonometric functions, and centuries of use of exponentials and logarithms.
Indeed these functions are not only important to the origins of analysis but also to
its modern development. In this chapter we will not focus on how to compute such
functions, but rather on the more pressing question of how to even define them: if
all we have available to us are the axioms of a complete ordered field how do we
rigorously capture aspects of circles in the plane (trigonometry) or continuous growth
(exponentials)? The key is the idea of a functional equation: something that will let
us define a function by how it behaves, instead of by directly specifying a formula to
compute it.

20.1. Warm Up: What is Linearity?

We know how to express linear functions already using the field axioms, as maps
f(x) = kx for some real number k. To speak of linear functions functionally however,
we should not give a definition telling us how to compute their values (take the input,
and multiply by a fixed constant k) but rather by what they’re for: by the defining
property of linearity.

The most important property of a linear function is that it distributes over addition
(think of how we use linear maps, say, in Linear Algebra). So, in the 1800
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Definition 20.1 (Cauchy’s Functional Equation for Linearity). A function f: R - R
satisfies Cauchy’s functional equation if for all x, y € R,

Jx+y)=f)+f»)

Note it follows for any finite sum x; + x, + -+ + x,, one can ‘distribute’ a solution to
Cauchy’s functional equation, by induction: f(x; +xy+--+x,) = f(x)+ f(x) +---+
f(x,). Cauchy’s idea works: we can completely characterize the concept of Linear
Function from R to R via this functional equation and continuity.

Theorem 20.1 (Characterizing Linear Functions). If f is a continuous solution to
Cauchy’s functional equation, then f(x) = kx for somek € R.

Exercise 20.1. Prove Theorem 20.1, following the outline below.

Let f: R — R be a continuous function where f(x + y) = f(x) + f(y).

« Prove that f(n) = nf(1) foralln € N.

« Extend this to negative integers.

« Show that f(1/n) = %f(l) for n € IN *Hint: use that % + % + e+ % =1

« From the above, deduce that for rationalr = p/q, p € Z q € Nthat f(r) = rf(1).
« Now use continuity! If k = f(1), then f(r) = kr on Q...

20.2. Exponentials

Exponential functions occur all across the math and sciences, representing any kind
of growth that compounds multiplicatively as time progresses linearly. THat is, the
core feature of exponentials underlying their ubiquity is the law of exponents a™*" =
a™a" turning the addition of m and n into the multiplication of a™ and a". Following
Cauchy’s lead, we will single this out and use it to define a class of functions via
functional equation.

Definition 20.2 (The Law of Exponents). A function E: R — R satisfies the law of
exponents if for every x,y € R

E(x +y) = E(x)E(y)

An exponential function is a continuous nonconstant solution to the law of exponents.

This just rigorously spells out what we want exponential functions to be. We still have
to prove they exist! But before doing that, we pause to gain some comfort with the
functional equation definition, and derive a few basic properties that exponentials
must have.
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Proposition 20.1. IfE satisfies the law of exponents and evaluates to zero at any point,
then E is the zero function.

Proof. Let E be an exponential function and assume there is some z € R such that
E(z) = 0. Then for any x € Rwe may write x = x—z+z=(x—2)+z=y+z for
¥y = x — z € R. Evaluating E(x) using the law of exponents,

E(x) = E(y+z) = E(y)E(z) =E(y)-0=0

O

Proposition 20.2. Prove that if E is any exponential function, then E(0) = 1, and that
E(—x) = 1/E(x).

Proof. The number 0 has the property that 0 + 0 = 0. Plugging this into the exponen-
tial property, we find
E(0) = E(0 + 0) = E(0)E(0)

By the previous proposition, we know E(0) is nonzero, so we can divide by it, leaving
1 = E(0). For the second part, we begin with the identity x+(—x) = 0. Exponentiating
gives

1= E(0) = E(x + (—x)) = E(x)E(—x)

We can then divide by E(x) giving the result E(—x) = ﬁ O

Exercise 20.2. If E(x) is an exponential and s # 0 is a real number, then x — E(sx)
is also an exponential function.

20.2.1. Existence

Here we show that exponential functions exist, and fully characterize them. We’ve
already done plenty of work understanding rational and irrational powers, so we can
make perfect sense of the expression a* for arbitrary a > 1 and real x. Furthermore
in algebra and calculus classes we have certainly treated such expressions as expo-
nentials: we’ve used the law of exponents on their powers without worry! But now
in our rigorous mindset there is much more to do, we need to confirm that our rather
complicated definition of x — a* actually is (1) continuous nonconstant and (2) sat-
isfies the laws of exponents.

To do so we make use of all our previous work with exponents: namely the following
facts (the first two are from our inital investigation into numbers and operations, the
second two from when we studied Monotone Convergence)

« Ifr = p/q then @ is defined as a?/9 = {aP.
« If r, s are rational numbers a’ ™ = a"a’, so powers satisfy the law of exponents
on rational inputs.
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« If r,, is a monotone increasing sequence of rational numbers a™ converges.
« Ifr,, is a sequence of positive rationals with r,, - 0 then a’» — 1.

From these we can prove an important lemma that helps us make a rigorous definition
of the function a*:

Lemma 20.1 (Irrational Powers). Ifx € R andr, is any monotone increasing sequence
of rational numbersr, /* x, then d'n converges to the same limit.

Proof. Let s, and r,, be two monotone increasing sequences of rationals converging
to x. We know (by monotone convergence) that a™ and a* both converge, so let’s
name their limits lima'" = R and @’ = S. We wish to prove R = S.

Defining z, = r, — s,, note that z,, € Q we can write r,, = s, + z,,, and using the law of
exponents for rational numbers,

an = gt

= a’na™n

Applying the limit law for differences we see limz, = limr, — lims, = x — x = 0,
and so we know (from our earlier fact) that a® — 1. Thus all three of the sequences
above converge, and we can use the limit law for products:

R = limd™ = lim (a%a®) = (lim&*) (lim @) = (lima*) (lim @*) = (lima*) (1) = §

O

Because the limiting value of a® does not depend on which sequence we take, we
can define irrational powers by saying take any monotone sequence of rationals and
compute the limit without worrying if different people will get different answers.

Definition 20.3 (Raising to the Power of x). Given a positive a # 1, we define the
function x — a* via

a* x€Q
E(x) =1
liman x¢Qforr,eQ,n " x

Theorem 20.2 (Existence: Powers Are Exponentials). Exponential functions exist.
Precisely, any positive a # 1, E(x) = a* is a continuous function which satisfies the law
of exponents a**Y = a*a¥ forall x,y € R.

We prove these two claims separately. To simplify things, we work with the case
a > 1: for a < 1 one can either perform analogous arguments, or write a = 1/b fo$
b > 1, and work with E(x) = 1/b* where we already fully understand b*.
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Proposition 20.3. The function a* satisfies the law of exponents

Laws of Exponents. Let x,y € R, we wish to show that a**¥ = a*a”. Note that if both
x and y are rational we are done, as we already know that the law of exponents holds
for rational powers. So, the interesting case is when at least one is irrational, where
the function definition involves limits.

Let’s continue with the case where both x and y are irrational (we’ll see the case
where only one is irrational also follows from the same logic). To define a* and a” we
need to choose monotone sequences of rational numbers x,, = x and y, — y: then
we have @ = lima™ and ¥ = lima%. Since both of these sequences converge, we
can use the limit law for products to conclude

lima*a¥ = (lim a*) (lim a¥) = a*a¥

But since x, and y, are rational numbers, we know the law of exponents holds for
them: @*a¥ = a** for each n. By the limit law for sums we know that x, + y, —
x + y, but furthermore its a sequence of rational numbers (since x,, and y, are) and its

monotone increasing (since x, and y, are). This means (by definition!) lim a**% =
x+y
ay.

Stringing these equalities together yields the law of exponents for x and y:

@Y = lima*» ™ = lim (¢ a) = (lim @) (lim @) = a*aY

We can use the same argument when only one of the numbers is rational: if x € Q but
y ¢ Q, we still need to choose a monotone sequence y, — y of rationals, but there’s
an obvious choice of sequence for x: just take the constant sequence x, x, x, ...: this is
rational monotone (because its constant), and converges to x after all! Running the
same argument as above with these two sequences yields a*™¥ = a*a” as well. [

Exercise 20.3. Prove the exponential function a* for a > 1 is monotone increasing:
thatis, if x < y, a* < .

Hint: we know its monotone on rational inputs, so the interesting cases are again when at
least one is irrational (and, the argument for both irrational can be generalized to include
the other case). Write down monotone increasing sequences, truncate the sequences until
you can insure x,, < y, for alln, and then apply the limit laws.

We will additionally need (for a later argument) that the exponential is strictly increas-
ing: thatis, if x < y then a® < @’ (that is, the equals case is impossible), so we’ll prove
that now as well.

Lemma 20.2. Ifx <y thena* < a¥, whena > 1.
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20. Elementary Functions

Proof. This is equivalant to showing 1 < a¥/a*, which, since we know the laws of
exponents hold, means showing 1 < @’ *. That is, our problem is equivalent to
proving for any z > 0 the exponential a” is strictly greater than 1.

First note this is clearly true for rational z = p/q, as a > 1 implies a? > 1P = 1, which
implies Ya? > ¢1 = 1. For irrational z we proceed by choosing a rational sequence
z, — z. By picking an epsilon (say € = z) we can truncate our sequence and after
some point, and assume its always positive. So (possibly re-labeling the indices) we
can assume without loss of generality z,, > 0 for all n. Since z is monotone increasing,
we see z, > z; for all n, and since the exponential is monotone for rational numbers,

z1 <z, = a* <a™

Thus, by the inequality for limits, we see ¢* < lima* = a®. Since z; is rational we
know a* is strictly greater than 1, so a” is as well. O

We are now ready to prove continuity. The sequence criterion looks suspiciously
similar to our definition of a*, so this sounds like it might be easy. But as with many
things in analysis, there are details to be considered: the definition of our function a*
considers monotone, rational sequences whereas the definition of continuity requires
we consider arbitrary sequences. So, we need to bridge this gap. To do so, it will be
useful to have a quick lemma, which relies on similar techinques to the above proof

Continuity. Let x € Rand x;, = x be arbitrary. Choose an arbitrary sequence x, — x,
we wish to show that a*» converges to a*. We proceed by contradiction, assuming it
does not. Our goal is to throw away terms of this sequence until we get something
nicer (less arbitrary) to work with.

Negating the definition of convergence, there must be some bad € where for every
N there is an n > N where a™ differs from a* by more than €. Taking N = 1,N =
2,N = 3,... we can build a subsequence x, where every single term is more than
€ away from a*. But we can go even further, recalling that every sequence has a
monotone subsequence, we can throw away more terms until we have a subsequence
Z which is monotone and has @ ™ not converging a*.

xnk

Phew! That’s a lot of subsequences. Its annoying to carry them all around in print,
and so we will just rename things: let’s call this sequence y,. Since the original se-
quence x, converged to x and this is a subsequence, we know 3, — x as well. And,
its much closer to something we might know about (its monotone, and the definition
of a* requires talking about monotone sequences). The only thing left to confront is
rationality. We have no idea if the terms y, are rational (and they need not be). So
we are going to do a very cool trick, to replace this with a different sequence.

By the density of rationals we can find an r, between each pair 3y, y;, ;. This defines a
sequence of rational numbers, y; < 1rp < 341, Wwhich converges to x by the squeeze the-
orem (since lim y, = lim yp, 1 = x). This was useful: we learned something about the
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r sequence using something we know about the y sequence. But since the sequences
are interleaved

NENSWEn<y<Sr<yYy<rn<y<r<y..

We can also think about the y sequence as trapped between the r sequence: r,_; <
¥ < 1. Because the exponential is monotone (increasing, for a > 1) this implies that
a1 < @’ < d't. But now we know about the convergence of the outer two sequences
lim @'t = a* by definition, as r,, - x is a monotone rational sequence. The same holds
for rpy 1 as truncating the first term doesn’t change convergence. Thus by the squeeze
theorem,

lima* = a*

But this is a contradiction! As the terms y, were specifically chosen so that a”* was
always further from a* than e, so it can’t eventually be less than € from it. O

We’ve done it! We’ve rigorously confirmed all the calculations we’ve done from pre-
calculus onwards, involving the law of exponents: this really does hold for the con-
tinuous function a*, even at irrational powers! Before moving onwards, its useful to
pause for a minute and put our newfound knowledge to the test, proving a couple
other facts about the exponential.

Corollary 20.1. The exponential function a* is one-to-one on its entire domain.

Proof. Let x # y be real numbers, we want to show a* = a”.
By trichotomy, we know either x < y or x > y. In the first case, by strict monotonicity,
a* < a”, and in the second a* > a”. That is, in both cases a® # a7, so we are done. [

Exercise 20.4. Prove range of the exponential function a* is all positive real numbers:
that is, for any positive y, show there is some x where a* = y.

Hint: can you find some n € N where " > y? If so, can you modify the idea to get

anm witha ™ < y? Once you have these two values, can you apply a theorem about
continuity?

Exercise 20.5 (Convexity of exponentials). Prove that exponential functions are con-
vex (Definition 5.8): their secant lines lie above their graphs.
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20.3. Logarithms

We've completely put the theory of exponential functions on a rigorous footing, so
its time to do the same for logarithms. We define logarithms similarly to what we did
for exponentials, by a functional equation telling us what they are for.

Definition 20.4 (The Law of Logarithms). A function L satisfies the law of logarithms
if for every x,y > 0,

L(xy) = L(x) + L(y)

A logarithm is a continuous nonconstant solution to the law of logarithms.

Exercise 20.6. Let L(x) be a logarithm and r € Q a rational number. Prove directly
from the functional equation that L(x") = rL(x).

One might be initially concerned: we don’t have a nice candidate function on the
rationals that we know satisfies this, and we just need to extend: so how are we
going to prove the existence of such functions? Happily this case actually turns out
to be much less technical than it looks - because we can put all the hard work we did
above to good use!

Theorem 20.3 (Logarithms Exist, and are Inverses to Exponentials). Let E(x) be an
exponential function. Then its inverse function is a logarithm.

Proof. Let E be an exponential function, and L be its inverse. Because E is continuous,
Theorem 16.5 implies that L is also continuous and nonconstant, so we just need to
show L satisfies the law of logarithms. Since the range of E is (0, o) this means we
must check for any a, b > 0 that L(ab) = L(a) + L(b).

With a, b in the range fo E we may find x, y with E(x) = a and E(y) = b, and (by the
definition of L as the inverse) L(a) = x and L(b) = y. By the law of exponents for E
we see ab = E(x)E(y) = E(x + y), and as L and E are inverses, L(E(x + y)) = x + y.
Putting this all together gives what we need:

L(ab) = L(E(x)E(y)) = L(E(x + y)) = x + y = L(a) + L(b)

Definition 20.5. The base of a logarithm L is the real number a such that L(a) = 1.
That is, the log base a is the inverse of a*.
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20.4. 4 Trigonometric Functions

Like for the exponential and logarithm functions, to propose a rigorous definition of
the trigonometric functions, we require them to satisfy the trigonometric identities.
To make a specific choice, we take the angle difference identities

Definition 20.6 (Angle Identities). A pair of two functions (c, s) are trigonometric if
they are a continuous nonconstant solution to the angle identities

s(x = y) = s(x)e(y) — c(x)s(y)

c(x = y) = c(x)e(y) + s(x)s(y)
Definition 20.7 (Other Trigonometric Functions). Given a trigonometric pair s, c we

define the tangent function #(x) = s(x)/c(x), as well as the secant 1/c(x), cosecant
1/s(x) and cotangent 1/¢(x).

It may seem strange at first: is this really enough to fully nail down trigonometry?
It turns out it is: if s, ¢ satisfy these identities then they actually satisfy all the usual
trigonometric identities! Its good practice working with functional equations to con-
firm some of this, which is laid out in the exercises below. I'll start it off, by confirming
at least such functions take the right value at zero.

Lemma 20.3 (Values at Zero). Ifs,c are trigonometric, then we can calculate their
values at 0:
s(0)=0 c(0)=1

Proof. Setting x = y in the first immediately gives the first claim

s(0) = s(x — x) = s(x)e(x) — c(x)s(x) = 0

Evaluating the second functional equation also at x = y

¢(0) = e(x — x) = c(x)e(x) + s(x)s(x) = c(x)? + s(x)?

From this we can see that ¢(0) # 0, as if it were, we would have ¢(x)%+s(x)? = 0: since
both ¢(x)? and s(x)? are nonnegative this implies each are zero, and so we would have
c(x) = s(x) = 0 are constant, contradicting the definition. Now, plug in 0 to what
we’ve derived, and use that we know s(0) = 0

¢(0) = ¢(0)? + s(0)? = ¢(0)?

Finally, since c(0) is nonzero we may divide by it, which gives c¢(0) = 1 as claimed. [
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An important corollary showed up during the proof here, when we observed that

¢(0) = c(x)? + s(x)*: now that we know c(0) = 1, we see that (c,s) satisfy the

Pythagorean identity!

Exercise 20.7 (Pythagorean Identity). If s, c are trigonometric, then for every x € R
s(x)® +c(x)? =1

Continuing this way, we can prove many other trigonometric identities: for instance,
the double angle identity (which will be useful to us later)

Exercise 20.8 (Evenness and Oddness). If s, are trigonometric, then s is odd and c is
even:

s(—=x) = —s(x) c(—x) = c(x)
Exercise 20.9 (Angle Sums). If s, ¢ are trigonometric, then for every x € R
s(x +y) = c(x)s(y) + s(x)c(y)

c(x +y) = c(x)e(y) — s(x)s(y)
Exercise 20.10 (Double Angles). If s, ¢ satisfy the angle sum identities, then for any

x €R,
s(2x) = 2s(x)c(x)

Another useful identity we’ll need is the ‘Half Angle Identites’:

Lemma 20.4. Ifs,c are trigonometric functions, then

_ 1+ c(2x)

e(x)? >

Proof. Using the angle sum identity we see
c(2x) = c(x)e(x) = s(x)s(x) = c(x)* — s(x)°
Then applying the pythagorean identity
c(2x) = ¢(x)? — s(x)?

o(x)? = (1 = e(x)?)
=2¢(x)? — 1

Re-arranging yields the claimed identity. O
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20.4. ¢ Trigonometric Functions

Exercise 20.11. If s, c are trigonometric functions then

1—c(2x
s(x)? = —( )
2
Just like for exponentials and logs we don’t expect this to pick out a unique pair of
functions, but rather there many be many solutions to the angle identities (corre-
sponding to different units we could measure angles with)

Exercise 20.12. Prove that if s(x),c(x) are a trigonometric pair then so are
s(kx), c(kx) for any constant k > 0.

To prove the existence of trigonometric functions, we’ll follow a similar path to ex-
ponentials: we’ll propose a pair of functions, and confirm they are continuous and
nonconstant, and satisfy the trig identities. This is one of the options of the final
project, for those interested!
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Part V.

Derivatives






In Chapter 21 we define the derivative as a limit of difference quotients, and
investigate the basic properties of differentiable functions

In Chapter 22 we prove the Mean Value Theorem, a cornerstone result in real
analysis and give some applications; from understanding maxima and minima
to L’Hospitals rule.

In Chapter 23 we investigate the differentiability of power series

In Chapter 24 we use calculus to single out the natural exponential, natural
logarithm, and natural units (radians) for the trigonometric functions.
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21. Definition & Properties

Highlights of this Chapter: we prove many foundational theorems about
the derivative that one sees in an early calculus course. We see how
to take the derivative of scalar multiples, sums, products, quotients and
compositions. We also compute - directly from the definition - the deriva-
tive of exponential functions. This leads to an important discovery: there
is a unique simplest, or natural exponential, whose derivative is itself.
This is the origin of e in Analysis.

Finally - on to some calculus! Here we will define the derivative, and study its prop-
erties. This may sound daunting at first, remembering back to the days of calculus
when it all seemed so new and advanced. But hopefully, after so much exposure to
sequences and series during this course, the rigorous notion of a derivative will feel
more just like a nice application of what we’ve learned, than a whole new theory.

21.1. Difference Quotients

The derivative is defined to capture the slope of a graph at a point. Elementary algebra
tells us we can compute the slope of a line given two points as rise over run, and so
we can compute the slope of a secant line of a function between the points a,t as

f® - f(a)

t—a

The derivative is the limit of this, ast — a:

Definition 21.1 (The Derivative). Let f be a function defined on an open interval
containing a. Then f is differentiable at a if the following limit of difference quotients
exists. In this case, we define the limiting value to be the derivative of f at a.
f®) - fa)

—a

f(@ = Df(@) = lim == —=

Exercise 21.1 (Equivalent Formulation). Prove that we may alternatively use the
following limit definition to calculate the derivative:

fla+h) - f(a)

’ — 1
f'(@) lim ;
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21. Definition & Properties

Example 21.1. The function f(x) = x? is differentiable at x = 2.

This is a classic problem from calculus 1, whose argument is already pretty much
rigorous! We wish to compute the limit

. x2—4
lim
x=2 x—2

So, we choose an arbitrary sequence x, with x, # 2 but x;, > 2 and compute

xr? -4 . (xn + 2)(xn - 2)
= lim

Xy — X, — 2

lim

=limx, + 2

Where the arithmetic is justified since x,, # 2 for all n by definition, so everything is
defined. But now, as x;, = 2 we can just use the limit laws to see

limx, +2=2+2=4

Since x;,, was arbitrary, this holds for all such sequences, so the limit exists and equals
4. Because this limit defines the derivative, we have that f is differentiable at 2 and

fr@=4

Exercise 21.2. Compute the derivative of f(x) = x> at an arbitrary point a € R,
directly from the definition and show f’(a) = 3a®.

As defined above, the derivative is a limit t — a, which depends on values of t both
greater than and less than a. But sometimes its useful to have a notion of the deriva-
tive that only cares about one sided limits (for instance, when computing the slope
at the end of an interval). We give the analogous definition below

Definition 21.2 (One Sided Derivatives). Let f be a function defined at a; then its
1-sided derivatives are defined by the following limits, when they exist

D-f(a) = tl—lgl’ w

This definition, together with our previous work on limits, implies that a function f
is differentiable if and only if its two one sided derivatives exist and are equal. This
is useful in practice, for instance in showing the non-differentiability of the absolute
value:

Exercise 21.3. Show that f(x) = |x| is not differentiable at x = 0.
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21.2. Derivative as a Function

So far we have been discussing the derivative at a point as a number; the result of a
limiting process. But we can let this point vary, and produce a function taking in x
and outputting the derivative at x:

Definition 21.3 (The Function f’). Let f be a function, and suppose that the deriva-
tive of f exists at each point of a set D C R. Then we may define a function f’ : D - R

by
f@®) - fx)

fxe f/(x) =lim ————
t—x t—x

If f’ is continuous, f is called continuously differentiable on D.

For example, f(x) = x> is continuously differentiable on R since by Exercise 21.2 we
see its derivative is the function x ~— 3x?, and this is a polynomial: we proved all
polynomials are continuous.

Since the derivative of a function yields another function, we can look at iterating
this process to produce higher derivatives

Definition 21.4 (nth Derivatives). Given a differentiable function f, the second
derivative f’’ is defined as the derivative of f’. A function is twice differentiable

at x if
y ') = f'(a)
im —————

X—a X—a

exists. Continuing inductively, we define the nh derivative of a function at a as the
derivative of the n — 1% derivative of f at a.

We will use the prime notation for small numbers of derivatives, like f/(x), f’’(x) and
f””’(x). For higher derivatives it is traditional to denote via the number of derivatives
in parentheses: f(z) = f, f(3) = f’”” and so on; so f(47) for the 47th derivative of

I
Exercise 21.4 (A Difference Quotient for 2nd Derivative). If f is twice differentiable

at a, show that
fla+2h)—2f(a+h)+ f(a)
2

”(a) = lim

f ( ) h—0

Find a limit depending only on f (not f” or f’’) which computes the third derivative
Its useful to have a notation for functions which admit k derivatives, we say a function
is CF if you can differentiate it k times (but not necessairly k + 1 times). And, we call

a function smooth if you can differentiate it n times for any n € IN. The set of smooth
functions is denoted C*.
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21.2.1. Continuity

Before jumping in we prove one small oft-useful result often not mentioned in a cal-
culus class, relating differentiability to continuity.

Theorem 21.1 (Differentiable implies Continuous). Let f be differentiable at a € R.
Then f is continuous at a.

Proof. Since f is differentiable at a, we know the limit of the difference quotient is

finite
10— f@)
x—a  xX—a

= f'(a)

We also know that lim,_,,(x —a) = 0$ So, using the limit theorems we may multiply
these together and get what we want. Precisely, let x, — a be any sequence with
x, # a for all n. Then we have

0 = (0)(f"(a)
= (limx, — a) <lim _f(x;) : af(a))

= lim ((xn - a)—f(x;) — L{(a)>

= lim (f(x,) — f(@))

Thus lim(f(x,) — a) = 0 so by the limit theorems we see lim f(x,) = a. Since x;,, was
arbitrary with x,, # a this holds for any such sequence, we see that f is continuous
at a using the sequence definition. O

Remark 21.1. There is a little gap not explicitly spelled out at the end of the proof
above, that we should fill in now (to assure ourselves this style of reasoning always
works). We just proved that for sequences x, # a the property we want holds, but
continuity requires this fact for all arbitrary sequences. How do we bridge this gap?
Let y, — a be an arbitrary sequence: then we split into the subsequences x;,, # a and
the subsequence of all terms = a. If either of these is finite, we can just truncate the
original sequence at a point past which all terms are of one or the other: each of these
has lim f(x,) = f(a) so we are done. In the case that both are infinite, we just use
that we have separated our sequence into a union of two subsequences, each with
the same limit! Thus the overall limit exists.

Thus continuous functions must be differentiable, but what can we say about the

derivative itself? If a function is everywhere differentiable must the derivative itself
be continuous? In fact not, as the following example shows

254



21.3. Field Operations

Example 21.2. While its hard to imagine a function that is differentiable at every
point but not continuously differentiable such things exist. For example

Fx) = xzsin(%) x#0
0

x=0

Its possible to find a formula for f”(x) when x # 0, and show that lim,_,o f"(x) does
not exist (we will do this later). However one can also calculate directly the derivative
at zero: and find f’(0) = 0. This means lim,_,o f'(x) # f’(lim,_,( x) as one side does
not exist and the other is zero: thus f” is not continuous at 0.

Exercise 21.5. For f(x) as above in Example 21.2, calculate f”(0) directly using the
limit definition. (Perhaps surprisingly, all you need to know about the sine function
here is that it is bounded between —1 and 1!)

21.3. Field Operations

Here we prove the ‘derivative laws’ of Calculus I:

21.3.1. Sums and Multiples

Theorem 21.2 (Differentiating Constant Multiples). Let f be a function and c € R.
Then if f is differentiable at a pointa € R so iscf, and

(cf)(a) = c(f'(a))

Proof. Let’s use the difference quotient with a + h,, to change things up: Let h,, — 0
be arbitrary, and we wish to compute the limit

. cf(a+hy) —cf(a)
lim A

By the limit laws we can pull out the constant ¢, and the remainder converges to f’(a),
as f is assumed to be differentiable at a.

i LI _

Because this is true for all sequences h,, — 0 with h,, # 0, the limit exists, and equals

cf’(a). O
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Theorem 21.3 (Differentiating Sums). Let f, g be functions which are both differen-
tiable at a point a € R. Then f + g is also differentiable at a, and

(f+8) (@)= f(a)+g'(@

Exercise 21.6. Prove the differentiability rule for sums.

21.3.2. Products and Quotients

Theorem 21.4 (Differentiating Products). Let f, g be functions which are both differ-
entiable at a point a € R. Then fg is differentiable at a and

(&) (@) = f(@)g(a) + f(a)g’(a)

Proof. Let f, g be differentiable at a € R, and choose an arbitrary sequence a, — a.
Then we wish to compute

. f(ap)g(an) — f(a)g(a)
m

Ii
a, —a

To the numerator we add 0 = f(a,)g(a) — f(a,)g(a) and regroup with algebra:

— lim f(an)glan) — f(an)ga) + f(ay)g(a) — f(a)g(a)
a, —a

- fan)g(an) — flan)g(a) = flan)g(a) — fla)g(a)
m +

=1
a, —a a, —a

Using the limit laws, we can take each of these limits individually so long as they exist
(which we will show they do). But even more, note that the first term has a common
factor of f(a,) in the numerator that can be factored out, and the second a common
factor of g(a). Thus, by the limit laws, we see

= (lim f(a,)) <lim W) + 8@ (%)

Because f is differentiable at g, its continuous at a, and so we know lim f(a,) = f(a).
The other two limits above converge to the derivatives f’(a) and g’(a) respectively.
Thus, alltogether we find the resulting limit to be

f@)g’ (@) + f'(a)g(a)
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As this was the result for an arbitrary sequence a, — a with g, # a, it must be the
same for all sequences, meaning the limit exists, and

(f-8) (@) = fla)g'(a) + f'(a)g(a)
O

Exercise 21.7. Let f be a function and a € R be a point such that f(a) # 0 and f is
differentiable at a. Prove that 1/ f is also differentiable at a and

(7) -8

Theorem 21.5 (Differentiating Quotients). Let f, g be a functions which are differen-
tiable at a pointa € R and assume g(a) # 0. Then the function f /g is also differentiable

at a and
Y, . flaga - f@g (a)
=| (@)= >
g g(a)

Exercise 21.8. Use the Reciprocal Rule and Product Rule to prove the quotient rule.

21.4. Compositions and Inverses

21.4.1. The Chain Rule

Theorem 21.6 (The Chain Rule). If g(x) is differentiable at a € R and f(x) is differ-
entiable at g(a) then the composition f o g is differentiable at a, with

(f-8)(a) = f'(g(a)g’(a)

Wish this Worked! We are taking the derivative at a, so let x, — a wtih x, # a be
arbitrary. Then the limit defining [ f(g(a))]’ is

- J(g(x) — f(g(a)
m

li
X, —a

We multiply the numerator and denominator of this fraction by $g(x,) — g(a) and
regroup:
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fleta)) — fg@) _ f(g(q)) — f(g(a)) g(n) — g(a)

X, —a X, —a 8(x,) — g(a)
_ iy 180G — f(8(@)) g(x) — g(a)
= lim
g(xn) - g(a) Xp—a

Because g is continuous at a, we know g(x,) — a, and because f is differentiable at
g(a) we recognize the first term here as the limit defining f” at g(a)! Since the second
term is the limit defining the derivative of g, both of these exist by our assumptions,
and so by the limit theorems we can compute

3 (1' F(g(x)) — f(g(a))) ( . 806) — g(a))
= m llm —_—
g(x,) — gla)

= f"(g(@)g’(a)

X, —a

O

Unfortunately, this proof fails at one crucial step! Wile we do know that x,, —a # 0
(in the definition of lim,_,,, we only choose sequences x,, — a with x, # a) we do not
know that the other denominator g(x,) — g(a) is nonzero.

If this problem could only happen finitely many times it would be no trouble - we
could just truncate the beginning of our sequence and rest assured we had not affected
the value of the limit. But functions - even differentiable functions - can be pretty wild.
The function x? sin(1/x) (from Example 21.2) ends up equaling zero infinitely often
in any neighborhood of zero! So such things are a real concern.

Happily the fix - while tedious - is straightforward. It’s given below.
Exercise 21.9. We define the auxiliary function d(y) as follows:

f&)-fela)
diy)=1 v2&@ y* £@)

@)  y=g
This function equals our problematic difference quotient most of the time, but equals
the quantity we want it to be when the denominator is zero.

Prove that d is continuous at g(c) and we may use d in place of the difference quotient
in our computation: that for all x # a, the following equality holds:

S ~ @) oo

x —

8(x) — g(@)

Given this, the original proof is rescued:
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Proof. We are taking the derivative at a, so let x,, = a with x,, # a be arbitrary. Then
the limit defining [ f(g(a))]” is (by the exercise)

lim

f(gG)) — f(g(a)) _ md(g(x ))g( Xn) — g(a)

Xp—a Xn —

Because d is continuous at g(a) and g(x,) — g(a) we know d(g(x;,)) — d(g(a)) =
f’(g(a)). And, as g is differentiable at a we know the limit of the difference quotient
exists. Thus, by the limit laws we can separate them and

8(x,) — gla)

n

_ (limd(g( n»)( ) ~ F(g(@)g @

21.4.2. Differentiating Inverses

Theorem 21.7 (Differentiating Inverses). Let f be an invertible function anda € R a
point where f(a) = b. Assume f is differentiable at a with f’(a) = 0. Then its inverse
function ! is differentiable at b, and

(fFY®) =

1
'(a)

One may be tempted to prove this using the chain rule, by the following argument:
since f o f!(x) = x we differentiate to yield (f o f~!(x))’ = 1 and apply the chain
rule to the left hand side, resulting in

@)Y =1

Solving for (f~1)” and plugging in x = b yields the result. However a more careful
review shows doesn’t actually do what we think: in applying the chain rule, we’ve
implicitly assumed that f~! is invertible; which is part of what we want to prove!
(This proof does go through when we already know f~! to be differentiable, but we
are unfortunately not often already in possession of that knowledge). Below we give
a direct proof of the theorem from the limit definition, fixing this oversight:

IO N0}
y—b
To compute such a limit we choose an arbitrary sequence y, — y with y, # y and

Proof. We attempt to compute the limit defining the derivative for f~!: lim,

evaluate
o -1

lim
Yn— b

259



21. Definition & Properties

By definition b = f(a), and for each n there is a unique x, such that y, = f(x,):
making these substitutions yields

FHG) = (@)
fG) = f(a)
The composition f~! o f is the identity since they are inverse functions so

FY(f(x,)) = x, and f1(f(a)) = a. Making these additional substitutions our limit
statement becomes

lim

X, —a

lim ———
fGa) = f(@)
By assumption f is differentiable at a and f’(a) # 0, so we know that

o fGw - f@
f’(a) = lim —xn —

The limit we are interested in is the reciprocal of this, and as the limit value is nonzero
by assumption, the limit laws imply

fe)—f@  f&)f@ T fG)f@ T f7(a)
Xp—a Xp—a

Since the sequence y, was arbitrary, this argument holds for any such sequence. Thus

the limit defining (f~)’(b) exists, and (f ') (b) = ﬁ O

Exercise 21.10. Compute the derivative of y = \/x using this idea.

21.5. ¢ The Power Rule

Perhaps the most memorable fact from Calculus I is the power rule, that (x")” = nx""1.

In this short section, we prove the power level at various levels of generality, starting
with natural number exponents and proceeding to arbitrary real exponents.

Exercise 21.11 (Power Rule: Integer Exponents).

We can use the chain rule, and the the functional equation for roots to differentiate
n*{th}$ roots as well:

Proposition 21.1. IfR(x) = x'/" is the n'* root function, then

1
R'(x) = %xrl
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Proof. The definition of the n'" root function is that R(x)" = x. We differentiate this
equation with the chain rule, using that n is a natural number exponent:

(RG)™ = nR(x)" 'R’ (x)
The other side was x, whose derivative is 1. Thus,
nR(x)"'R'(x) =1

and, solving for R’ yields

1 1 1
RI X)= = =
(x) nR(x)”_l n(xl/n)n—l nx"%
1 14
= —=Xn
n

O

Exercise 21.12 (Power Rule: Rational Exponents). Run a similar argument to the n”
root case to prove that if r > 0 is rational, then x” is differentiable and (x")" = rx""!.

When it comes to arbitrary real exponents one can use their definition as limits of
rational powers, and work to differentiate such a limit. This is possible but requires
an exchange of limits, so needs care. Another method is to use the work we’ve already
put into understanding exponentials and logarithms to help us out!

21.6. Problems

The pasting lemma has a differentiable analog, which shows exactly when gluing two
pieces (like the absolute value) is differentiable, and when its not.

Exercise 21.13. Let f, g be two continuous and differentiable functions with a € R
a point such that f(a) = g(a). Prove that the piecewise function

f) x<a

hix) = glx) x>a

is differentiable at a if and only if f’(a) = g’(a). (recall we saw such a function is
always continuous at a in ?@exr-pasting-lemma).
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21. Definition & Properties

Exercise 21.14 (Differentiable, but The Derivative is Not Continuous). While its
hard to imagine a function that is differentiable at every point but not continuously
differentiable such things exist. For example

_ xzsin(%) x#0
fx) = 0

x=0

Assume for the sake of this problem that sin(x) is a differentiable function on the
entire real line, and prove that f(x) is differentiable at every nonzero point, using the
product/chain rules.

At x = 0 this method fails, but we can compute f’(0) directly using the limit definition.
Do this, and show you get zero. (Perhaps surprisingly, all you need to know about
the sine function here is that it is bounded between —1 and 1!)
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22. Theorems & Applications

Highlights of this Chapter: we study the relationship between the behav-
ior of a function and its derivative, proving several foundational results
in the theory of differentiable functions:

«+ Fermat’s Theorem: A differentiable function has derivative zero at
an extremum.

« Rolle’s Theorem: if a differentiable function is equal at two points,
it must have zero derivative at some point in-between.

« The Mean Value Theorem: the average slope of a differentiable
function on an interval is realized as the instantaneous slope at
some point inside that interval.

The Mean Value theorem is really the star of the show, and we follow it
with several important applications

That the derivative (rate of change) should be able to detect local extrema is an old
idea, even predating the calculus of Newton and Leibniz. Though certainly realized
earlier in certain cases, it is Fermat who is credited with the first general theorem
(so, the result below is often called Fermat’s theorem) We will have more to say about
extrema later in the chapter, but this theorem is so useful we prove it first, so it’s
available for our use throughout.

Theorem 22.1 (Finding Local Extrema (Fermat’s Theorem)). Let f be a function with
a local extremum at m. Then if f is differentiable at m, we must have f’(m) = 0.

Proof. Without loss of generality we will assume that m is the location of a local
minimum (the same argument applies for local maxima, except the inequalities in
the numerators reverse). As f is differentiable at m, we know that both the right and
left hand limits of the difference quotient exist, and are equal.

First, some preliminaries that apply to both right and left limits. Since we know
the limit exists, it’s value can by computed via any appropriate sequence x, — m.
Choosing some such sequence we investigate the difference quotient

JGa) — f(m)

X, —m

263



22. Theorems & Applications

Because m is a local minimum, there is some interval (say, of radius €) about m where
f(x) = f(m). As x;, > m, we know the sequence eventually enters this interval (by
the definition of convergence) thus for all sufficiently large n we know

JGe) = f(m) 20

Now, we separate out the limits from above and below, starting with lim,_,,-. If
x, — m but x;, < m then we know x,, — m is negative for all n, and so

fGa) = fom) _ pos

X, —m neg

Thus, for all n the difference quotient is < 0, and so the limit must be as well! That is,

AR (€D <o

x—m- X—m

Performing the analogous investigation for the limit from above, we now have a se-
quence x;, = m with x,, > m. This changes the sign of the denominator, so

fGi) = fm) _ pos _

Xy —m pos

Again, if the difference quotient is > 0 for all n, we know the same is true of the limit.

A (€D -

x—m* XxX—m

But, by our assumption that f is differentiable at m we know both of these must be
equal! And if one is > 0 and the other < 0 the only possibility is that f’(m) =0. O

22.1. Mean Values

One of the most important theorems relating f and f’ is the mean value theorem.
This is an excellent example of a theorem that is intuitively obvious (from our experi-
ence with reasonable functions) but yet requires careful proof (as we know by know
many functions have non-intuitive behavior). Indeed, when I teach calculus L, I often
paraphrase the mean value theorem as follows:

If you drove 60 miles in one hour, then at some point you must have been
driving 60 miles per hour
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22.1. Mean Values

How can we write this mathematically? Say you drove D miles in T hours. If f(¢) is
your position as a function of time*, and you were driving betweent = aand ¢t = b
(where b —a = T), your average speed was

D f®)-f@
T b—a

To then say *at some point you were going D miles per hour implies that there exists
some t* between a and b where the instantaneous rate of change - the derivative - is
equal to this value. This is exactly the Mean Value Theorem:

Theorem 22.2 (The Mean Value Theorem). If f is a function which is continuous on
the closed interval [a,b] and differentiable on the open interval (a,b), then there exists

some x* € (a,b) where
sy J(0) = fla)
=228
—a
Note: The reason we require differentiability only ont he interior of the interval is

that the two sided limit defining the derivative may not exist at the endpoints, (if for
example, the domain of f is only [a, b]).

In this section we will prove the mean value theorem. It’s simplest to break the proof
into two steps: first the special case were f(a) = f(b) (and so we are seeking f’(x* =
0)), and then apply this to the general version. This special case is often useful in its
own right and so has a name: Rolle’s Theorem.

Theorem 22.3 (Rolle’s Theorem). Let f be continuous on the closed interval [a,b]
and differentiable on (a,b). Then if f(b) = f(a), there exists some x* € (a,b) where

f'x)=o.

Proof. Without loss of generality we may take f(b) = f(a) = 0 (if their common value
is k, consider instead the function f(x) — k, and use the linearity of differentiation to
see this yields the same result).

There are two cases: (1) f is constant, and (2) f is not. In the first case, f'(x) = 0
for all x € (a,b) so we may choose any such point. In the second case, since f is
continuous, it achieves both a maximum and minimum value on [a, b] by the extreme
value theorem. Because f is nonconstant these values are distinct, and so at least
one of them must be nonzero. Let ¢ € (a,b) denote the location of either a (positive)
absolute max or (negative) absolute min.

Then, ¢ € (a,b) and for all x € (a,b), f(x) < f(c) if c is the absolute min, and f(x) >
f(c) if its the max. In both cases, c satisfies the definition of a local extremum. And,
as f is differentiable on (a, b) this implies f’(c) = 0, as required. O

Now, we return to the main theorem:
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22. Theorems & Applications

Of the Mean Value Theorem. Let f be a function satisfying the hypotheses of the
mean value theorem, and L be the secant line connecting (a, f(a)) to (b, f(b)).
Computing this line,

f (b) f (a )

L=fl@+—F——Kx-a)
Now define the auxiliary function g(x) = f(x) — L(x). Since L(a) = f(a) and
L(b) = f(b), we see that g is zero at both endpoints. Further, since both L and f

are continuous on [a, b] and differentiable on (a,b), so is g. Thus, g satisfies the hy-
potheses of Rolle’s theorem, and so there exists some * € (g, b) with

g(x)=0

But differentiating g we find

0=f/(=) -
- 10— 1@

—a
Thus, at x we have f’(x) = % as claimed ]

Exercise 22.1. Verify the mean value theorem holds for f(x) = x* + x — 1 on the
interval [4, 7].

22.2. MVT and Function Behavior

Proposition 22.1 (Zero Derivative implies Constant). If f is a differentiable function
where f’(x) = 0 on an interval I, then f is constant on that interval.

Proof. Let a,b be any two points in the interval: we will show that f(a) = f(b), so f
takes the same value at all points. If a < b we can apply the mean value theorem to
this pair, which furnishes a point ¢ € (a, b) such that

f(b) - f(a) (b) f(a)

—a

f(e) =
But, f’(c) = 0 by assumption! Thus f(b) — f(a) = 0, so f(b) = f(a). O

Corollary 22.1 (Functions with the Same Derivative). If f, g are two functions which
are differentiable on an interval I and f’ = g’ on I, then there exists a C € R with

fx)=gx)+C
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Proof. Consider the function h(x) = f(x) — g(x). Then by the differentiation laws,
R (x)=f'(x)-g'(x)=0

as we have assumed f’ = g’. But now ?@prp-derivative-zero-implies-const im-
plies that h is constant, so h(x) = C for some C. Substituting this in yields

f(x)=glx)+C
O

Definition 22.1. Let f be a function. If F is a differentiable function with the same
domain such that F’ = f, we say F is an antiderivative of f.

Corollary 22.2 (Antiderivatives differ by a Constant). Any two antiderivatives of a
function f differ by a constant. Thus, the collection of all possible antiderivatives is
described choosing any particular antiderivative F as

{F(x)+C|CeR}

This is the familiar +C from Calculus!

We can use the theory of derivatives to understand when a function is increasing
/ decreasing and convex/concave, which prove useful in classifying the extrema of
functions among other things.

Proposition 22.2 (Monotonicity and the Derivative). If f is is continuous and differ-
entiable on [a, b], then f(x) is monotone increasing on [a, b] if and only of f’(x) > 0 for
all x € [a,b].

As this is an if and only if statement, we prove the two claims separately. First, we
assume that f’ > 0 and show f is increasing:

Proof. Let x < y be any two points in the interval [a, b]: we wish to show that f(x) <
f(y). By the Mean Value Theorem, we know there must be some point x € (x,y)

such that
) - fx)
= —y —

()

But, we've assumed that f” > 0 on the entire interval, so f’(x) > 0. Thus% >
0, and since y — x is positive, this implies
F») = fx) =0

That is, f(y) > f(x). Note that we can extract even more information here than
claimed: if we know that f’ is strictly greater than 0 then following the argument we
learn that f(y) > f(x), so f is strictly monotone increasing. O
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Next, we assume f is increasing and show f’ > 0:

Proof. Assume f is increasing on [a,b], and let x € (a,b) be arbitrary. Because we
have assumed f is differentiable, we know that the right and left limits both exist and
are equal, and that either of them equals the value of the derivative. So, we consider
the right limit

f'(x) = lim

f@) - f(x)
t—xt t—x
For any t > x we know f(t) > f(x) by the increasing hypothesis, and we know that
t —x > 0 by definition. Thus, for all such ¢ this difference quotient is nonnegative,
and hence remains so in the limit:

f(x)>0
O

Exercise 22.2. Prove the analogous statement for negative derivatives: f’(x) < 0 on
[a,b] if and only if f(x) is monotone decreasing on [a, b].

22.3. Classifying Extrema

We can leverage our understanding of function behavior to classify the maxima and
minima of a differentiable function. By Fermat’s theorem we know that if the deriva-
tive exists at such points it must be zero, motivating the following definition:

Definition 22.2 (Critical Points). A critical point of a function f is a point where
either (1) f is not differentiable, or (2) f is differentiable, and the derivative is zero.

Note that not all critical points are necessarily local extrema - Fermat’s theorem only
claims that extrema are critical points - not the converse! There are many examples
showing this is not an if and only if:

Example 22.1. The function f(x) = x> has a critical point at x = 0 (as the derivative
is zero), but does not have a local extremum there. The function g(x) = 2x +|x| has a
critical point at 0 (because it is not differentiable there) but also does not have a local
extremum.

If one is only interested in the absolute max and min of the function over its entire do-
main, this already provides a reasonable strategy, which is one of the early highlights
of Calculus L
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Theorem 22.4 (Finding Global Extrema). Let f be a continuous function defined on
a closed interval I with finitely many critical points. Then the absolute maximum and
minimum value of f are explicitly findable via the following procedure:

« Find the value of f at the endpoints of I
« Find the value of f at the points of non-differentiability
« Find the value of f at the points where f’(x) = 0.

The absolute max of f is the largest of these values, and the the absolute min is the
smallest.

Proof. Because I is a closed interval and f is continuous, we are guaranteed by the
extreme value theorem that f achieves both a maximum and minimum value. Let
these be max, min respectively, realized at points M, m with

f(M) = max f(m) = min

Without loss of generality, we will consider M (the same argument applies to m).

First, M could be at one of the endpoints of f. If it is not, then M lies in the interior of
I, and there is some small interval (a, b) containing M totally contained in the domain
I. Since M is the location of the global max, we know for all x € I, f(x) < f(M). Thus,
for all x € (a,b), f(x) < f(M) so M is the location of a local max.

But if M is the location of a local maximum, if f is differentiable there by Fermat’s
theorem we know f’(M) = 0. Thus, M must be a critical point of f (whether differ-
entiable or not).

Thus, M occurs in the list of critical points and endpoints, which are the points we
checked. O

Oftentimes one is concerned with the more fine-grained information of trying to clas-
sify specific extrema as (local) maxes or mins, however. This requires some additional
investigation of the behavior of f near the critical point

Proposition 22.3 (Distinguishing Maxes and Mins). Let f be a continuously differen-
tiable function on [a,b] and c € (a,b) be a critical point where f'(x) < 0 for x < ¢ and
f'(x) >0 ifx >0, for all x in some small interval about c.

Then c is a local minimum of f.

Proof. By the above, we know that f’(x) < 0 for x < ¢ implies that f is monotone
decreasing for x < ¢: thatis, x <¢ = f(x) > f(c). Similarly, as f’(x) > 0 for
x > 0, we have that f is increasing, and ¢ < x = f(c) < f(x).

Thus, for x on either side of ¢ we have f(x) > f(c), so c is the location of a local
minimum. O
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This is even more simply phrased in terms of the second derivative, as is common in
Calculus L.

Theorem 22.5 (The Second Derivative Test). Let f be a twice continuously differ-
entiable function on [a,b], and c a critical point. Then if f'(c) > 0, the point c is the
location of a local minimum, and if f”’(x) > 0 then c is the location of a local maximum.

Proof. We consider the case that f’’(c) > 0, the other is analogous. Since f”’ is
continuous and positive at ¢, we know that there exists a small interval (¢ — ,¢ + §)
about ¢ where f’’ is positive (by ?@prp-continuous-positive-neighborhood).

Thus, by ?@prp-pos-deriv-increasing, we know on this interval that f” is an in-
creasing function. Since f’(c) = 0, this means that if x < ¢ we have f’(x) < 0 and if
x > ¢ we have f’(x) > 0. That is, f* changes from negative to positive at ¢, so ¢ is
the location of a local minimum by ?@cor-max-min-first-deriv. O

22.4. Contraction Maps

We can use what we’ve learned about derivatives and the mean value theorem to also
produce a simple test for finding contraction maps.

Proposition 22.4 (Contraction Mappings). If f is continuously differentiable and
|f’| < 1 on closed interval then f is a contraction map.

Proof. Let f have a continuous derivative f’ which satisfies |f/(x)| < 1 for all x in a
closed interval I. Because f” is continuous and x| is continuous, so is the composition
|f’|, and thus it achieves a maximum value on I (Theorem 18.2); call this maximum
M, and note that M < 1 by our assumption.

Now let x < y € I be arbitrary. By the Mean Value Theorem there is some ¢ € [x, y]
such that

fO) = f&) = )y - x)
Taking absolute values and using that | f’(c)| £ M this implies

If () — f) < My — x|

Since x, y were arbitrary this holds for all such pairs, and so the distance between x
and$ y decreases by a factor of at least M, which is strictly less than 1. Thus f is a
contraction map! O
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22.5. * Newton’s Method

We know contraction maps to be extremely useful as they have a unique fixed point,
and iterating from any starting value produces a sequence which rapidly converges
to that fixed point. Using this differential condition its easy to check if a function is
a contraction mapping, and thus easy to rigorously establish the existence of certain
convergent sequences.

As a good example, we give a re-proof of the convergence of the Babylonian proce-
dure to v/2

2

x+2
Example 22.2. The function f(x) = —* is a contraction map on the interval [1,2].

The fixed point of this map is v2€[1,2]$, thus the sequence 1, f(1), f (1), fff(1), ...
converges to V2.

To prove this, note that if x = (x + %)/ 2 then x? = 2 whose only positive solution is

V2, thus it remains only to check that f is a contraction. Computing its derivative;

1_2

fly=—* =

L
2

N | =

X

On the interval [1, 2] the function 1/x? lies in [1/4,1] and so f’ lies in the interval
[-1/2,1/4], and |f’| lies in [1/4,1/2]: thus |f’| is bounded above by 1/2 and is a
contraction map!

22.5. *x Newton’s Method

Netwon’s method is a recipe for numerically finding zeroes of a function f(x). It
works iteratively, by taking one guess for a zero and producing a (hopefully) better
one, using the geometry of the derivative and linear approximations. The procedure
is simple to derive: given a point a we can calculate the tangent line to f ata

t(x) = f(a) + f'(a)(x — a)

and since this tangent line should be a good approximation of f near g, if a is near
the a of f, we can approximate this zero by solving not for f(x) = 0 (which is hard,
if f is a complicated function) but £(x) = 0 (which is easy, as £ is linear). Doing so
gives
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Definition 22.3 (Newton Iteration). Let f be a differentiable function. Then Newton
iteration is the recursive procedure

@
&)

X=X

Starting from some x, this defines a recursive sequence x,,1 = x, — f(x,)/ f"(x,)

This is an extremely useful calculational procedure in practice, so long as you can
cook up a function that is zero at whatever point you are interested in. To return to
a familiar example, to calculate \/a one might consider the function f(x) = x% —a, or
to find a solution to cos(x) = x, one may consider g(x) = x — cos(x).

Exercise 22.3. Show the sequence of approximates from newtons method for /2
starting at x = 2 is precisely the babylonian sequence.

We already have several proofs this sequence for 2 converges, so we know that
Newton’s method works as expected in at least one instance. But we need a general
proof. Below we offer a proof of the special case of a simple zero: were f(x) crosses
the axes like x rather than running tangent to it like x%:

Definition 22.4 (Simple Zero). A continuously differentiable function f has a simple
zero at ¢ if f(c) = 0 but f’(c) # 0.

Theorem 22.6 (Newton’s Method). Let f be a continuously twice-differentiable func-
tion with a simple zero at c. Then there is some § such that applying newton iteration to
any starting point in I = (¢ — 8§, ¢ + 8) results in a sequence that converges to c.

Proof. Our strategy is to show that there is an interval on which the Newton iteration
N(x) = x — f(x)/f’(x) is a contraction map.

Since c is a simple zero we know f’(c) # 0 and without loss of generality we take
f’(c) > 0. Since f is continuously twice differentiable f’ is also continuous, meaning
there is some a > 0 where f” is positive on the entire interval (¢ — g, ¢ + a). On this
interval we may compute the derivative of the Newton map

f/f/_f/lf 3 ff//

N’ =1- =
e (O T

Since f, f” and f’’ are all continuous and f’ is nonzero on this interval, N’ is contin-
uous. As f(c) = 0 we see N’(c) = 0, so using continuity for any € > 0 there is some
b > 0 where x € (¢ — b,c + b) implies |[N’(x)| < e.

Thus, choosing any € < 1 and taking § = min{a, b} we’ve found an interval (¢4, c+5)
where the derivative of N is strictly bounded away from 1: thus by Proposition 22.4
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N is a contraction map on this interval, and so iterating N from any starting point
produces a sequence that converges to the unique fixed point of N (Theorem 11.1).
This fixed point * satisfies

N(*):*— f(* = %
(%)
which after some algebra simplifies to
fG)=0

Since f(c) = 0 and f’(x) is positive on the entire interval by construction, f is in-
creasing and so f(x) < 0 for x < ¢ and f(x) > 0 for x > ¢. That is, f has a unique
zero on this interval, so * = ¢ and our sequence of Newton iterates converges to ¢ as

desired. O

The structure of this proof tells us that Netwon’s method is actually quite efficient: a
contraction map which contracts by € < 1 creates a cauchy sequence that converges
exponentially fast (like €"). And in our proof, we see continuity of N’ lets us set
any € < 1 and get an interval about ¢ where convergence is exponential in €. These
intervals are nested, and so as x gets closer and closer to ¢ the convergence of New-
ton’s method gets better and better: its always exponentially fast but the base of the
exponential improves as we close in.

Exercise 22.4. Provide an alternative proof of Newton’s method when f is convex:
if ¢ is a simple zero and x; > ¢ show the sequence of Newton iterates is a monotone
decreasing sequence which is bounded below, and converges to the ¢ via Monotone
Convergence.

22.6. ¢ L’Hospital’s Rule

L’Hospital’s rule is a very convenient trick for computing tricky limits in calculus:
it tells us that when we are trying to evaluate the limit of a quotient of continuous
functions and ‘plugging in’ yields the undefined expression 0/0 we can attempt to
find the limit’s value by differentiating the numerator and denominator, and trying
again. Precisely:

Theorem 22.7 (L’Hospital’s Rule). Let f and g be continuous functions on an interval
containing a, and assume that both f and g are differentiable on this interval, with the
possible exception of the point a.

Then if f(a) = g(a) = 0 and g’(x) # 0 for all x # a,
fx)

xl—% g'(x) B

L implies lim @ =L
x—a g(x)

273
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Sketch.

+ Show that for any x, we have

Hint:

) fo)- fla) L

gx)  glx)—gla) gx)-g@

X—a

For any x, use the MVT to get points ¢, k such that f’(c) = % and g’(k) =
§(x)—-gl@

x—a
Choose a sequence x;,, — a: for each x;,, the above furnishes points ¢,, k,;: show
these sequences converge to a by squeezing.

Use this to show that the sequence s, = g :((;";

converges to L, using our as-

sumption lim,_,, ? =1L

fGa)
&(x)

f&) _
§Cx)

Conclude that the sequence — L, and that lim,_,, == = L as claimed.

)

7 =Lto

Use the € — § definition of a functional limit our assumption lim,_,, ==

help: for any e, theres a 5 where |x — a| < & implies this quotient is within € of L. Since
¢ns ky, = a can you find an N beyond which f’(c,)/g’ (k) is always withine of L? [

Exercise 22.5. Fill in the details of the above proof sketch.
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23. Power Series

Highlights of this Chapter: we prove to marvelous results about power
series: we show that they are differentiable (and get a formula for their
derivative), and we also prove a formula about how to approximate func-
tions well with a power series, and in the limit get a power series represen-
tation of a known function, in terms of its derivatives at a single point.

23.1. Differentiating Term-By-Term

The goal of this section is to prove that power series are differentiable, and that we
can differentiate them term by term. That is, we seek to prove

(Z akxk) = Z(akxk)’ = Z kaxk—1

k>0 k>0 k>1

Because a derivative is defined as a limit, this process of bringing the derivative inside
the sum is really an exchange of limits: and we know the tool for that,Dominated
Convergence! This applies quite generally so we give a general formulation and then
apply it to power series

Theorem 23.1. Consider a infinite sum Y ;. fi(x) of functions which (1) converges on
a domain D (2) has each fi. differentiable on D. If there is a sequence M. such that

o My with |f(x)| < Mk, for all x € D
o The sum Y, My is convergent.

Then, the sum Y ;. fk' (x) is convergent, and
(Z fk(x>> =) [
k k
Proof. Recall the limit definition of the derivative (Definition 21.1):

L TR - T A
(;fko«)) = lim -
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23. Power Series

Writing each sum as the limit of finite sums, we may use the limit theorems (Theo-
rem 7.3,Theorem 7.2) to combine this into a single sum

N B )l B ) _ e 5 )~ )

y—x y—Xx y_)XNkO y—x

And now, rewriting the limit of partial sums as an infinite sum, we see

(Zﬁ@»—h 5 B0 i)
k

y—Xx

If we are justified in switching the limit and the sum via Dominated Convergence,
this becomes

Z ;—mfk(y) fi(x) - Y s

N k

which is exactly what we want. Thus, all we need to do is justify that the conditions
of Dominated Convergence are satisfied, for the terms appearing here. To be precise,
this is a limit of functions, and we evaluate these by showing they exist for arbitrary
sequences y, — x with y, # x. Choosing such a sequence and plugging in, we see

ZM

we are really considering the sequence of terms lim -

M

Dominated convergence tells us we need to bound these terms above by

some M. As part of the theorem hypothesis, we are given that there exists an M
bounding the derivative of f; on D, so we just need to show that these suffice. For

Sil)— fk( )

any x # y, then measures the slope of the secant line of f; between x and

Yn> SO by the Mean Value Theroem (Theorem 22.2) there is some ¢, between x and y,

with Felom) — )
k(W - kx‘:’fk'(cn)‘
=X

Since |f{ ()] < My by assumption (as ¢ € D), M is a bound for this difference quotient,
as required.

Now recall our other assumption on the Mj: that ) My converges! This means we
can apply dominated convergence bringing the limit inside, and

fim) = fi(x) feOm) = fi(x)
D D )L

Since f; is differentiable and y, — x, by definition this limit converges to the deriva-
tive f/(x). Thus, the limit of our sums is actually equal to ) ;. f/(x). And, as y, — x
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23.1. Differentiating Term-By-Term

was arbitrary, this holds for all such sequences. This means the limit defininig the
derivative exists, and putting it all together, that (3 fk(x)), = Yk fi (x) as required.

O

Now we look to apply this to the specific case of power series Y., a.xk within their
intervals of convergence. The proof is much the same spirit as for continuity (where
we also used dominated convergence), where we provide bounds M by looking at
a larger point that remains in the interval of convergence. To do so, we need to un-
derstand the convergence of the power series of termwise derivatives. This is very
similar to a previous homework problem (where you considered termwise antideriva-
tives) so we again leave as an exercise:

Exercise 23.1. Assume that Y a;x* has radius of convergence R. Show that
>k karx*~! has the same radius of convergence.

Using this, we can put everything together.

Theorem 23.2. Let f = )5, akxk be a power series with radius of convergence R.
Then for x € (=R, R):

Fre) =) ket

k>1

Proof. Let x € (—R, R) be arbitrary. Since x lies strictly within the interval of conver-
gence, we may choose some closed interval C (—R, R) containing x. For concreteness
we take [—y, y] for some y < R, which we will use for the domain D when applying
Theorem 23.1.

Getting to work verifying the assumptions of this theorem, our series converges on D
(as D is a subset of the radius of convergence). Our individual functions f; of the sum
are just the k" term of the series fi(x) = a;x*. These are differentiable (as they are
constant multiples of the monomial x¥) with derivatives i = kaj.x*=1. The bounds
M. we seek are numbers which are greater in absolute value than this derivative on
the domain D = [—y, y]. Choose some value z > y within the radius of convergence
(say, a = (R+ y)/2). Then for all x € D we have |x| < z and so

1 < 2K = 1Y) = (kg Y < ka2
So we may take M = |kakzk_1|. But since the series of termwise derivatives has
the same radius of convergence as the original series, and z is within the radius of
convergence, we know Y, kaz¥~! converges absolutely! That is, Y, My converges,
and we are done. O
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Example 23.1. We know the geometric series converges to 1/(1 — x) on (-1, 1):

T

k=0 1-x

Differentiating term by term yields a power series for 1/(1 — x)?:

(l—lx)2 :<1ix>/

’
2,

k>0

=Y

k>0

= Z kxk—1

k>1

=142x+3x2+4x3 + -

The fact that power series are differentiable on their entire radius of convergence puts
a strong constraint on which sort of functions can ever be written as the limit of such
a series.

Example 23.2. The absolute value |x| is not expressible as a power series.

But this applies much more powerfully than even this: we can show that a power
series must be infinitely differentiable at each point of its domain!

Corollary 23.1 (Power Series are Smooth). Proceed by induction on N. We know if
>k a;x* is a power series it is at least N = 1 times differentiable on the same radius of
convergence, by our big result above. Now assume it is N times differentiable. Because
we can differentiate power series term by term, the N th derivative is also a power series,
which has the same radius of convergence as the original.

But now we can apply our main theorem again: this power series is differentiable, with
the same radius of convergence! Thus our original function is N + 1 times differentiable,
completing the induction.

23.2. Power Series Representations

While power series are interesting in their own right, our main purpose for them is to
compute functions we already care about. In this section we use their differentiability
to provide tools to do so.
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Definition 23.1 (Power Series Representation). A power series representation of a
function f at a point a is a power series p where p(x) = f(x) on some neighborhood
of a.

Proposition 23.1 (Candidate Series Representation). Let f be a smooth real valued
function whose domain contains a neighborhood of 0, and let p(x) = Y 1> ax be a
power series which equals f on some neighborhood of zero. Then, the power series p is
uniquely determined:

®
ILOEDY fk—!(o)x"

k>0

Proof. Let f(x) be a smooth function and p(x) = Y x5 a;.x* be a power series which
equals f on some neighborhood of zero. Then in particular, p(0) = f(0), so

f(O) = h]{]n(a() +a1x + azxz 4o CleN)
= lim(a +0+0+ - +0)

:ao

Now, we know the first coefficient of p. How can we get the next? Differentiate!

p(x)= (Z akxk) = Z(akxk)’ = Z kayxk1

k>0 k>0 k>1

Since f(x) = p(x) on some small neighborhood of zero and the derivative is a limit,
£f7(0) = p’(0). Evaluating this at 0 will give the constant term of the power series p’

f(0) = lil{]n(al + 2ayx + 3azx? - + NayxN 1)
:lig]n(a1+0+0+~-+0)

:al

Continuing in this way, the second derivative will have a multiple of a, as its constant
term:

p(x)=2a;+3-2-asx +4-3-amx? + -
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23. Power Series

And evaluating the equality f”’(x) = p”’/(x) at zero yields

f//(o)
2

f7(0) = 2ay, ) a; =

This pattern continues indefinitely, as f is infinitely differentiable. The term a,, arrives
in the constant term after n differentiations (as it was originally the coefficient of x™),
at which point it becomes

ayx™ > na, "o n(n — Da,x" 2 s n(n—1)(n—2) 32 1a,
As the constant term of p(”) this means p(”)(O) = nla,, and so using f(”)(O) = p(”)(O),

AO)

n!

an

In each case there was no choice to be made, so long as f = p in any small neighbor-
hood of zero, the unique formula for p is

(k)
p(x) = Z f (O)xk

k>0 ket
O

This candidate series makes it very easy to search for power series representations
of known smooth functions: there’s only one series to even consider! This series is
usually named after Brook Taylor, who gave their general formula in 1715.

Definition 23.2 (Taylor Series). For any smooth function f(x) we define the Taylor
Polynomial (centered at 0) of degree N to be

(k)
190

pN(x) = Z 2

0<k<N
In the limit as N — oo, this defines the Taylor Series p(x) for f.

We've seen for example, that the geometric series ) ;5 x is a power series represen-
tation of the function 1/(1 — x) at zero: it actually converges on the entire interval
(—1,1). There are many reasons one may be interested in finding a power series rep-
resentation of a function - and the above theorem tells us that if we were to search
for one, there is a single natural candidate. If there is any power series representation,
its this one!

So the next natural step is to study this representation: does it actually converge to

f)?
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23.2. Power Series Representations
23.2.1. Taylor’s Error Formula

To prove that our series actually do what we want, we are going to need some tools
relating a functions derivatives to its values. Rolle’s Theorem / the Mean Value The-
orem does this for the first derivative, and so we present a generalization here the
polynomial mean value theorem, which does so for nth derivatives.

Proposition 23.2 (A Generalized Rolle’s Theorem). Let f be a function which isn+1
times differentiable on the interior of an interval [a,b]. Assume that f(a) = f(b) = 0,
and further that the first n derivatives at a are zero:

f@@) = f'(a) = f"(@) =~ = fM() =0

Then, there exists some c € (a,b) where f(”H)(c) =0.

Proof. Because f is continuous and differentiable, and f(a) = f(b), the original Rolle’s
Theorem implies that there exists some ¢ € (a, b) where f’(¢;) = 0. But now, we know
that f’(a) = f’(¢;) = 0, so we can apply Rolle’s theorem to f’ on $[a,c_1] to get a
point ¢; € (a,¢;) with f”/(¢;) = 0.

Continuing in this way, we get a ¢3 € (g, ¢y) with f(3)(c) = 0, all the way up to to a
¢, € (a,¢,_1) where f™(c,) = 0. This leaves one more application of Rolle’s theorem
possible, as we assumed f(”)(a) = 0, so we get a ¢ € (a,¢,) with f("“)(c) =0 as
claimed. D

Proposition 23.3 (A Polynomial Mean Value Theorem). Let f(x) be an n + 1-times
differentiable function on [a, b] and h(x) a polynomial which shares the firstn derivatives
with f at zero:

f@=ha), f@=h@,.., fP(a)=p"(a)
Then, if additionally f(b) = h(b), there must exist some point ¢ € (a,b) where

f(n+1)(c) — h(n+1)(c)

Proof. Define the function g(x) = f(x) — h(x). Then all the first n derivatives of g
at x = a are zero (as f and h had the same derivatives), and furthermore g(b) = 0 as
well, since f(b) = h(b). This means we can apply the generalized Rolle’s theorem and
find a ¢ € (a,b) with

g =0

That is, f(”+1)(c) = h(”+1)(c). O
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23. Power Series

Theorem 23.3 (Taylor Remainder). Let f(x) be an n+ 1-times differentiable function,

JIOWS

and p,(x) the degree n Taylor polynomial p(x) = Y ocken —5— 7

Then for any fixed b € R, we have

f(n+1)( )bn+1

f(b) = pn(b) + (n 1)'

For some c € [0,b].

Proof. Fix a point b, and consider the functions f(x) and p,(x) on the interval [0, b].
These share their first n derivatives at a, but f(b) # p,(b): in fact, it is precisely this
error we are trying to quantify.

We need to modify p, in some way without affecting its first n derivatives at zero.
One natural way is to add a multiple of x"*!, so define

q(x) = pa(x) + Ax"1

for some A € R, where we choose A so that f(b) = q(b). Because we ensured q(k)(O) =
f (®)(0) for k < n, we can now apply the polynomial mean value theorem to these two
functions, and get some ¢ € (0, ) where

f(n+1)(c) — q(rH—l)(C)

1st

Since p, is degree n its n + 1% derivative is zero, and

¢ ) = 0+ ()" =+ 1A

Putting these last two observations together yields

F )

fUP@ = @+ DA = A= T

As q(b) = f(b) by construction, this in turn gives what we were after:

f(n+1)( )bn+1

f(b) = pn(b) + (n+ 1)
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23.2.2. Series Centered ata € R

All of our discussion (and indeed, everything we will need about power series for
our course) dealt with defining a power series based on derivative information at
zero. But of course, this was an arbitrary choice: one could do exactly the same thing
based at any point a € R.

Theorem 23.4. Let f be a smooth function, defined in a neighborhood of a € R. Then
there is a unique power series which has all the same derivatives as f at a:
Q)
po) = 3 Wi

k>0 k!

And, for any N the error between f and the Nth partial sum is quantified as

FN@)

TR ayt !

J&x) = pn(x) =
For somec € [a, x].

Exercise 23.2. Prove this.
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24. Elementary Functions

In this section we look at how to find derivatives of functions which are
defined not explicitly, but by the functional equations defining exponen-
tials, logarithms and trigonometric functions.

24.1. Exponentials

Proposition 24.1. Let E(x) be an exponential function. Then E is differentiable on the

entire real line, and
E’(x) = E’(0)E(x)

First we show that this formula holds so long as E is actually differentiable at zero.
Thus, differentiability at a single point is enough to ensure differentiability every-
where and fully determine the formula!

Proof. Let x € R, and h,, — 0. Then we compute E’(x) by the following limit:

E(x+h,)—E
E’(x) = lim —(x n) ~ Bx)
hn
Using the property of exponentials and the limit laws, we can factor an E(x) out of
the entire numerator:

. E()E(h,) — E(x)
m ) = )

=l = E(x)lim M

hn hn

But, E(0) = 1 so the limit here is actually the *derivative of E at zero$!

E’(x) = E(x)E’(0)
O

Next, we tackle the slightly more subtle problem of showing that E is in fact differen-
tiable at zero. This is tricky because all we have assumed is that E is continuous and
satisfies the law of exponents: how are we going to pull differentiability out of this?
One trick is two parts (1) show the right and left hand limits defining the derivative
exist, and (2) show they’re equal.

285

In fact, E’(0)
log of a (Cite



24. Elementary Functions

Proof. Because E is convex (Exercise 20.5) so the difference quotient is monotone
increasing and so the limit lim,_,(- exists (as a sup) and lim,_,y+ exists (as an inf).
Now that we know each of these limits exist, let’s show they are equal using the
definition: To compute the lower limit, we can choose any sequence approaching 0
from below: let h, be a positive sequence with h, — 0, then —h, will do:

. Em)-1 . E(-h,) -1
lim —— =lim—
h—0" h —hn
As E(—h,) = 1/E(h,), we compute
1 4
lim = lim
_hn _hn
1B 1
—h, Eh,
= lim —E(hn) -1 1
hy,  E(hy)

But, since E is continuous (by definition) and E(0) = 1 the limit theorems imply

1 1 1 1

Y = TmEG) ~ Bmh) - E0)
Thus,
. E(hn) -1 1
im o E(hn)>
. E(hn) -1 . 1
= <hm h, ) <hm E(hn)>
By
= 1um T

But this last limit evaluates exactly to the limit from above since h, > 0 and h,, — 0.
Stringing all of this together, we finally see

. E(h)-1 . E(h)-1
lim = lim
h—0- h h—0* h

As both one sided limits exist and are equal the entire limit exists: E is differentiable
at 0. O

When studying the functional equations for logs and exponentials we saw there is not
one solution but a whole family of them. While the functional equation itself gave
no preference to any exponential over any other, the derivative selects an obvious
natural candidate:
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Definition 24.1. We write exp(x) for the exponential function which has exp’(0) = 1.
This exponential satisfies the simple differential identity

exp’(x) = exp(x)

Note that by the chain rule we know such a thing exists so long as any exponential
exists. If E(x) is any exponential then E(x/E’(0)) has derivative 1 at x = 0!

24.1.1. A Series Representation

To work with the natural exponential efficiently, we need to find a formula that lets us
compute it. And this is exactly what power series are good at! However, the theory
of power series is a little tricky, as we saw in the last chapter. Not every function has
a power series representation, but if a function does, there’s only one possibility:

Proposition 24.2. If the natural exponential has a power series representation, then it
is
k
x
plx) = Il
k>0 ™

0 k

X5 S0 for

Proof. We know the only candidate series for a function f(x) is }}r>
exp this is

(k)
poo = 3 22O

!
k>0 k!

However, we know that exp’ = exp and so inductively exp(k) = exp, and so
exp(k)(o) =exp(0) =1

Thus

O

Since p is a power series, this really means that the limit of its partial sums equals
exp(x), or

vx € R exp(x) = li]{]n pn(x)
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For any finite partial sum py, we know that it is not exactly equal to exp(x) (as this
finite sum is just a polynomial!). Thus there must be some error term Ry = exp —py;,
or

exp(x) = pn(x) + Ry(x)

This is helpful, as we know from the previous chapter how to calculate such an error,
using the Taylor Error Formula: for each fixed x € R and each fixed N € N, there is
some point ¢y € [0, x] such that

Ry = SR s

N (N +1)!
And, to show the power series becomes the natural exponential in the limit, we just
need to show this error tends to zero!

Proposition 24.3. As N — oo, for any x € R the Taylor error term for the exponential
goes to zero:
Ry(x) >0

Proof. Fix some x € R. Then for an arbitrary N, we know

exp™*V(ey) vy

Rn(x) = (N+1)!

where ¢y € [0, x] is some number that we don’t have much control of (as it came from
an existence proof: Rolle’s theorem in our derivation of the Taylor error). Because
we don’t know cy explicitly, its hard to directly compute the limit and so instead we
use the squeeze theorem:

We know that exp is an increasing function: thus, the fact that 0 < ¢y < x implies
that 1 = exp(0) < exp(cy) < exp(x), and multiplying this inequality through by
xNTY(N + 1)! yields the inequality

N+1 N+ N+1

T S RNG) = eplen) R < ey

(N+1)' -

(Here I have assumed that x > 0: if x < 0 then the inequalities reverse for even values
of N as xN*1 is negative and we are multiplying through by a negative number. But
this does not affect the fact that the error term Ry (x) is still sandwiched between the
two.)

So now our problem reduces to showing that the upper and lower bounds converge
to zero. Since exp(x) is a constant (remember, N is our variable here as we take the
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limit), a limit of both the upper and lower bounds comes down to just finding the
limit

) XN +1

lim ——

N (N+1)

But this is just the N + 1st term of the power series p(x) = Y5 x"/n! we studied
above! And since this power series converges, we know that as n — oo its terms must
go to zero (the divergence test). Thus

XN+1 N+1

— 3 x —
e lmexp() g7y = ©

lim
N
and so by the squeeze theorem, Ry(x) converges and

limR =0
im N (x)

O

Now we have all the components together at last: we know that exp exists, we have
a candidate power series representation, that candidate converges, and the error be-
tween it and the exponential goes to zero!

Theorem 24.1. The natural exponential is given by the following power series

k
exp(x) = %
k>0 ™

Proof. Fix an arbitrary x € R. Then for any N we can write

exp(x) = pn(x) + Ry(x)

For py the partial sum of p(x) = Y15 x*/k! and Ry(x) the error. Since we have
proven both py and Ry converge, we can take the limit of both sides using the limit
theorems (and, as exp(x) is constant in N, clearly limy exp(x) = exp(x)):

exp(x) = li]{]n(pN(x) + Ry(x))
= lim pN(x) + lim Ry (x)

=p(x)+0

T Ly
k>0 k!
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Its incredible in and of itself to have such a simple, explicit formula for the natural
exponential. But this is just the beginning: this series actually gives us a means to
express all exponentials:

Theorem 24.2. Let E(x) be an arbitrary exponential function. Then E has a power
series representation on all of R which can be expressed for some real nonzero c as

Ex) =Y C—r:x"

n>0 n:

Proof. Because E is an exponential we know E is differentiable, and that E’(x) =
E’(0)E(x) for all x. Note that E’'(0) is nonzero; else we would have E’(x) = 0 con-
stantly, and so E(x) would be constant. Set ¢ = E’(0).

Now, inductively take derivatives at zero:

E'(0)=c E”(0) = ¢ EM0) = c"

Thus, if E has a power series representation it must be

Z dx" = Z %(cx)"

n>0 """

This is just the series for exp evaluated at cx: since exp exists and is an exponential, so
is this function (as its defined just by a substitution). So there is such an exponential.

O

24.1.2. The Number e

Recalling our work with irrational exponents, we know that exponentials are powers:
if E is an exponential with E(1) = a, then we may write E(x) = a* for any x € R
(defined as a limit of rational exponents). So, our special exponential exp comes with
a special number as its base.

Definition 24.2. We denote by the letter e the base of the exponential exp(x): that
is, e = exp(1), and

exp(x) = €*

What is this natural base? We can estimate its value using the power series represen-
tation for exp, and the Taylor error formula.

Proposition 24.4. The base of the natural exponential is between 2 and 3.
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Proof. The series defining e is all positive terms, so we see that e is greater than any
partial sum. Thus

1 1 1

2=1+1= 6T'+’ET < Z; =e

: k20"
so we have the lower bound. To get the upper bound, we need to come up wtih a
computable upper bound for our series. This turns out to be not that difficult: as
the factorial grows so quickly, we can produce many upper bounds by just fining
something that grows slower than the reciprocal and summing up their reciprocals.
For instance, when k > 2

k(k—1) <k!

and so,

1 1 1
EZZE:HH — <1414y ——
k>0 ™" k>2 k>2

But this upper bound now is our favorite telescoping series! After a rewrite with
partial fractions, we directly see that it sums to 1. Plugging this in,

e<1+1+1=3

O

How can we get a better estimate? Since we do have a convergent infinite series just
sitting here defining e for us, the answer seems obvious - why don’t we just sum up
more and more terms of the series? And of course - that is part of the correct strategy,
but it’s missing one key piece. If you add up the first 10 terms of the series and you
get some number, how can you know how accurate this is?

Just because the first two digits are 2.7, who is to say that after adding a million
more terms (all of which are positive) it won’t eventually become 2.8? To give us any
confidence in the value of e we need a way of measuring how far off any of our partial
sums could be.

Our usual approach is to try and produce sequences of upper and lower estimates:
nested intervals of error bars to help us out. But here we have only one sequence
(and producing even a single upper bound above was a bit of work!) so we need to
look elsewhere. It turns out, the correct tool for the job is the Taylor Error formula
once more!

Proposition 24.5. Adding up the first N terms of the series expansion of e results in a
an estimate of the true value accurate to within 3/(N + 1)!.
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Proof. The number e is defined as exp(1), and so using x = 1 we are just looking at
the old equation

exp(1) = pn(1) + Ry(1)

Where Ry(1) = exp(cN)% for ¢y € [0, 1]. Since exp is increasing, we can bound
exp(cy) below by exp(0) = 1 and above by exp(1) = e, and e above by 3: thus

1 3
N SRS T

And so, the difference e — pn(1)] = |Ry(1)] is bounded above by the upper bound
3/(N + 1)! O

This gives us a readily computable, explicit estimate. Precisely adding up to the N =
5th term of the series yields

11+ 10 L0 L og1666..
2 6 24 120

with the total error between this and e is less than % = ﬁ = 0.0041666.... Thus
we can be confident that the first digit after the decimal is a 7, as 2.7176 — 0.0041 =
2.7135 < e < 2.7176 + 0.0041 = 2.7217.

Adding up five more terms, to N = 10 gives

1+1+ 1 + 1 + e+ 1 = 2.71828180114638....
2 3! 10!
now with a maximal error of 3/11! = 0.000000075156.... This means we are now

absolutely confident in the first six digits:

e~ 2.718281

Pretty good, for only having to add eleven fractions together! Thats the sort of calcu-
lation one could even manage by hand.
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24.2. Logarithms

Having done all this work for exponentials, we can immediately confirm that loga-
rithms are also differentiable, and give a simple formula.
Proposition 24.6. Let L be a logarithm function, then L is differentiable and

) = EW

Proof. Let L be a logarithm, with inverse the exponential E(x). We know that E is
differentiable and E’(x) # 0 as its a constant multiple of the everywhere-positive
E(x) itself. Thus by Theorem 21.7 the function L is also differentiable. Choosing
b > 0 and setting L(b) = a gives

1 1 1
E'(a) E’(0)E(a) E’(0)b

L'(b) =

Where the last equality follows as L(b) = a implies E(a) = b

Now we apply the theorem on differentiability of inverses one more time to remove
the mention of E in the final answer, and express everything in terms of the logarithm
1

itself. Since E(0) = 1 and L(1) = 0, we have L’(1) = Z0) and substituting this in

gives the claimed form. O

Thus every logarithm has as its derivative some multiple of 1/x. While the functional
equation doesn’t distinguish between these different logarithms, calculus finds one
of them most natural: when this constant is equal to 1!

Definition 24.3 (The Natural Log). We write log for the logarithm function which
has log’(1) = 1. This logarithm satisfies the simple differential identity

’ 1
log' (x) = p

Furthermore the two notions of “naturalness” picking out a logarithm and an expo-
nential are compatible with one another!

Corollary 24.1. The natural exponential and natural log are inverses of one another.

We will make much use of this pair of special functions, and their exeedingly sim-
ple differentiation rules. As a first application, we give a re-proof of the power rule
avoiding difficult limiting arguments:
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Theorem 24.3 (The General Power Rule). Ifa € R and f(x) = x* Then f is differen-
tiable for all x > 0, and
(xa)/ = ax%1

Proof. Let exp be the natural exponential, and log be the natural log. Then
exp(log(x)) = x, and so exp(log(x?)) = x% Using the property of logarithms and
powers (?@cor-log-exponent) this simplifies

x" = exp(log(x?)) = exp(alog(x))

By the chain rule,

[exp(alog(x))]” = exp(alog(x)) [alog(x)]’
= exp(alog(x))alog’ (x)

= exp(a log(x))aal—c

But, recalling that exp(alog(x)) = exp(log(x?)) = x¢ this simplifies to

O

Unfortunately our newfound tool does not apply so well to giving a formula for the
logarithm: power series are always defined on some symmetric interval (—r,r) about
0, but the domain of the logarithm is (0, o). Thus there is no simple power series that
will equal log(x)!. We will come up with formulas to compute the logarithm later on,
first as an integral; and then as a series (that converges only for some values of x).

24.3. Trigonometric Functions

Recall our definition of trigonometric functions: two functions s(x), c(x) are trigono-
metric if they satisfy the angle difference identities

s(x — ) = s(x)e(y) — c(x)s(y) c(x —y) = c(x)e(y) + s(x)s(y)

In one option for the final project in this class, you prove that such functions exist by
taking a proposed power series, and showing directly that it satisfies these identities.
Our goal in this section is to build up the work that leads to proposing that power
series via a sequence of exercises
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Exercise 24.1. Assume that a pair s(x), c(x) of trigonometric functions are differen-
tiable at zero (so s”(0), ¢’(0) exist). Use the functional equations defining them to
show that they are differentiable at every x € R.

Hint: Write out the difference quotients, as a limith — 0 for f(x+h)— f(x). Additionally,
we know s, ¢ are continuous by definition, and have previously shown c¢(0) = 1, s(0) = 0.

We will not prove that s and ¢ are differentiable at zero here (though that can be done,
much like we did for the exponential above!). Since our goal is simply to propose a
power series,

Exercise 24.2. Prove that if s(x),c(x) are differentiable at zero, then ¢’(0) = 0 and
s’(0) = 0.
Then deduce the following differentiation laws:

s (x) = Ae(x) c’(x) = —=As(x)

for A some nonzero constant.

Hint: recall the definition that s, c are nonconstant and continuous. Also recall Fermat’s
Theorem.

This singles out an obvious ‘best’ set of trigonometric functions, setting the arbitrary
constant parameter that appears equal to one!

Definition 24.4 (The Natural Trigonometric Functions). The natural trigonometric
functions are the pair sin(x), cos(x) with

sin’(x) = cos(x) cos’(x) = —sin(x)

Exercise 24.3. Show that if the natural trigonometric functions have a series represen-
tation they must be

sin(x) = Z 0" xon+l

= (2n+ 1)'

cos(x) = Z - 1)

n>0 (2”)1

As part of the optional final project, you show these functions do satisfy the angle
identities, and are periodic. This defines a natural number associated to trigonometry,
much as we had the natural number e associated to exponentiation.

Definition 24.5 (). The natural trigonometric functions are periodic, and we define
their half period as 7.
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That is, 7 is the smallest positive number such that sin(x + 27) = sin(x) and cos(x +
2) = cos(x) for all x € R.

Exercise 24.4. Prove that 7/2 is the smallest positive zero of cos(x).

Exercise 24.5 (Approximating 7 with Newton’s Method). The first zero of cos(x) is
/2, so one might hope to use Newton’s method to produce an approximation for 7.
Show the sequence

cos(x,)

Xnp1 = N() = %, + =
sin(x,)

starting at x, = 1 converges to /2, and use a calculator to compute the first couple
terms.

This of course is not very satisfying as we had to use a calculator to find values of sin
and cos! But we know enough to approximate these values with a series expansion.

Exercise 24.6. How many terms of the series expansions of sin, cos are needed to
evaluate at x = 1 to within 0.0001? Use this many terms of the series expansion to
approximate the terms appearing in the first two iterations of Newtons method

1,N(1), N(N(1))

What is your approximate value for 7 resulting from this?

24.4. x Existence of Exponentials: an Alternative
Proof

Our argument above used that we had previously confirmed the existence of exponen-
tial functions, together with the Taylor Error formula to find a series representation.
But as often happens, the amount of new technology we have developed along the
way gives a new self-contained means of both proving the existence of exponentials,
and constructing their series in one stroke! We give this alternative argument here.

The idea essentially turns some of our previous reasoning on its head: we start by
looking at solutions to the equation y* = y and (1) show they satisfy the law of
exponents, then (2) construct an explicit solution as a power series. First, a helpful
lemma about this differential equation:

Proposition 24.7. Let f, g be two solutions to the differential equation y’ = y. Then
they are constant multiples of one another.
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Proof. Consider the function h(x) = %. Differentiating with the quotient rule,

J'(x)g(x) — f(x)g'(x)

W (x) = (24.1)
g(x)?
_ f0)glx) — f(x)g(x) (242)
g(x)?
__0 (24.3)
g(x)?
=0 (24.4)

Thus h’(x) = 0 for all x, which implies h = f/g is a constant function, and g is a
constant multiple of f as claimed. O

Now we’re ready for the main theorem:

Theorem 24.4. Let g be any differentiable function which solves g’ = g and has g(0) =
1. Then g is an exponential.

Proof Let g: R — R solve Y/ = Y and satistfy g(0) = 1. We wish to show that
gx+y)=gl)g(y) forall x,y € R.

So, fix an arbitrary y, and consider each of these separately, defining functions L(x) =

g(x +y) and R(x) = g(x)g(y).
Differentiating,

L'(x) = (g(x +y))
=glx +y)x +y)
=glx+y)
= L(x)

R'(x) = (g(x)g(»)’
= (g(x))' g(y)
= g(x)g(y)
= R(x)

Thus, both L and R satisfy the differential equation Y’ =Y. Our previous proposition
implies they are constant multiples of one another,
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L(x) _

— =k vVx €R
R X

To find this constant we evaluate at x = 0 where (using g(0) = 1) we have
L(0) = g(0 +y) = g(y)
R(0) = g(0)g(y) = g(»)

They are equal at 0 so the constant is 1:

R(x) R(O0) g
= L=R

But these two functions are precisely the left and right side of the law of exponents
for g. Thus their equality is equivalent to g sayisfying the law of exponents for this
fixed value of y:

vx, L(x) = glx +y) = g(x)g(y) = R(x)

As y was arbitrary, this holds for all y, and g is an exponential. O

This proof does not establish the existence of a solution to this equation, it only says if
you have a solution then its an exponential. But we may now use the theory of power
series to directly construct a solution!

Proposition 24.8. The series E(x) = )50 J;—T satisfies E’(x) = E(x) and E(0) = 1.
Thus, it defines an exponential function.

Proof. This series converges on the entire real line via the ratio test (as checked above).
Thus it defines a continuous and differentiable function on R, which can be differen-
tiated term-by-term (? @thm-pseries-differentiation) to yield

2 53 P ’
Ex)=|1+x+—=—+ =+ 4+ =+
2 6 n!

=) +x) + (x;), + (%3), +o (J;—:l), + o

3x2 nx"1
:0+1+X+T+'“+
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. . . 0% s
Finally, plugging in zero yields E(0) = 1+ 0+ yt =1 finishing the argument. [
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Part VI.

Integrals






« In Chapter 25 we discuss the area problem and give a set of axioms to charac-
terize the operation of integration.

« In Chapter 26 we give a particular limiting construction (the Darboux Integral)
and prove it satisfies the axioms

« In?@sec-int-theory we investigate further properties of the Darboux Integral
beyond the axioms; showing that it is a linear operation and all continuous
functions are integrable
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25. Axioms

Highlights of this Chapter: we give an axiomatic definition of integration,
and use these axioms to propose a formula for computing integrals using
sums.

The integral is meant to measure the (net) area. When f is positive, for instance, we

learn in calculus that ff fdx should be the area under f between a and b. That is, it
should be the area of the region Z = {(x,y) € R? |a < x < b 0 < y < f(x)}. But
how does one measure area? Perhaps surprisingly, this turns out to be much more
difficult than it sounds, and a full resolution took until the beginnings of the 20th
century, with the advent of measure theory.

n b Happily, we do not need the full generalities of this theory to introduce the single
variable integration theories one first meets in analysis, and we can do something con-
ceptually simpler. Following the example we set with our introduction to the elemen-
tary functions, we seek an axiomatic description of what integration is ‘about’, before
we demand a procedure to calculate it. In this chapter we carry this out: proposing
a simple set of axioms that anything worthy of being called an integral must satisfy,
and then use these to produce a formula which can calculate integrals in every case
we will need.

25.1. Characterizing Integration

If we are to propose axioms for integration, we must first think carefully about what
we expect an integral to be. Looking back to calculus, we recall integration to be a
procedure taking a function f and a closed interval [a, b] and producing a number,

which we denote fab f(x)dx. That is, at its most basic level, an integral is a function
taking an interval and a function defined on that interval to a number. To remind
ourselves of the calculus notation (while still maintaining something distinct, to help
us stay formal), we write this function as

(fhe [ Fer

Fixing the interval I, we can think of [;{} as a map assigning real valued functions on I
to numbers, and fixing f : R — R, we may think of f{} f as a map assigning intervals
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to numbers (the integral of f over that interval). From each of these perspectives
there are some obvious properties that anything worthy of being called an integral
must satisfy:

« It gets rectangles right: If f(x) = k € R is a constant function, its graph is
a horizontal line, which encloses a rectangle over an interval I = [a,b]. But
we know the area of a rectangle should be its base times its height! So J[ ab] k
should be k(b — a).

« It gets inequalities right If f(x) < g(x) on an interval I, the graph of f lies
fully underneath the graph of g, so the net area under f cannot be greater than
the area under g. That is, f < g on I should imply [, f < [ g.

- Areais additive Given an interval I = [a, b] one should be able to find the net
area under f by breaking the interval into pieces, finding the area under f on
each piece, and adding up the results. This is simplest when we consider just

two pieces: for ¢ € [a,b] we should have [[,;; f = [[5 . f + Jje) /-

Since these are properties we clearly want an integral to have, we might wish to take
them directly as axioms: and basically that is what we will do! But there is a slight
subtlety we need to contend with: the collection of all real valued functions contains
some wild beasts, and we shouldn’t be so hasty as to assume that it makes sense to
measure the area under the curve of every function (indeed, for our theory, it will
turn out that the *area under the function which is 1 on the rationals and zero on
the irrationals, is undefined). So, instead of insisting these hold for all functions, we
will formalize an integral as declaring a subset of functions to be integrable, and only
imposing these axioms on that subset.

Definition 25.1 (Axiomatic Integration). For any closed interval J = [a, b] we denote
by #(J) the set of integrable functions on J. Then a collection of functions #(J) - R
is an integral, and denoted
N
J

if it satisfies the following axioms:

« If k € R then f(x) = k is an element of .#([a, b]) for any interval [a, b] and

J k=k(b-a).
[ab]

« If f,g € F([a,b]) and f(x) < g(x) for all x € [a,b] then

el
[a,b] [ab]
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o If[a,b] is an interval and ¢ € (a,b), then f € F([a,b]) if and only if f € F([a,c])
and f € 7 ([c, b]). Furthermore, in this case their values are related by

b= b e ?

Note these axioms do not aim to uniquely specify an integral, but rather to delineate
properties that anything worthy of being called an integral must have. Over the past
two centuries, there has been quite a lot of work done studying the possible different
integrals - all the different functions that satisfy this definition. However through
all this work a beautiful story has emerged: for all their differences, all the various
constructions give exactly the same answers for the continuous functions, and those
answers can be calculated directly from the axioms themselves! Its this streamlined,
abstract thread that we will pursue in this course.

25.1.1. ¢ Improper Integrals

We have axiomatized the integral for bounded functions on closed intervals, but the
definition can be naturally extended to unbounded intervals and (certain) unbounded
functions via limits.

Definition 25.2 (Improper Integrals: Unbounded Intervals). The integral of a
bounded function f on a ray [a, o) is defined as a limit of its integrals over growing

closed intervals
J f :=lim I f
[a,00) b—oo J[ap]

with the analogous definition for rays (—co,b]. The integral over the entire real line
is defined by taking each endpoint to +oo separately

J- f:= lim J f
R G rea Jlab]

That is, both orders lim,_,_, limy_, and limy_, lim,_, . exist and are equal.

Definition 25.3 (Improper Integrals: Unbounded Functions). If f is defined on (a, b]
and integrable on each subinterval [t, b] for ¢ > a, we define the improper integral on
(a,b] as a limit

J- f = lim f

(ab] t—a* J[t,a]

Similarly for functions unbounded on [a, b) but bounded on each [a,f] C [a,b), we
deﬁne I[a,b) f = hmt_>b— I[a,t] f
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If a function defined on [a,b] is unbounded in a neighborhood of some ¢ € (a,b) but
is integrable on every subinterval missing c, we say the integral on [a, b] exists if and
only if the integral on [, ¢) and (c, b] both exist, in which case we define it as equal
to their sum.

25.2. The Integral as a Function

WHile our definition strictly only gives the value of integrals on one interval at a
time, the axioms let us do a bit of work and define the Integral Function F : [a,b] of
an integrable function f : [a, b] and study its properties.

Proposition 25.1 (The Integral as a Function). If f € #([a,b]) is an integrable func-
tion, then there exists a function F : [a,b] — R defined by

Fx) = j[] f

Proof. This is just subdivision at work: for any x € [a, b] we may write
[a,b] = [a,x] v [x,b]

. Then Axiom III implies that f is integrable on [a, x], and so the number f[ ax] [ 18
defined. This assignment describes a real valued function

X J f
[a.x]

O

We can learn much from the axioms about this integral function: they imply that
when a function is integrable, its integral is continuous!

Theorem 25.1. If f € F([a,b]) is a bounded integrable function, then its integral
F(x) = J[a,x] f is continuous.

Proof. Let f be integrable and bounded by M on [a, b], and set F(x) = j[a.x] f. Begin
by choosing an € > 0. We will prove something even strong than asked - that f is
uniformly continuous by finding a § > 0 where if |y — x| < § we have |[F(y) — F(x)| < e.
Let’s unpack this a bit: if x < y are two points of [a, b],

F(y)—F(x)z[ -
Yy

a, [a,x]

308



25.2. The Integral as a Function

But subdivision (Axiom III) implies

Hw=Lwﬁ

B J'[ct,x] I J[x,y] /

:F(x)+J f

[x.y]

Thus F(y) — F(x) is just the integral of f on the subinterval [x, y] C [a,b]. Because f
is bounded by M we know —M < f(x) < M. By subdivsion, f is then integrable on
every sub-interval I C [a, b], and by comparison (Axiom II) this implies

Ml < | <
I
So, we choose § = /M. This immediately yields what we want, as if [y — x| < §,

—e:—M§<—M|y—x|§J f<Mly—x|<Mb=¢€
[x.y]

x,
Thus |F(y) — F(x)| = ‘f[x)y] 1 dx‘ <e. O

Remark 25.1. Of course, the proven result is not really stronger than what was asked,
since we began on a closed interval, and we know that continuous on a closed interval
implies uniformly continuous.

However, if you look carefully at the proof you see we nowhere used that the original
domain was a closed interval! So what we have really proven is that the area function
F(x) = f[a b] f is uniformly continuous anytime f is bounded!

As defined, the integral is only a function of x for x greater than the chosen starting
endpoint. While this is what is desired in many applications, its also useful to be able
to extend the definition to make sense for x below the starting point as well. This
is the integral often met in calculus, which we call the oriented integral as it changes
sign when the interval from a to x is traced backwards.

Definition 25.4 (The Oriented Integral). Given a function f which is integrable on
the interval between a and b, the oriented integral of f is denoted Jj f and equals

th:gj[“’b]f a<b
a _I[b,a]f b<a
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Corollary 25.1. Given any function f which is integrable on an interval [a, b], for any
¢ € [a, b] the oriented integral defines a function [a,b] — R by

XHfo

25.3. How to Compute?

Just as we can use these axioms to prove theorems about any possible integral, we can
also use it to compute values. We content ourselves with a simple example here, to
illustrate, and follow with a more general discussion.

25.3.1. Integrating f(x)=x

Given the function f(x) = x, lets temporarily assume that we have some integral |
satisfying the axioms above, and also that this integral considers x to be integrable
on the interval [0, 1]. From here, it turns out the axioms unambiguously determine
its value, allowing us to prove

Theorem 25.2. If [ is any integral for which f(x) = x is integrable, then J[o,l] x = %

We proceed in steps. First, note that on the interval [0, 1] we know (by definition)
that f(x) = x is between 0 and 1. So, by axiom 2

0<x<1 = 0< J x < J 1
[0,1] [0,1] [0,1]

The upper and lower bounds here are constants, and so we can evaluate their integrals
by axiom 1, giving

OSJ x<1
[0.1]

This of course is a pretty terrible estimate; but we can easily use the same ideas to do
better! Indeed, since we’ve assumed that x is integrable on [0, 1] axiom 3 ensures us
that its also integrable on I; = [0,1/2] and I, = [1/2, 1] (or any other subintervals,
for that matter). On these smaller intervals, we have better understanding of the
behavior of f(x), and thus better estimates:

xelj], = 0< f(x)=x<1/2 xeh = 1/2< f(x)=x<1
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To each (constant!) bound we can apply axiom 1 to integrate, it and then apply axiom
2 to ensure the inequality is preserved. Thus

O=J OSJ xSJ 1=1
I I 2 4
NN
4 122 I L 2

Adding these two intequalities gives ‘11 < fll x+ flz x < %, but then using axiom 2 we
recognize that the sum in the middle is just the subdivision of I[o jxatl /2. Thus we
have

1£I xgg
4 [0,1] 4

Of course we can do better. If we divide [0, 1] into N intervals of equal length 1/N
(say L = [(i — 1)/N,i/N]) then by using the subdivision axiom inductively, we find
f(x) = x is integrable on each, and

N
J x=Jx+J x=Jx+Jx+J x=-~=ZJx
[0,1] L [1/n,1] L L [2/n,1] i=1 71

On each of these intervals [; we can easily bound f(x) = x:since its monotone increas-
ing, its smallest value is its left endpoint and its largest value is its right endpoint:
(i—1)/N < x <i/N. Thus, by axioms 1 and 2

gZJuSJXSJLZL
N2 [l.N I I,-N N2

Summing up these inequalities, and recalling f[o,l] x = Zfio J; x, we find

This inequality must hold for all values of N, which turns out to be enough to com-
pletely fix the value of [, ;;x

Exercise 25.1 (Integrating x).
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« Call the lower estimate Ly and the upper estimate Uy. Prove that as N — oo,
so long as one of these sums converges so does the other, and their values are
equal. Thus, the constant sequence J[O,l] x is squeezed between Ly and Uy, so
in the limit must also take their common value!

« Next, prove that Uy — % as N — oo *Hint: use previous homework, where we

did summation by parts to find a formula for 21111 i=14+2+3--+N.

Throughout this entire calculation we’ve only used the axioms, and the assumption
that x is integrable. Thus, we’ve proven a pretty strong result: no matter how you try
to precisely define integrals, there is an unambiguous choice for the value ij[o,1] x. If
its defined at all, it must equal exactly 1/2.

Exercise 25.2 (Integrating x, Part II). Extend the above result to show that if x is
integrable on [a, b], then
b @l
24
[a.b] 2 2

(Its OK if you assume in your proof that 0 < a < b to cut down on worrying about
negative numbers, the proof of the general case is not much more work)

Hint: first, generalize the work we did together in the book above, from the interval [0, 1]

2
to a general interval [0, c] and prove that f[o qx= % Then use the fact that you know
this for all ¢ > 0 and the subdivision axiom to get what you want.*

Exercise 25.3 (Integrating x?). Prove that if x? is integrable on [0, c] that its value

must be
3
-3
[0.] 3

Use this to deduce that for any interval [a, b], (feel free to just do the case a,b > 0)
3 3
J 2-b_e
[a,b] 3 3

Hint: follow the similar process to what we did above: using the axioms to bound by sums,
and then using the summation by parts formula from earlier in the course to calculate
the limit
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25.3.2. The Darboux Integral

We can take this kind of reasoning even farther, and propose a means of calculating
integrals of arbitrary functions, whenever they are forced to exist by the axioms. The
main idea is the same: to estimate an integral we use subdivision to break the domain
into smaller and smaller pieces, and then use inequalities to get better and better
estimates of f on each piece. It will be useful to give a name to such a subdivision of
the interval: a partition.

Definition 25.5 (Partitions). A partition of the interval I = [a, b] is a finite ordered
set P = {lo,t1, ... I,y witha =1y <t; < ... <t <ty =b.

« N is called the length of the partition
« We write P; = [;, 1] for the i interval of P, and |P;| = (., — ) for its width.

« The maxwidth of P is the maximal width of the P’s intervals, maxwidth(P) =

maxo<;i<N{|Fi[}-
« The set of all partitions on a fixed interval I is denoted .

Gy ={P : P is a partition of I}

On each partition, we can try to find bounds on the value of our function f. We
no longer know the lower bound will occur at the left side and the upper bound at
the right side, or even that the lower and upper bounds are even achieved by some
points in the domain (we do know this when f is continuous, by the extreme value
theorem, but we can’t say much for a general f). But, even when the max and min do
not exist the infimum and supremum always do (for any boounded nonempty set,by
completeness).

Definition 25.6 (Upper and Lower Sums). Let f be a function, and P a partition of
the closed interval I. For each segment P; = [, £, 1], we define

m = inf{f0} M = suplf(0}

x€P,

We then define the upper sum Uj(f, P) and the lower sum L;(f, P) as

Li(f.P)= ). mip|
0<i<N

U(f.P)= Y, MPp|
0<i<N
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25. Axioms

Using the subdivision axiom on our partition, we see that if f is integrable, we must
have

> omilp< ), Lfs >, Mip|

0<i<N 0<i<N 0<i<N

This is great in that given any partition we can get some nice bounds on the possible
values of our integral [, f, but we can’t focus on a single partition and need to think
more generally. Let’s look at each inequality separately. What does it mean that
Li(f, P) is less than or equal to the integral, for any partition? Turning this around,
we are saying that [, f is an upper bound for the lower sums. So this upper bound
can’t be less than the least upper bound, meaning

wpthnst

Pe%

Similarly, the second inequality tells us that [, f is a lower bound for the set of all
possible upper sums. It must then be less than or equal to the greatest lower bound,
o

< inf Ui(f,P
|, < it s,
These quantities prove extremely useful estimates, so we will give them a name:

Definition 25.7 (Upper and Lower Integrals). Let f be a function on the closed in-
terval I. Then we define the upper integral U;(f) and the lower integral L;(f) as

U(H) = jnf Wi(f. P)}

L(f) = sup{Li(f.P)}
Pe%

It may happen that for a given function f, the upper integral and lower integral are
not equal to one another. In this case, the best bounds we could think to construct
from the axioms (looking over all possible partitions) aren’t enough to nail down a
value for the integral of the function.

Exercise 25.4. Prove the characteristic function of the rationals has U(y) = 1 and
L(x) = 0 on the interval [0, 1].
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But sometimes we will find that U(f) = L(f). Since we know L(f) < [, f and
|; f < U(f) whenver the integral exists, this then uniquely specifies the value: if
f is integrable under any possible definition of the integral, its value must be this
common quantity U(f) = L(f) we computed here. Taking this one step further actu-
ally provides a really reasonable potential definition of an integral: given a function f
we compute the upper and lower sums: if they are not equal, we declare the function
is not integrable. But if they are equal, we define the integral to be their common
value (as we must, as this is the only option!). This definition is due to Darboux, and
is called the Darboux integral.

Definition 25.8 (Darboux Integral). Let f be a function on the closed interval I.
Then f is Darboux-Integrable on I if U(f) = L(f), and we define the integral to be
this common value:

J F=U() = L)
[ab]

Because we used the axioms (and only the axioms) to come up with this construction,
its perhaps not surprising that the resulting thing actually does satisfy the axioms,
so is an example of an integral. But since we are working with limit-like quantities
(infima and suprema) we should to be careful and actually check nothing goes wrong.
This is the content of the next (optional) chapter.
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26. x Construction

This is a technical chapter, where we prove that there really are integrals:
by giving a precise construction that satisfies the axioms!

We have introduced axioms for integration, and gotten a bit comfortable using these
axioms to compute things. For example, in the last chapter we proved the following
facts with relatively straightforward arguments:

o If f is integrable and bounded, then F(x) = f[a’x] f is continuous.
« Ifx is integrable then J[a,b] x = % - %

3 3
« Ifx? is integrable then f[a,b] x% = % - %

These theorems all are of the same form: they’re conditional on if an integral exists,
then we know stuff about it. This of course is kind of disappointing: but also to be
expected: we’ve given the axioms for an integral but we haven’t shown anything
actually satisfies these axioms yet! This chapter fills this gap, by recalling our natural
candidate for an integral, and then proving it actually does satisfy the axioms. The
arguments are all very reminiscent of the calculations we did for x and x? but more
abstract, and while straightforward they will not be a focus of ours, here at the end
of the course. This is a great chapter to read if you’re the kind of mathematician who
has been nervously following the work in the previous chapter / final homework,
worrying that maybe its all for nothing because maybe integrals don’t exist at all!
But if this hasn’t been a big worry of yours, you’ll miss nothing by skipping over this
chapter.

We recall first the definition of the Darboux Integral. Let f be a function on the closed
interval I, and write U(f) = infpcg {Ui(f, P)} and L(f) = suppeg}{LI(f, P)} for the
upper and lower sums, with Li(f, P) = Y o<icy milPil and Ui (f, P) = Y g<icn M;| By for
any partition P. Then f is Darboux-Integrable on I if U(f) = L(f), and we define the

integral to be this common value: f[%b] f = U(f) = L(f). We will prove that this
definition satisfies the axioms: that is,

« For every k € R then f(x) = k is Darboux integrable for any interval [a, b] and
2
J[a,b] k= k(b - a).

o If f, g are Darboux integrable on I and f(x) < g(x) for all x € I then J? f<
2
Ir s
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26. x Construction

o If [a,b] is an interval and ¢ € (a,b), then f is Darboux integrable if and only if
it is Darboux integrable on both [a, ¢] and [¢, b]. Furthermore, in this case their

2 2 2
values are related by [, 1 f = Jjzc) f + [[cp) -

The proof takes place in several steps, but we begin by developing a basic theory of
partitions of intervals, which are the crucial defining features of our sum.

26.1. Working with Partitions

Definition 26.1 (Partitions). A partition of the interval I = [a, b] is a finite ordered
set P = {tg,t1, ...ty witha =1y <t; < ... <t <ty =b.

« N is called the length of the partition
« We write P; = [, ;1] for the i" interval of P, and |P| = (t;,; — ) for its width.

« The maxwidth of P is the maximal width of the P’s intervals, maxwidth(P) =

maxo<i<N{ P}
+ The set of all partitions on a fixed interval I is denoted .

Py ={P : P is a partition of I}

The goal of this section is to prove the seemingly obvious fact L;(f) < Uj(f). This
takes more work than it seems at first because of the definitions of L;(f) as a supre-
mum and U;(f) as an infimum, but proves an invaluable tool in analyzing integrabil-

ity.

Definition 26.2 (Refining Partitions). A partition Q is a refinement of a partition P
if Q contains all the points of P (that is, P C Q).

Proposition 26.1 (The Refinement Lemma). IfQ is a refinement of the partition P on
a closed interval I, then for any bounded function f the following inequalities hold

Li(f,P) < Li(f.Q) < Ui(f.Q) < UK(f. P)

Proof. Here we give the argument for lower sums, the analogous case for upper sums
is asked in Exercise 26.1. Since P C Q and both P, Q are finite sets we know Q contains
finitely many more points than P. Here we will show that if Q contains exactly one
more point than P, that the claim holds; the general case follows by induction.

In this case we may write Q = P u {z}, where z lies within the partition P, = [, t;4 1]
Thus, Qr = [#, ] for the left half after subdivision, and Q1 = [c, tx,1] for the right
half. Outside of Py, the two partitions are identical, so their difference is given only
by the difference of their values on P:

Li(f,Q) = Li(f.P) =
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26.1. Working with Partitions

(smgtrconiau+ gt H@eal) - (mgsconn)

Since both Qp and Qi are subsets of P, the infimum over each of them is at its
smallest the infimum over the whole set. This implies

inf {f(x + inf {f(x
nfCOHQ + inf {f(}Qee
> inf {f()}Qk| + inf {f(x)}Qk+1
xEPk xEPk
= inf{f()} (1Qk| + 1Qk+1)
xEPk
= inf {f (o)} Pl
xEPk
Thus, the first term in the difference above is bigger than the second, so the overall
difference is positive. Thus L;(f,Q) — L;(f, P) > 0 and so as claimed,

Li(f,Q) > Li(f,P)

Exercise 26.1. Following the structure above, prove that if Q refines P, that

Ui(f.Q) <Ui(f, P)

Proposition 26.2 (Upper/Lower Sum Inequality). Lower sums are always smaller
than upper sums, independent of partition. That is, if P, Q be two arbitrary partitions of
a closed interval I, for any bounded function f,

Li(f,P) <U(f,Q)

Proof. Let P and Q be two arbitrary partitions of the interval I, and consider the
partition P u Q. This contains both P and Q as subsets, so is a common refinement of

both.

Using our previous work, this implies

L(f,P) < L(f,PuQ) U(f.PuvQ) <U(f.Q)

We also know that for the partition P u Q itself,

L(f,PuQ) <U(f,PuQ)

Taken together these produce the the string of inequalities
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L(f,P) < L(f,PuQ) <U(f,PuQ) <U(f.Q)

From which immediately follows that L(f, P) < U(f,Q), as desired. O

Proposition 26.3 (Upper/Lower Integral Inequality). Let I be any closed interval and
f a bounded function on I. Then the lower integral is less than or equal to the upper
integral,

Lif <UL f.

Proof. Recall that U(f) is the infimum over all partitions of the upper sums.

Let P be an arbitrary partition. By ?@prp-upper-lower-on-different-partitions
we know the upper sum with respect to any partition whatsoever is greater than or
equal to L(f, P), so L(f, P) is a lower bound for the set of all upper sums.

Thus, the infimum of the upper sums - the greatest of all lower bounds - must be at
greater or equal to this specific lower bound,

L(f,P) < Qig;{U(f Q) =U(f)

But this holds for every partition P. That means this number U(f) is actually an upper
bound for the set of all L(f, P). And so, it must be greater than or equal to the least
upper bound L(f):

L(f) <U()
O

Corollary 26.1. To show a function f is integrable, it suffices to show that U(f) < L(f).

(To see this, recall in general that L;(f) < Up(f) from ?@prp-lower-int-leq-upper-
int. So, if Uy f < L;f then in fact they are equal, which is the definition of f being
integrable.)

26.2. Integrability Criteria

Here we prove a very useful condition to test if a function is integrable, by finding
sufficient partitions.

Theorem 26.1. Let f be a bounded function on a closed interval I. Then f is integrable
if for every € > 0 there exists a partition P of I such that

U(f.P)-L(f.P)<e
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26.2. Integrability Criteria

Here we prove one direction of this theorem, namely that if such partitions exist for
all € > 0 then f is integrable. We prove the converse below.

Proof. Let € > 0, and assume there is a partition P with

U(f,P) - Li(f,P)<e

Then, recalling L;(f, P) < Li(f) and U;(f) < Uj(f, P) by definition, we chain these
together with L;(f) < Uj(f) to get

Li(f,P) < Li(f) <U(f) <U(f,P)

Thus, the interval [L;(f),U;(f)] is contained within the interval [L;(f, P), Ui(f, P)]
which has length < e. Thus its length must also be less than e:

0<U(N-Li(f)<e

But € was arbitrary! Thus the only possibility is that U;(f) — L;(f) = 0, and so the
two are equal, meaning f is integrable as claimed. O

Now we prove the second direction of Theorem 26.1: the proof is reminiscent of the
triangle inequality, though without absolute values (as we know terms of the form
U — L are always nonnegative already)

Proof. Assume that f is integrable, so L;(f) = Uj(f). Since Uj(f) is the greatest lower
bound of all the upper sums, for any € > 0, U;(f) + % is not a lower bound: that is,
there must be some partition P; where

Ui(f. P <Ui(f) + 5

Similarly, since L;(f) is the least upper bound of the lower sums, there must be some
partition P, with

Li(f. P) > Li(f) = 5

Now, define P = P; u P, to be the common refinement of these two partitions, and
observe that

U(f,P)— Li(f,P) <U(f,P) — Li(f, Py)
€ €
<(p+5)-(u-3)
=U(f) - Li(f) +e

=€
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Where the last inequality uses L;(f) = Uj(f). Thus, for our arbitrary € we found a
partition on which the upper and lower sums differ by less than that, as claimed. [

And finally, we provide an even stronger theorem than e-integrability, that lets us
prove a function is integrable and calculate the resulting value, by taking the limit
of carefully chosen sequences of partitions. More precisely, we want to consider any
sequence of partitions that’s getting finer and finer:

Definition 26.3 (Shrinking Partitions). A sequence P, € % of partitions is said to
be shrinking if the corresponding sequence of max-widths converges to 0.
We often abbreviate the phrase P, is a shrinking sequence of partitions by P, — 0.

Theorem 26.2 (Integrability & Shrinking Partitions). Let f be a function on the inter-
val I, and assume that P,, P, are two sequences of shrinking partitions such that

lim L;(f, P,) = im U;(f, P;)

Then, f is integrable on I and | f is equal to this common value.

Proof. Call this common limiting value X. As L; f is defined as a supremum over all
lower sums

lim L;(f, P,) < sup {L;(f, P}
{nelN}

< sup{L;(f,P)}
Pe%

=Li(f)

Similiarly, as U;(f) is the infimum over all upper sums, we have

limUy(f, Py) > Ui(f)

By ?@prp-lower-int-leq-upper-int we know L;(f) < Uj(f), which allows us to
string these inequalities together:

lim L;(f, P,) < Li(f) < Up(f) < limUy(f, Py)

Under the assumption that these two limits are equal, all four quantities in this se-
quence must be equal, and in particular L;(f) = Uj(f). Thus f is integrable, and its
value coincides with the limit of either of these sequences of shrinking partitions, as
claimed. O
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26.3. Verification of Axioms

With these tools in hand we verify the axioms of integration hold for the Darboux

integral. For readability, we write [ instead of j9 throughout.

Proposition 26.4 (Integrability of Constants). Let f(x) = k be a constant function,
and [a,b] an interval. Then k is Darboux integrable on [a,b] and

J k = k(b-a)
[ab]

Proof. For any partition P, we have

M; = sup{f(x)} = k = infx € B{f(x)} = m

x€P;

as f is constant. Thus,

U(f,P)= Y, M|P|=k ) |P| = k(b—a)

Pep PeP

L(f.P)= ), m|P|=k ), Bl = k(b—a)

PeP PeP

The upper and lower sums are constant, independent of partition, and so their respec-
tive infima/suprema are also constant, equal to this same value. Thus k is integrable,
and the integral is also this common value

J k = k(b - a)
[ab]
O

Proposition 26.5 (Integration and Inequalities). Let f, g be Darboux integrable func-
tions on [a, b] and assume that f(x) < g(x) for all x € [a,b]. Then

Jun? = o
[a,b] [a,b]

Proof. The constraint f < g implies that on any partition P we have

L(f,P) < L(g, P)

Or, equivalently L(g, P) — L(f, P) > 0. Taking the supremum over all P of this set of
nonnegative numbers yields a nonnegative number, so

sup {L(g.P) - L(f.P)} >0
PE%‘LH
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L(g—-L(f) >0 = L(f)<L(g)

But since we’ve assumed f and g are integrable we know that L(f) = U(f) = fa,b f
and L(g) = U(g) = I[a,b] g. Thus
Jun? <
[a,b] [a,b]

Proposition 26.6 (Integration and Subdivision). Let [a,b] be an interval and ¢ € (a,b).
Then a function f defined on [a,b] is Darboux-integrable on this interval if and only if
it is Darboux integrable on both [a,c] and [c,b]. Furthermore, when defined these three

integrals satisfy the identity
Jab Ja I b /
[ab] [ac] [c.b]

Proof. First, assume that f is integrable on [a, b]. By ?@thm-epsilon-integrability,
this means for any € > 0 there exists a partition P where U(f, P) — L(f, P) < €. Now
consider the refinement P, = P u {c}. By the refinement lemma,

O

L(f,P) < L(f,P) <U(f,P) <U(f.P)

Thus U(f, P,) — L(f,P,) < € as well. Next we take this partition and divide it into
partitions of each subinterval P; = P.u[a,c] and P, = P.u[c, b]. By simply re-grouping
the finite sums, we see

L(f, P) = L(f, P1) + L(f, P2) U(f, B) =U(f, P1) + U(f, P)

And, by the definitions of upper and lower sums, for each we know U(f, B,)—L(f, P,) >
0. All that remains to insure the integrability of f on [a,c] and [c, b] is to show that
these differences are individually less than e. But this is immediate, as for example,

U(f,Py) — L(f,P) <U(f,Py) — L(f, Py) + (U(f, P) — L(f, P;))
= (U(f,P) +U(f, P)) — (L(f, Py) + L(f, P,))
=U(f,P) - L(f.P,)

<e

and the same argument applies to U(f, P,) — L(f, P,). O

Next we assume integrability on the two subintervals, and prove integrability on the
whole interval.
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Proof. Let € > 0 and by our integrability assumptions choose partitions P; of [a, c]
and P, of [, b] such that

U(f,P) - L(f,P) < g i€{1,2}

Now, their union P = P; u P, is a partition of [a, b], and re-grouping the finite sums,
we see

L(f. P) = L(f, P1) + L(f, P») U(f,P) =U(f, P) +U(f, P2)

Thus,

U(f,P) - L(f,P) = (U(f, Py) +U(f, Py)) — (L(f, Py) + L(f, Py))
= (U(f,P) = L(f, P)) + U(f, Py) — L(f, P»))

cEL€
2 2
=€

O

So, we see that integrability on [a, b] is equivalent to integrability on [a,c] and [c, b].
Finally, we need to show in the case where all three integrals are defined, the subdi-
vision equality actually holds.

Proof. Let P be any partition of the interval [a, b] and define the usual suspects:
P, =Pu{c P, =P, ula,c] Py =P, ulcb]

We need three pieces of data. First, the inequalities relating integrals to upper and
lower sums

L(f.Py) < j[ SEUGER) LR j[ FEUGR)

C.

Second, the inequalities of refinements:

L(f,P) < L(f,P) <U(f,P) <U(f.P)

and third, the relationships between P;, P, and P,:

L(f, Po) = L(f, P1) + L(f, P2) U(f, B) =U(f, P1) + U(f, P)

Putting all of these together, we get both lower and upper estimates for the sum of
the integrals over the subdivision:
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uﬁHSLUJU=LUfo+Mﬁ&>sj f+j f
[ac] [e,b]
L]f+[Hfsuqfo+Mﬁ&>=Wﬂ39swﬂm

And concatenating these inequalities gives the overall bound, for any arbitrary parti-
tion P:

MﬂHSL]f+LHf£WﬁH

Thus, the sum of these integrals lies between the upper and lower sum of f on [a, b]
for every partition. As f is integrable, we know there is a single number with this
property, and that number is by definition the integral. Thus

el W
O

Phew! We've successfully verified all three axioms for the Darboux integral. Taken
together, these prove that our construction really is an integral!

Corollary 26.2. The equality of upper and lower sums satisfies the axioms of integra-
tion, and thus the Darboux Integral really does define an integral.
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27. x Examples

In this optional chapter we integrate familiar functions directly from the
definition. I've written this merely to illustrate its possible (inspired by
a challenge posed by past students to me), not because its useful: this
entire chapter is rendered entirely superflouous following our proof of
the fundamental theorem of calculus!

Recall our definition of axiomatically integrable says that f is integrable on [a, b] only
if *every possible definition of [ satisfying the axioms agrees on the value of f[ ab] f.
This is quite a slippery concept to work with, so we developed the concepts of upper
and lower sums to help us out.

27.1. Powers

Here

Proposition 27.1 (Integrating f(x) = x). Let [a,b] be any closed interval in R. Then
f(x) = x is integrable on [a,b] and

b2 —a?
o™=
[ab] 2

Proof. Start with [0, )], then look at 0 < a < b using interval subdivision. To show
x is integrable, it is enough to find a sequence P, of shrinking partitions where
lim L(f, P,) = imU(f, P,). Then U(f) = L(f) necessarily.

For each n, let P, be the evenly spaced partition with n subintervals, of width A, =
(b — a)/n. Since f(x) = x is monotone increasing, we know on each subinterval
[ti—l’ ti] that

m =t =>{-1DA, M; =1; = i,

Thus, the upper and lower sums for these partitions are

L(x,P,) = Z miA, = (i — DA A,
1<i<n

=A20+1+2+-+(n—-1))
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U, P) = Y. MA, =iA,A,
1<i<n

=AZ(1+2+-+n)

These are nearly identical formulae: the upper sum is just one term longer than the
lower sum and so their difference is

b
U(x, By) = L(x, P,) = nA} = n— = —
n n

As n — oo this converges to zero: thus, if either the upper or lower sum converges,

then both do, and both converge to the same value by the limit theorems. For example,
if we prove U(f, P,) converges then

lim L(x, P,) = lim (U(x, P,) — U(f, P,) + L(x, P,))
= limU(x, P,) — im(U(x, P,) — L(x, P,))
=1limU(xs, P,) + Os

So, we focus on just proving that U(x, P,) converges and finding its value.

Exercise 27.1. Use the sum of the first n integers we have previously derived to prove
2 2
that limU(x, P,) = b? lim(1+1/n) = %

Thus x is integrable on [0, b] and

b2
[
[0.b] 2

Knowing this, we complete the case for a general positive interval [a,b] with0 < a < b
by subdivision:

Exercise 27.2. Show that
b2 — a2
X =

[a.b] 2

*Hint: do 0 < a < b first, then deal with the case where one or both may be negative,
with another subdivision.
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Proposition 27.2 (Integrating f(x) = x?). Let[a,b] be any closed interval in R. Then
f(x) = x? is integrable on [a,b] and

Exercise 27.3. Following the same technique as above, show that x? is integrable on

[a, b]:

« First, restrict yourself to intervals of the form [0, b] for b > 0.

« Use the monotonicity of x? on these intervals to explicitly write out upper and
lower sums.

« Use the following identity on sums of squares from elementary number theory
to compute their value

_ N(N +1)(2N +1)
6

k2
1<k<N

- Explain how to generalize this to intervals of the form [a, 0] for a < 0, and
finally to general intervals [a, b] for any a < b € R using subdivision.

27.2. Exponentials

Here’s a quite long calculation showing that it’s possible to integrate exponential
functions directly from first principles. The length of this calculation alone is a good
selling point for the fundamental theorem of calculus! There are several facts about
exponentials we will need from our previous investigations; listed here for ease of
reference.

« Exponentials are always nonzero
« Exponentials are strictly increasing, or strictly decreasing
« Exponentials are differentiable everywhere

Proposition 27.3 (Integrating Exponentials). Let E be an exponential function, and
la,b] an interval. Then E is integrable on [a,b] and

_ E(b) - E(a)
J[a,b] F="F0

Proof. We will show the argument for E an increasing exponential (its base E(1) > 1):
an identical argument applies to decreasing exponentials (only switching U and L in
the computations below).
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To show E(x) is integrable, it is again enough to find a sequence P, of shrinking
partitions where lim L(f, P,) = limU(f, P,). Indeed - for each n, let P, denote the
evenly spaced partition of [a, b] with widths A, = (b —a)/n

P, ={a,a+ A,,a+2A,, - ,a+nA, =b}

We will begin by computing the lower sum. Because E is continuous, it achieves a
maximum and minimum value on each interval P, = [¢,t,]. And, since E is mono-
tone increasing, this value occurs at the leftmost endpoint. Thus,

L(E,P,) = . inf{E(x)}|P|

0<i<n 1

= Z E(ti)An

0<i<n

= Y Ea+idy)h,

0<i<n

Using the law of exponents for E we can simplify this expression somewhat:

E(a +iA,) = E(@)EGA,)
= E(@EA, + Ay + -+ A)
= E(@E(AR)E(A,) -+ E(Ay)
= E(@EA,)

Plugging this back in and factoring out the constants, we see that the summation is
actually a partial sum of a geometric series:

> E@+if)h, = Y. E@EA,)A,

0<i<n 0<i<n

= E@D, Y, E(A,)Y

0<i<n

Having previously derived the formula for the partial sums of a geometric series, we
can write this in closed form:

1- E(An)n

2, 0= 5,

0<i<n
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27.2. Exponentials

But, we can simplify even further! Using again the laws of exponents we see that
E(A,)" is the same as E(nA,), and nA\,, is nothing other than the width of our entire
interval, so b—a. Thus the numerator becomes 1 — E(b —a), and putting it all together
yields a simple expression for L(E, P,):

B 1—E(b—a)
L(E, P,) = E(a)A”T(A,,)

Some algebraic re-arrangement is beneficial: first, note that by the laws of exponents
we have

E(a)(1 — E(b — a)) = E(a) — E(b — a)E(a)
= E(a) — E(b)

Thus for every n we have

UED,) = (B@) - EO) s

We are interested in the limit as n — oo: by the limit laws we can pull the constant
E(a) — E(b) out front, and only concern ourselves with the fraction involving A,,.
There’s one final trick: look at the negative reciprocal of this fraction:

-1 _ E(An) -1
A, - A
1-E(A,) "

Because we know E(0) = 1 for all exponentials, this latter term is none other than
the difference quotient defining the derivative for E! Since we have proven E to be
differentiable, we know that evaluating this along any sequence converging to zero
yields the derivative at zero. And as A, — 0 this implies

- E(Ap) — E(0)

1 =E'(0
im == ©

Thus, our original limit A, /(1 — E(A,)) is the negative reciprocal of this, and
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lim L(E, P,) = lim (E(a) — E(b)) Sn

1- E(An)
-1
= (E(a) - E(b))E’_(O)
_ E(b) — E(a)
O

Phew! That was a lot of work! Now we have to tackle the upper sum. But luckily this
will not be nearly as bad: we can reuse most of what we’ve done! Since E is mono-
tone increasing, we know that the maximum on any interval occurs at the rightmost
endpoint, so

U(E,P) = ), sup{E()}P|

o<i<n P;

= Z E(ti+1)An

0<i<n

= Y Ea+ @i+ 1DA)A,

0<i<n

Comparing this with our previous expression for L(E, P,), we see (unsurprisingly) its
identical except for a shift of i — i + 1. The law of exponents turns this additive shift
into a multiplicative one:

UE.P) = Y. Ela+(@i+DA)A,
0<i<n

= Y, EA)E@+id)A,

0<i<n
= E(A,) ), E(a+ihy)A,
0<i<n
= E(An)L(E’ Pn)
Thus, U(E, P,) = E(A,)L(E, P,) for every n. Since E is continuous,
lim E(A,) = E(limA,) = E(0) = 1

And, as L(E, P,) converges (as we proved above) we can apply the limit theorem for
products to get
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27.3. Trigonometric Functions

imU(E, P,) = im(E(A,)L(E, P,))
= (lim E(A,)) (lim L(E, P,))
= lim L(E, P,)
_ E(b) - E(a)
E’(0)

Thus, the limits of our sequence of upper and lower bounds are equal! And, by the
argument at the beginning of this proof, that squeezes L(E) and U(E) to be equal as
well. Thus, E is integrable on [a, b] and its value is what we have squeezed:

_ E(b) - E(a)
J'[a,b] E= El(o)
O

Corollary 27.1 (Integrating the Natural Exponential). On any interval [a, b] the nat-
ural exponential is integrable, and

J exp = exp(b) — exp(a)
[ab]

27.3. Trigonometric Functions
Theorem 27.1. For x € [0, /2], the sine function is integrable and

J sin = 1 — cos(x)
[0,x]

Proof. On the interval [0, x], we use the sequence of evenly spaced shrinking par-
titions P, of width A = x/n, and prove integrability by showing lim L(sin, P,) =
lim U(sin, P,). Because sin is monotonically increasing on [0, /2] on any subinter-
val I = [a,b] that m = sina and M = sinb. Thus

L(sin, P,) = Y sin (G — 1)A) A
i=1

n
U(sin, P,) = Z sin (iA) A
i=1

Using sin(0) = 0 we see the sums agree except for the final term of U, meaning
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27. » Examples

U(sin, P,) — L(sin, P,) = sin(nA)A = sin(x)E
n

As x is a fixed constant this tends to zero as n — oo, so sin is integrable on [0, x] and
we can compute its value as the limit of either the upper or lower sum.
We use the identity for )}, sinkx proven in ?@exr-summing-angles:

. n . n+l
sin (—A) sin (TA)

2 A

U(sin, ) = ) sin(iA)A = -
1<i<n sin (5)

Substituting back A = x/n and re-arranging,

sin (5) sin (ﬂ{)
2 2

. (x) . (n+1 x)
s\ - )sm{——
n 2

n 2

(X - in(ax/2n)
in (%) st

U(sin, P,) = -
n

We evaluate the limit as n — oo using the limit laws. The numerator is immediate

. (x) . (n+1x> . (x) . (x)
sin| = ) sin =) sin|=]sin( =
2 n 2 2 2

— 1 and the continuity of sin. For the denominator, we use the fact

n+1
n

using that
that sin x

- 1 (?@cor-sinc) to see

=
~
S
N | =
|=
DN | =

Thus

sin(;—c) sin(g) 9 X
limU(sin, P,) = ——F—— =2sin >
2
Using the half-angle identity Exercise 20.11, we can rewrite this

1 — cos(x) _

limU(sin, P;) = 2 1—cosx

As we’ve already shown sin to be integrable, this limit of upper sums over a sequence
of shrinking partitions gives the value:

J sin = 1 — cos(x)
[0,x]
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27.3. Trigonometric Functions

We can leverage this result and the symmetries of the sine function to calculate the
integral over arbitrary intervals:

Exercise 27.4. Prove that sin is integrable on the interval [ /2, 7] and for any x €
[7/2,7]
J[” sin = — cos(x)

Z

Hint: proceed either (1) directly, using the fact that sin is decreasing on this interval or
(2) using the above, and the symmetry sin(n/2 + x) = sin(/2 — x).

Use this and subdivision to show for any x € [0, 7],

J- sin=1-—cosx
[0,x]

Corollary 27.2.
J sin=1 and J sin =2
[0,7/2] [0,7]

Exercise 27.5. Use the fact that sine is an odd function and integrable on [0, ] to
show sin is integrable on [—7, 0] and for any x € [—x, 0]

J sin = cos(x) — 1
x,0

Again by subdivision we can conclude that sin is integrable on [—7, 7].

Proposition 27.4. Leta,b € [, x]. Then sin is integrable on [a,b] and

J sin = cos(a) — cos(b)
[ab]

Proof. We proceed by cases depending on the location of a, b. If both are positive and
lie in [0, /2] we evaluate using Exercise 27.4

J sin = J sin—J sin
[ab] [0,b] [0,a]

=(1—-cosb)—(1—cosa)

= cosa—cosb

A similar calculation applies if a,b < 0. If a < 0 and b > 0 we evaluate as
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27. » Examples

J sin = J sin + J sin
[a,b] [a,0] [0,b]

= (cosa—1)+ (1 —cosb)

= cosa—cosb

Corollary 27.3.
J sin =0
[_ﬂ)”]

Since sin is 277 periodic this is enough to conclude that sin is in fact integrable on any
interval

Theorem 27.2 (Integrating sine). Leta < b. Then sin is integrable on [a,b] and

J sin = cos(a) — cos(b)
[ab]

Exercise 27.6. Prove this.

This work has immediate payoff for integrating cosine as well, since we know it to
be just a shifted version of the sine:

Theorem 27.3 (Integrating cosine). Leta < b. Then cos is integrable on [a,b] and

J cos = sin(b) — sin(a)
[ab]

Exercise 27.7. Prove Theorem 27.3 using that sin(x + 7/2) = cos(x) and cos(x +
/2) = —sin(x) (?@exr-trig-shift).
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28. Properties

28.1. Integrability

With our minimal notion of integration, we now confront the question of what func-
tions are actually integrable. We know it can’t be all (as we’ve seen the Characteristic
function of the rationals is one non-example), but it is a very large class of functions
- containing all the reasonable functions we wil need! We prove the most important
result first, that all continuous functions are integrable, and then continue to show
how the similar method generalizes to related cases.

Theorem 28.1 (Continuous functions are Integrable). Every continuous function on
a closed interval is Darboux integrable.

Proof. Let f be continuous on the interval [a,b] and choose € > 0. We will prove
integrability by finding a partition P such that U(f, P) — L(f,P) < e.

As f is continuous it is bounded (by the extreme value theorem), so the upper and
lower sums are defined for all partitions. It is also uniformly continuous (as [a, b] is a
closed interval), so we can find a § such that

€
b—a

=yl < = [fG) - fI<

Now, choose a partition P of [a,b] where the width of each interval is less than 8.
Comparing upper and lower sums on this interval,

U(f,P)—L(f.P)= Y, M{P| - >, m|P| = ) [M; — m]|P|

PepP PeP PepP

Since |P;| < 8, we know that for any x,y € P, the values f(x), f(y) differ by less
than €/(b — a). Thus the difference of between the infimum and supremum over this
interval must be less than or equal to this bound:

€

My = m; < b—a

Using this to bound our sum, we see
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28. Properties

U(f.P) = L(f.P) = Y (M, = mi]lp| < 7= 3" IR
PeP ~ 4 pep

€
b—a

(b—a)=¢
Thus, f is integrable! O

But the Darboux integral allows us to integrate even more things than the continuous
functions. For example, it is quite straightforward to prove that all monotone functions
are integrable (even those with many discontinuities!)

Theorem 28.2 (Monotone functions are Integrable). Every monotone bounded func-
tion on a closed interval is integrable.

Proof. Without loss of generality let f be monotone increasing and bounded on the
interval [a,b] and choose € > 0. We will prove integrability by finding a partition P
such that U(f,P) — L(f,P) < e.

Let B = f(b) — f(a) be the difference between values of f at the endpoints. If B = 0
then f is constant, and we already know constant functions are integrable so we are
done.

Otherwise, let P be an arbitrary evenly spaced partition of widths A = ¢/B, we con-
sider the difference U(f, P) — L(f, P):

U(f,P) - L(f.P)= Y, M{P| - >, m|P|
PeP PeP

= Y [IM—m]iBl =AY [M;—m]

Pep PeP

Since f is increasing, its supremum on each interval occurs on the right, and its infi-
mum on the left. That is, if P, = [t_;, ] we have

m; = f(ti_1) M; = f(t)

Plugging this into the above gives a telescoping sum!

Uf,P) = L(f,P) = A Y [f&) = f-)] = ALf(t) = f(to)]

1<i<n

But ty = a and t, = b are the endpoints of our partition, and so this equals

=A[f() - f(@)] = m[f(b) —f@l=e
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28.2. % Linearity

And, inductively its straightforward to show (via subdivision) that if the domain of a
function can be partitioned into finitely many intervals on which it is integrable, than
its integrable on the entire thing. Thus, for example piecewise continuous functions
are Darboux Integrable. The precise statement and theorem is below.s

Definition 28.1 (Piecewise Integrable Functions). A function f defined on a domain
I is piecewise integrable if I is the disjoint of a finite sequence of intervals I = [; u L u
...u I, and f restricted to each interval is integrable.

Proposition 28.1 (Piecewise Integrable = Integrable). If f is piecewise integrable,
then it is integrable.

Proof. We begin with the case that f is piecewise integrable on two subintervals, [a, ]
and [c, b] of the interval [a, b]. Then the subdivision axiom immediately implies that
f is in fact integrable on the entire interval.

Now, assume for induction that all functions that are piecewise integrable on intervals
with < n subdivisions are actually integrable, and let f be a piecewise integrable
function on a union of n + 1 intervals

l[a,bl=LuLu-vul,ul,

Set J equal to the union of the first n, so that [a,b] = Jul,, ;. Then when restricted to
J, the function f is piecewise integrable on n intervals, so its integrable by assump-
tion. And so, f is integrable on both J and I,,, so its piecewise integrable with two
intervals, and hence integrable as claimed. O

Because all continuous functions and all monotone functions are integrable, we have
the following useful corollary covering most functions usually seen in a calculus
course.

Corollary 28.1. All piecewise continuous and piecewise monotone functions with
finitely many pieces are integrable.

28.2. x Linearity

We can continue using the definition of the Darboux integral to discover some familiar
properties: proving that if a given function is integrable, so is any constant multiple,
and if two functions are integrable, so is their sum. While straightforward, these
proofs are a bit tedious as we must again dig into the definitions of the upper and
lower sums. Happily, this section is optional to us as we will quickly have much easier
proofs of these facts available to us for continuous functions, once we’ve proven the
fundamental theorem of calculus.
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28. Properties

Theorem 28.3 (Integrability of Constant Multiples). Let f be an integrable function a
closed intervall, andc € R. Then the function cf is also integrable on I, and furthermore

for=ef

We separate into cases depending on the sign of c. Below we complete ¢ > 0, and
leave ¢ < 0 as an exercise.

¢ = 0. When ¢ = 0 the function cf is identically the zero function. Thus by Proposi-

tion 26.4
ch:JOZO\II:O
1 1

This is equal to ¢ [; f = 0 [; f = 0, so we've provenc [; f = [; cf as required. O

¢ > 0. For ¢ > 0, note that on any interval J we have

inf{cf(x)} = c inf{ f(x)} sup{cf(x)} = csup{f(x)}
x€j x€] x€eJ x€J

Thus for any partition P,

Lef.P) = Y inflefCOURI = ¢ Y inf f(0IP] = cL(f. P)

i

Ucef,P) = ). suplef()lRl = ¢ ). sup fG)IR| = U(f. P)

i x€P; i X€P

Let P, be any sequence of shrinking partitions: since f is integrable we know
limU(f, P,) = lim L(f, P,) = [; f. Computing with the limit laws

lim L(cf, P,) = limcL(f, P,) = clim L(f, P,) = cJ f
I

limU(cf, P,) = limcU(f, P,) = climU(f, B,) = cJ f
I

Thus the upper and lower sums are equal in the limit, so c¢f is integrable and its
integral is equal to their common value ¢ [, f. O

Exercise 28.1. Prove the ¢ = —1 case: if f is integrable on I then so is —f and
[;(=f) = — [, f. Hint: what does multiplying by —1 do to m = inf and M = sup on
each partition? What does it do to the sums U(f, P) and L(f, P)?

Combine this with the ¢ > 0 case above to prove the analogous result for any negative
constant multiple.
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28.2. % Linearity

Theorem 28.4 (Integrability of Sums). Let f, g be integrable functions on a closed
interval I. Then their sum f + g is also integrable on I. Furthermore, its integral is the
sum of the integrals of f and g:

[gro=[s+]e

Proof. The key inequality bounding sums of functions on an arbitrary interval J is

inf{f(x)} + inf{g(x)} < inf{f(x) + g(x)} < sup{f(x) + g(x)} < sup{f(x)} + sup{g(x)}
x€] x€]J x€] x€J x€J x€J

Given an arbitrary partition P, summing over the subintervals P; yields

L(f,P)+ L(g, P) < L(f + g P)SU(f+g P) <U(f,P)+U(g, P)

By assumption f and g are both integrable, so we may select a sequence P, of shrink-
ing partitions such that

lim L(f, P,) = imU(f, P,) = J f limL(g, P,) = limU(g, P,) = J g
1 1

Taking the limit of the above inequalities along this sequence of partitions yields

[ r+] g<timitr+gp<imutr+gp<| £+ o

Thus by the squeeze theorem these limits are equal; so f + g is integrable, and its
integral equals their common value [, f + [; g. O

Each of these theorems does two things: it proves something about the space of in-
tegrable functions and also about how the integral behaves on this space. Below we
rephrase the conclusion of these theorems in the terminology of linear algebra - a
result so important it deserves the moniker of “Theorem” itself.

Theorem 28.5 (Linearity of the Riemann/Darboux Integral). For each interval[a,b] C
R, the set 7 ([a,b]) of Riemann integrable functions forms a Vector Subspace of the set
of all functions [a,b] — R. On this subspace, the Riemann integral defines a linear map

J : F([a,b]) > R
[a,b]
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28. Properties
28.3. x Dominated Convergence for Integrals

Being able to move limits in and out of sums proved to be an incredibly useful skill
in our work with functions defined as sums. Similarly, being able to move limits in
and out of integrals proves to be a very useful property for reasoning with calculus.
So we pause here to prove a version of the Dominated Convergence Theorem for
our minimal integral, the Darboux Integral. This theorem is often called the Arzela
Bounded Convergence Theorem, and was first proved by Arzela in 1885.

Theorem 28.6 (Dominated Convergence for the Darboux Integral). Let {f,} be a
sequence of Darboux integrable functions on a closed interval I, and assume that the
functions f, converge pointwise to a Riemann integrable function f. Then if there exists
some M where |f,(x)] < M for all x € I, the order of integration and limit may be

interchanged:
limj fn= J f
I I

We prove this result in steps; doing a special case f = 0 first, and then using the
special case to argue the general case. Our proof follows the beautifuly short paper
A Concise, Elementary Proof of Arzela’s Bounded Convergence Theorem

Proposition 28.2. Let f,, be a sequence of integrable functions on [0, 1], with f,(x) €
[0,1] and f,(x) — 0 for all x € [0,1]. Then the limit of their integrals also tends to zero:

lim f,=0
mJoa]

Proof. We prove the contrapositive, and show that if lim I[O,l] fu # 0 the functions
must not actually tend to zero, at least at some point. Since Let [0,1], = I[O,l] fn
be the sequence of integrals. Since this is not tending to 0, we can pick a bound 2¢
(written this way for convenience), and for every N find some n > N where |.7,| > 2e.
Potentially passing to this subsequence (and negating), we can assume without loss
of generality we can simply assume .%, > 2¢ for all n.

For each n, we can define a sequence U, of open subintervals of I of length at least
€, where f, is always greater than € on U,. To see this, recall our upper and lower
estimates: since the integral is greater than 2¢, we can find a partition P on which the
lower sum is at least 2¢ (if we could not, then all lower sums would be < 2¢, and so the
supremum over lower sums would be < 2¢. But this is the value of our integral!) Call
a rectangle short if its height is less than €, and tall if its height is > e. The collection
of all short rectangles have a total area less than € (as their bases together are a subset
of the unit interval, of length 1). Since the total area of all the rectangles is > 2¢, there
must also be tall rectangles (to make up for the extra at least € of area required). And,
since f,(x) < 1 for all x, this € of area requires at least € of base. So take U, to be
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these (open) bases, then f,(x) > € for all x € U, and U,’s total length is at least € as
required.

Recall our overall goal is to find an x where f,(x)-40. If there is an x which lies in
infinitely many of these sets U, we are done, because then for these infinitely many
values of n we know f,(x) > €, so the whole sequence cant possibly be converging to
zero! So, we’ve reduced our question about integration to a question about intervals.
But we will make one more reduction - for each N build the set Viy = ug>nUy; the
union of all the U’s past a given point. Since each of the sets U, contains intervals of
total length at least €, the set Vjy also has total length at least €, but now the Vyy sets
are nested: each V contains Vi, 1. So, seeking a point in infinitely many of the Us
is the same as seeking a point in the intersection of the Vs, and all we need to do is
show the intersection of all the Vi is nonempty. This is a quite intuitive statement,
and indeed a straighforward proof:

Theorem: the intersection of a nested collection of intervals, each of total length > €
has total length > e. (though the proof goes a bit outside of the techniques we are
focusing on here so we omit it, and refer the interested reader to the argument in A
Concise, Elementary Proof of Arzela’s Bounded Convergence Theorem).

Having found a point in the intersection of Vyy gives us a point in infinitely many U,
which means a point x where f,(x)-40, finishing the proof of the contrapositive. [J

Exercise 28.2. Extend the above proof to apply to sequences of functions f,: I —
[0, 1] where I is any interval (not just unit length).

Now onto the general case.

Proof. Let f, be a sequence of Darboux integrable functions on an interval I, which
converge pointwise to f. Consider the functions f,(x) — f(x): since f, and f are
bounded by M in absolute value, their difference is bounded by 2M, so set

&) = 2 (i) = f()

Then the g, are a sequence of functions with range [0, 1], which are integrable and
converge pointwise to zero on I. Thus we can apply the special case above to conclude

. 1 B
lim [ G- =0

n—oo

From here, we can apply the linearity of the integral for each fixed n to conclude
1 1
lim ( — - =0
n1—>nolo<2M Lfn 2M J[f>
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Since the second integral (of f) is constant, we can apply limit laws to conclude the
limit of [} f, exists, and distribute the limits:

1 1
1y X r=0
oM TlLf” 2M Lf

Multiplying by 2M to clear this constant factor and adding | f to both sides yields

lim | f=| 1

noJr I

as desired. O
Just as we used dominated convergence for series to prove the continuity of power
series, we can use dominated convergence for integrals to prove the integrability of

power series. However, we will not pause to do so, as thanks to the fundamental
theorem of calculus, we will soon have the technology for a much quicker proof.
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Part VII.

Calculus






In Chapter 29 we prove the Fundamental Theorem of Calculus directly from
the axioms of integration

In ?@sec-calc-antidifferentiation we use our knowledge of differentiation
and the fundamental theorem to prove familiar results about integrals, includ-
ing u-substitution and integration by parts.

In Chapter 30 we use calculus to help learn more about elementary functions,
finding integral representations for the logarithm and inverse trigonometric
functions, and an infinite product for sin(x).

In ?@sec-calc-ode we use calculus to study linear first order differential equa-
tions, and prove an existence/uniqueness theorem.

In Chapter 31 we put everything we’ve learned to work to find formulae to
calculuate 7.
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29. The Fundamental Theorem

This chapter brings together the two calculus tools of differentiation and
integration, proving the fundamental theorem of calculus. We then use
this theorem to derive familiar techniques for computing integrals.

The fundamental theorem of calculus is a beautiful result for many different reasons.
One of course, is that it forges a deep connection between the theory of areas and the
theory of derivatives - something missed by the ancients and left undiscovered until
the modern advent of the calculus. But second, it shows how incredibly constraining
our simple axioms are: we will not prove the fundamental theorem of calculus for any
particular definition of the integral (Riemann’s, Lebesgue’s, Darboux’s, etc) but rather
showed that if continuous functions are integrable then your theory of integration has
no choice whatsoever on how to integrate them!

Theorem 29.1 (The Fundamental Theorem of Calculus). Let f be a continuous func-
tion and assume that f is integrable on [a,b]. Denote its area function by

Fx) = j[] f

Then F is differentiable, and for all points x € (a,b),
FF=f

Proof. Because f is continuous on a closed interval, it is bounded (by the Extreme
Value theorem), and so the area function F is continuous (Theorem 25.1).

Choose an arbitrary c € (a,b). We wish to show that F’(c) = f(c): that is, we need

_F(x) - F(c)
lim ———

xX—C X —c

= f(©)

In terms of es and Js, this means for arbitrary € we need to find a § such that if x is
within § of ¢, this difference quotient is within e of f(c).

It will be convenient to separate this argument into two cases, depending on if x < ¢
or ¢ < x (both arguments are analogous, all that changes is whether the interval in
question is [c, x] or [x,c]). Below we proceed under the assumption that ¢ < x. In
this case, looking at the numerator, we see by subidvision (Axiom III) that
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29. The Fundamental Theorem

Fx) = J[] f

bt

=F(c) + J[C)x] f

— F(x)—F(c)=j f

C,X
Thus the real quantity of interest is this integral over [c,x]. Choose € > 0. Since

f is continuous, there is some § > 0 where |x — ¢| < § implies |f(x) — f(c)| < e.
Equivalently, for all x € [¢ — §, ¢ + §] we have

fl—e<flx) < flo)+e

By subdivison (Axiom III), we know that f is integrable on [c, x], and so by compari-
son (Axiom II) and the area of rectangles (Axiom I) we have

(F©) - —0) < j[ FEICEECR

Dividing through by x — ¢

f(c)—e < I[cx

< fle)+e

and subtracting f(c)

I[cx

T fl)<e

We arrive at the inequality

Il
C

x —

But the numerator here is none other than F(x)— F(c)! So, we’ve done it: for all x > ¢
with |x — ¢| < §, we have the difference quotient within e of f(c). This implies the
limit exists, and that

F'(c) = f(o)
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Exercise 29.1. Write out the case for x < ¢ following the same logic as above.

This tells us that the area function of f is one of its antiderivatives! The theory of
area is the inverse of the theory of rates of change. But which antiderivative? The
mean value theorem assures us that the collection of all possible antiderivatives are
easy to understand - any two differ by a constant (Corollary 22.2). So to uniquely
specify an antiderivative its enough to give its value at one point. And we can do
this! But we first need a small lemma.

One technical condition that will be useful to us later is to think about what happens
when the interval is of zero size: intuitively the ‘net area’ over a point should be zero,
but can we prove that from the axioms? Indeed we can!

Proposition 29.1 (Integrating over a Degenerate Interval). If {c} is the degenerate
closed interval containing a single point, and f is a function which is integrable on any
interval containing a, then
Jur=¢
{a}

Proof. Let f be integrable on the interval [u,v] and a € [u,v] be a point. Without
loss of generality we can in fact take a to be one of the endpoints of the interval, by
subdivision: if a € (u,v) then Axiom IIl implies that f is integrable on [u,a] and on
[a,v] as well.

Thus, we assume f is integrable on [a, v], and further subdivide this interval as

[a,v] = [a,a] u[a,v] = {a}u[a,v]

By subdivision, we see that f is integrable on {a} and that

I e

Subtracting the common integral over [a, v] from both sides yields the result,
Jut=¢
{a}

Now that we know integration over a point is zero, we know F(a) = f[a a] f=o
which determines the precise antiderivative that appears.

O

Corollary 29.1. Let f be a continuous function which is integrable on [a,b]. Then
the function F(x) = J[a A f is uniquely determined as the antiderivative of F such that
F(a) = 0.
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29. The Fundamental Theorem

This connection of integration with antidifferentiation and the classification of an-
tiderivatives has a useful corollary for computation, which is often called the second
fundamental theorem

Theorem 29.2 (FTC Part I). Let f be continuous and integrable on [a,b] and let F be
any antiderivative of f. Then

]f =F(b) - F(a)

la,b

Proof. Denote the area function for f as A(x) = f[ ax] f. Then the quantity we want
to compute is A(b).

Now, let F be any antiderivative of f. The first part of the fundamental theorem
assures us that A is an antiderivative of f, and so Corollary 22.2 implies there is some
constant C such that A(x) — F(x) = C, or F(x) = A(x) + C. Now computing,

F(b) — F(a) = (A(b) + C) - (Aa) + C)
=Ab)-Al@)+(C-0)

= A(b) — A(a)
= A(b)
Where the last equality comes from the fact that A(a) = J{ af =0 O

We are going to have a lot of endpoint-subtraction going on, so its nice to have a
notation for it.

Definition 29.1. Let [a,b] be an interval and f a function. We write

fl = f®) = f(a@)

[a.b]

as a shorthand for evaluation at the endpoints.

Remark 29.1. Tt is often convenient when doing calculations to introduce a slight gen-
eralization of the integral, which depends on an oriented interval. A natural notation
for this is already in use in calculus, using the top and bottom of the integral sign for
the locations of the ‘ending’ and ‘starting’ bound respectively:

th:gj[“’b]f a<b
a _I[b,a]f axb
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29.1. Linearity

Show that using this notation, we have a clean generalized subdivision rule: for **all
points a, b, ¢ irrespective of their orderings,

[l

This notation helps shorten the computations in the proof of the fundamental theo-
rem (at the expense of adding one new thing to remember).

29.1. Linearity

We already have general proofs that the integral is linear, over any axiomatically in-
tegrable functions (in the chapter Properties, of the previous part). But now with the
fundamental theorem in hand we can provide much simpler proofs, at least when
restricted to continuous functions. We give these arguments here.

Theorem 29.3. Let f be a continuous function [a,b], and k € R. Then

J kf=k f
[ab] [a,b]

Proof. Since f is continuous on [a, b] it is integrable. Set F(x) = f[ ax] f3 and note by
the fundamental theorem F we have F’ = f. Since kf is a constant multiple of a con-
tinuous function it is also continuous, and hence integrable. Using the fundamental
theorem, we can compute its integral by finding an antiderivative. But this is easy!
Since the derivative is linear,

(kF(x))" = k (F()" = kf(x)

So kF is an antideriavtive of k f. Thus we can use it to evaluate our integral,
J kf = kF(b) — kF(a)
[a.b]

Factoring out the k, this is k(F(b) — F(a)), and (by our definition of F!) F(b) — F(a) =
f[ ab] f. Putting this all togehter gives the claimed identity,

J kf=k| f
[ab] [a,b]

Theorem 29.4. Let f, g be continuous on [a,b]. Then

j[a’b]o‘ v = j[ ol f[ "
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29. The Fundamental Theorem

Proof. Since f, g are both continuous sois f+g, and hence all three are integrable. Let
F, G be antiderivatives of f, g respectively, and note by the linearity of the derivative
that

(F+G) =F+G =f+g
Thus F + G is an antiderivative of f + g, so we can use it to evaluate the integral:

= (F(b) + G(b)) — (F(a) + G(a))
[a.b]

j (f+=(F+G)
[a,b]

Regrouping the right hand side as (F(b) — F(a)) + (G(b) — G(a)) we recognize each
as the result of applying the fundamental theorem to calculate the integrals of f, g

respectively. Thus
[ o= ] e
[a,b] [a,b] [a,b]

29.2. Integration Techniques

We can use the fundamental theorem to justify the main integration techniques
learned in calculus courses - substitution and integration by parts - as simply
antiderivatives of the chain rule and product rule.

::f{#thm-integral-substitution} ## Substitution Let g be a continuously differentiable

function on [a, b] and f be continuous on the range of g, with F an antiderivative of
f. Then

J feGNg/ () =Feg
[ab]

[a.b]

of continuous functions are continuous, f(g(x))g’(x) is a continuous function, and
hence integrable. Thus by the fundamental theorem of calculus we can evaluate its
integral by finding an antiderivative. The chain rule readily confirms F o g is such a
function as

(F(gG)) = F(g(x)g'(x) = f(g(x))g’(x)
Thus Jj, ) f(g(x)g’(x) = F(g(b)) — F(g(@). =

This justifies the familiar use of u-substitution in Calculus

Example 29.1. To integrate (2x + 1)° on the interval [a, b], note that we may write

(2x +1)° = f(g(x))
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29.2. Integration Techniques

for f(x) = x° and g(x) = 2x + 1. Then 2(2x + 1)° is the derivative of %(Zx +1)°, so

J 22x +1)° = L(2x + 1)
[ab] 6

[ab]

By the linearity of the integral .[[a,b] 22x+1)° =2 f[a’b](Zx +1)° and solving for this
yields
(2x+1)°

2x +1)° =
J[a,b]( ) 12

Theorem 29.5 (Integration by Parts). Let f be continuous and g continuously differ-
entiable on [a,b]. Then

_(2b+1)°—(2a+1)°
B 12

[ab]

J FG0g() = Fog()
[a.b]

-| | reag
[ab] “lab]
where F is an antiderivative of f.

Proof. Since f is continuous we know it is integrable, so let F(x) = I[ ax] f. Then
F is differentiable (by the fundamental theorem) and so is g (by assumption), so the
product F(x)g(x) is a differentiable function. Taking the derivative with the product
rule yields

(F(x)g(x))" = F'(x)g(x) + F(x)g’(x) = f(x)g(x) + F(x)g’(x)

where in the last equality we used that F’ = f from the fundamental theorem. Thus
F(x)g(x) is an antiderivative of the sum on the right hand side, so integrating gives

j[ | (FG9()+ FCOg () = Feog ()

[a.b]
Distributing the integral over addition O

Corollary 29.2 (Iterated Integration by Parts). Applying twice,

J fe=Fg —J Fg’
[a.b] [ab] “lab]

_ (gg/ _ e9;@.1/)
[ab] [ap] “lad]

=F,—Fg'+ Fg"’
[a.b]
Where F is an antiderivative of f, and & is an antiderivative of F. Continuing in this
fashion, we can replace our integral with one containing n derivatives of g, at the cost of
having to take n antiderivatives of f.
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30. Elementary Functions

We derive the integrals of familiar functions, and along the way finally
discover a formula for the logarithm.

Using the fundamental theorem of calculus we can effortless find the integrals of
many important functions, simply because we know their derivatives! This is much
much quicker than working directly from the definition (as one can appreciate by
looking at the optional chapter examples in the last part).

30.1. Polynomials and Power Series

We begin with perhaps the first example one sees in a Calculus I course

Proposition 30.1. The function x is integrable on any interval [a,b] C R, and

b2 42
for%-4
[a,b] 2 2

Proof. The function x is continuous, thus its integrable. We know by the power rule
for differentiation that (x?)” = 2x. Thus by linearity of the derivative, if F(x) = x?/2,
we have F’ = x, and we can use this antiderivative to evaluate the integral via the
fundamental theorem:

b 4?
x=F(b)-F@) = — - =
Jo, = ro-r@=5 -4

O

This technique of inverting the power rule works for all n # —1 to give a general
formula

Theorem 30.1. For anyn > 0 the function x" is integrable on [a, b] for any [a,b] C R.
For x < —1, x" is not defined at 0 but is integrable on any interval [a, b] not containing
zero. In both cases, there is a uniform formula for the integral:

J X" = 1 P
[a,b] n+1 [ab]
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30. Elementary Functions

Proof. The monomial x" is continuous, hence integrable, and has as an antiderivative

x""1n + 1. Thus we can use this to evaluate the integral

n+1
=3
[a,b] n+1

[a.b]
O

Using linearity of the integral, this gives an immediate calculation of the antideriva-
tive of any polynomial:

Theorem 30.2. If p(x) = Zszl a;x* is any polynomial, then p is integrable on any
interval [a,b] and

N
U k+1
x) = —x
J[a,b]p( ) Z k+1

k=1 [a,b]

Proof. Polynomials are continuous, hence integrable. We know an antiderivative of
each term, so we compute one at a time via linearity of the integral on continuous
functions:

a2x2+---+J apx"

J (ag + ayx + apx? + = apx") = ap +J a1x+J o
[a,b] [a,b] [a,b] a [a,b]

[a.b]

:aOJ 1+a1J x+a2J' x2+~--+anJ x"
[ab] [a,b] [a,b] [a,b]

x2

+ a1 —_—
ab] 2

x3

+ay—
2’3

n+1

=qyx + -+ ay,

[ab]

n+1

[a,b] [a,b]

30.1.1. Power Series

As we remember well from differentiation, things that are true for finite sums don’t
always carry over easily to the limit. Indeed, the proof of differentiability of polyno-
mials was identical to their integration above, a direct corollary of linearity. But we
cannot use linearity to conclude things about limits, so for power series we instead
needed to refine our tools of dominated convergence. A similar strategy goes through
without fail here for integration: one can use dominated convergence for integrals
(Theorem 28.6) to prove power series can be integrated term by term within their
radius of converence.

But the fundamental theorem also makes a much easier technique available to us,
given that we know the differentiation case! We follow that line of reasoning here.
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30.1. Polynomials and Power Series

Proposition 30.2. Let ), a,x" be a power series with radius of convergencer. Then the

. 7 .
series Y, e x"1 also has radius of convergencer.

Proof. Like for the differentiable case, we prove this here under the assumption that
the Ratio test succeeds in computing the radius of convergence for the original series.
(As an exercise, show everything still works even if the ratio test fails, by doing the
fully general argument with limsup of the root test). So for any x € (—R, R)

An+1

lim x| <1

n

We now turn to compute the ratio test for our new series Y. XL

n+1

the ratio in

question is

1 xn+2

n+2 _(%+1\[(n+1
4 n+l *
—n a, n+2

n+1

Since (n + 1)/(n + 2) — 1 we can compute the overall limit using the limit theorems
and see we end up with the exact same limit as for the original series! Thus integrating
term by term does not change the radius of convergence at all. O

an

Having confirmed that ), =2 x" converges when the original series does, we can pro-
vide a direct proof of the term-by-term integrability of power series, avoiding the use
of dominated convergence:

Theorem 30.3 (Integrating Power Series). Let f(x) = Y, a,x" be a power series with
radius of convergencer. Then f is integrable on (—r,r) and for any 0 < x <r

J f — an er—l
[0.x] ot

Proof. The function Y a,x" is continuous on (—r,r) and thus integrable by Theo-
rem 28.1. Define F(x) = ), n‘i—"lx”. This converges on (—r,r) by Proposition 30.2, and
defines a differentiable function on this interval; whose derivative can be calculated
term-by-term, giving

F&F(Zﬂ?ﬁ“)=2%ﬂ=ﬂﬂ

n>0 n>0

Thus F is an antiderivative of f, and by the fundamental theorem of calculus

[ =rw-Fo
[0.x]

Since F has no constant term, F(0) = 0 and so J[O N f= ano %x”ﬂ as claimed. O
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30. Elementary Functions
30.2. Exponentials and Trigonometric Functions

We put a good amount of work into defining exponential and trigonometric functions
from their functional equations, proving they are continuous and eventually finding
their differentiation laws. Now we reap some of the benefits, and find their integrals
as effortless as we did the polynomials.

Theorem 30.4 (The Natural Exponential). THe natural exponential exp(x) is inte-
grable and
J- exp = exp(b) — exp(a)
[a.b]

Proof. The function exp is continuous, hence integrable, and its its own derivative.
Thus, its also its own antiderivative, and

J exp = exp = exp(b) — exp(a)
[a.b]

[ab]

Theorem 30.5. Let E(x) be any exponential function. Then E is integrable, and

 E() - Ea)
J[a,b] F="%w0

Proof. We proved that every exponential is continuous and differentiable, wtih E’(x)
a multiple of E(x): specifically, E’ = E’(0)E. Dividing by the constant value E’(0)
and using linearity of the derivative, we see

E(x) ! _ 1 ;o 1 ) B
<E’(o)) "~ E(0) (E()) = E,(O)E (0)E(x) = E(x)

Thus we’ve found an antiderivative! The fundametnal theorem fo calculus then
quickly finishes the job:

J' E= E(x)

[ab] E’(0)

_ E(b) - Ea)
 EN(0)

[a.b]

We succeed equally quickly for the basic trigonometric functions:

Theorem 30.6 (Integrating Sine and Cosine).

J cos = sin(b) — sin(a) J sin = cos(a) — cos(b)
[a,b] [a,b]
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30.3. Logarithms

Proof. We know sin” = cos and cos’ = — sin from previous homework, Thus, cos has
sin as an antiderivative, and

= sin(b) — sin(a)
[ab]

J cos = sin
[a.b]

Similarly, sin has — cos as an antiderivative, so

= —(cos(b) — cos(a)) = cos(a) — cos(b)
[ab]

J' sin = — cos
[a.b]

O

These two formulae, together with the trigonometric identities are enough to fully
determine all trigonometric integrals.

30.3. Logarithms

In this section we finally develop a formula for the logarithm: we proved it existed
some time ago as we had already proven the inverses of exponentials were logarithms,
and we proved that exponentials exist. But this did not give us any way to compute a
logarithm. This is in stark contrast to the exponential, where right from the beginning
we had some means of computing it (via the cumbersome task of taking limits of
rational powers), and now we have a nice extremely efficient power series. We will
remedy all of this in this subsection, by studying the simple function 1/x.

We already know there is something rather unique about this function, because it is
the only case where the power rule fails us, and we can’t simply use our knowledge
of differentiation to invert. To start, we prove a rather simple lemma that is key to
unlocking the logarithm properties:

Lemma 30.1. If[a,b] is an interval of positive numbers and k > 0 then the integral of
1/x on the intervals [a, b] and [ka, kb] are the same.

Proof. Intuitively this is plausible: when we multiply by k the length of our interval
increases by a factor of k but the height of our function 1/x decreases by a factor of k
at each point, leaving the area fixed.

To prove it, we (surprise!) invoke the fundamental theorem of calculus. Let F be an
antiderivative of 1/x, so F/(x) = 1/x. Then look at F(kx): taking its derivative, we
see by the chain rule
F(kx)" = F’(kx)(kx)" = kF’(kx)
And using that F/ = 1/x,
-1
kx  x
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30. Elementary Functions

Thus both F(x) and F(kx) are antiderivatives of 1/x! This means we can use either
to evaluate our integral: so, using F(kx),

J[ Lo PG| = F(kb) - F(ka)

ab] X

[a.b]

But this quantity is exactly an antiderivative of 1/x evalluated at kb and ka, so

F(kb) — F(ka) = F(x)

1
[kakb] J[k“»k”] x
Stringing these equalities together yields the result. O

We can immediately use this to show the integral of 1/x has the logarithm property.

Theorem 30.7 (The Logarithm as an Integral). The function f(x) = 1/x is integrable
on (0, 00), and its integral
1

L(x) = J -
[1x] X
satisfies the law of logarithms L(xy) = L(x) + L(y)$ for x,y > 1.

Proof. The function 1/x is continuous on (0, ) so it is integrable on any closed subin-
terval [a,b]. Let x,y > 1 and consider the interval [1, xy]. We can decompose this
into two intervals [1, x] u [x, xy] and so by subdivision

1 1 1
=] o[ 1
Gy [Lxyl b Jaxl & Jlxxy] £

The first of these terms is by definition L(x), and the second can be calculated via our
lemma:
1 1
| 6
exyl £ Jy] ¢
Thus, L(xy) = L(x) + L(y), as claimed! O

Exercise 30.1. Confirm this also works for arbitrary x,y € R if we interpret our
integral as an oriented integral (Definition 25.4).

Using the fundamental theorem we can easily calculate the derivative of this loga-
rithm at 1:

Corollary 30.1 (The Natural Logarithm). The integral of 1/x is the natural logarithm

log) | 2

[1x] X
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30.3. Logarithms

Proof. By the fundamental theorem log(x)” = i so evaluating at 1,

log(x)’ % =1
x=1
O

As is, this is not a very useful formula for the logarithm, as we can’t use antidiffer-
entiation to compute it: the function we care about is defined as the antiderivative!
But this does have dramatic implications: we can use this to derive a formula for the
logarithm, via power series.

Theorem 30.8 (Logarithm Power Series). The function log(1 + x) has a power series
representation for x € (—1,1)
2 3 4 5

x> Xt x
log(l4+x)=x——+——-——+—
&l ) 2 3 4 5

Proof. The geometric series converges on (—1, 1) to

1ix:an

n>0

Making the substitution x — —x we can rewrite this as

1 n n.,n
—— = Y = Y1

n>0 n>0

This power series converges on (—1, 1) still, and so is integrable term-by-term along
this entire interval:

= =y [ o=yt
J[O’x] HX_J[O”‘] 20 _ZJ[O,X]( = 2D n+1

n>0 n>0 n>0

Since the integral of 1/x is log(x), its easy to see the antiderivative of 1/(1 + x) is
log(1 + x), by differentiation using the chain rule:

1 1
log(1+x)) = — (1 +x) =
(log(1 + ) = ——(1+2) = ——
Thus our power series is indeed a logarithm!
n+1 2,3
log(1+x) = ) A N
0g1 +x) = 3,(-1) ntl 2z 3

n>0
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30. Elementary Functions

Example 30.1 (Integrating the Tangent). The function tan(x) = sin(x)/ cos(x) is
continuous on (- /2, /2) and hence integrable on any [a, b] C (0, 7/2). To find the
value of the integral, we notice that

sin(x) 1

in(x) = —— (cos(x)y

tan(x) = = ———sin
) cos(x)  cos(x) cos(x)
Since 1/x is the derivative of the natural logarithm function, we see this is the result

of a chain rule! .

cos(x)

log(cos(x))’ = (cos(x))’

,and so

—log(cos(x))” = tan(x)

We have found an antiderivative for tangent, so the fundamental theorem yields its
integral:

= —log(cos(b)) + log(cos(a))

I tan(x) = —log(cos(x))
[a,b] [a,b]

Using the rules of logarithms we can simplify this a bit to

J[ | tan(x) = log (fraccos(a)cos(b))
a,b

30.4. Inverse Trigonometric Functions

Understanding the inverse trigonometric functions will prove exceedingly useful to
us in our end goal of calculating 7: we have defined 7 as a particular input to the
trigonometic functions (the first positive input at which sine is zero, for example),
and so we don’t have a way to compute 7 by plugging something into a function:
we’ve had to resort to methods like Newton’s approximation scheme, which requires
a lot of calculation since we are working with a power series!

Our lives would be much easier if we had functions that yielded  as an output (of a
simple value): we could then simply derive a means of computing this function! The
natural such functions would be the inverse trigonometric functions, and so we take
a moment to study these here.

30.4.1. x The ArcSine

Our first fundamental problem of course is we have no idea how to get a formula
for the inverse trigonometric functions! To get one, we will use the fact that we
understand differentiation quite well, and then apply the fundamental theorem.
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30.4. Inverse Trigonometric Functions

Proposition 30.3. The derivative of the inverse sine function is

1

(arcsinx)’ =

1—x2

Proof. Let f(x) = arcsin(x). Then where defined, f(sin(6)) = 6 by definition, and we
may differentiate via the chain rule: on the left side

d o, o
@f (sin(0)) = f’(sin(0)) cos(0)

and on the right dd—gﬁ = 1. Equating these and solving for f” yields

1
cos(0)

f'(sin(0)) =

The only remaining problem is that we want to know f’ as a function of x and we
only know its value implicitly, as a function of sin(). But setting x = sin we can

express cos 0 = \/1 — x? via the pythagorean identity sin” 0 + cos? 0 = 1. Thus

) = ——

1— x2

O

Before integration this would have been a mere curiosity. But, armed wtih the fun-
damental theorem this is an extremely powerful fact: indeed, it directly gives us a
representation as an integral:

Corollary 30.2. The inverse sine function is defined on the interval [0, 1] by the integral

1
arcsin(x) = J
[0.x] \J1 — x2

Proof. Since (arcsinx)’ = ;, the inverse sine is an antiderivative of ;, and
f ( ) N V1-x?
also sin(0) = 0 implies arcsin(0) = 0, so it is zero at x = 0. Thus, it is exactly the area

function

arcsin(x) = J !

[0x] \1 — 2
O

Exercise 30.2. Carry out the analogous reasoning to derive an integral expression
for the inverse cosine function.
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30. Elementary Functions

30.4.2. The ArcTangent

Proposition 30.4.
1

a 14 x2

(arctan x)’

Proof. We again proceed by differentiating the identity arctan(tan 0) = 6. This yields

arctan’(tan G)ﬁ = 1 and multiplying through by cos? we can solve for the deriva-
tive of arctangent:

arctan’(tan @) = cos® 0

The only problem is again we have the derivative as a function implicitly of of tan 6,
and we need it in terms of just an abstract variable x. Setting x = tan 6 we see that
x% = tan® @ and (using the pythagorean identity) x? + 1 = tan® 0 + 1 = @ Thus

1
1+ x2

cos® 0 =
and putting these two together, we reach what we are after

1
1+ x2

arctan’(x) =

O

Proposition 30.5. The inverse function arctan(x) to the tangent tan(x) =
sin(x)/ cos(x) admits an integral representation

arctan(x) = J !

[0x] 1+1¢2

Proof. This follows as arctan’(x) = 1/(1 + x?), so both arctan and this integral have

the same derivative. As antiderivatives of the same function this means that they

differ by a constant. Finally, this constant is equal to zero as arctan(0) = 0 and
1 . . .

J[0,0] Tz — Vasitisan integral over a degenerate interval. O

This integral expression is quite nice - the arctangent like the logarithm is shown to
be the integral of a rather simple rational function. But like arcsine, an integral ex-
pression is rather difficult to use for computing actual values: we’d need to actually
compute (or estimate) some Riemann sums. So it’s helpful to look for other expres-
sions as well, and here arctan has a particularly nice power series.

Recall the geometric series

1ixzzxn

n>0

We can substitute —x? for the variable here to get a series for 1/(1 + x?):
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30.4. Inverse Trigonometric Functions

1+1x2 — Z(_XZ)n — Z(_l)ann

n>0 n>0
=1-x2+xt—x0 + 48—
This power series has radius of convergence 1 (inherited from the original geometric

series) and converges at neither endpoint. We know from the above that this function
is the derivative of the arctangent, so we should integrate it!

1
arctan(x) = dt = J —1)M2" dt
) j[o’x] =] T

n=>0

Inside its radius of convergence we can exchange the order of the sum and the inte-
gral:

_1\n42n — __1\n42n
J[O’x] (Z( 1" )dt ZJO’X]( 121 dy

n>0 n>0
= Z(—l)"J t2ndy
n>0 [0.x]
2n+1
= Y (-1
150 2n+1
Theorem 30.9. Forx € (—1,1),
2n+
X
arctan(x) = —-1)"
=T,

n>0

oo X X
3 5 7 9

=X —
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31.

31.1. Area of a Circle

We have defined 7 as the first zero of the sine function - a definition, but have finally
developed enough tools to relate it to the area of a circle. This provides a relation-
ship between the modern, rigorous theory of trigonometric functions and the ancient
quest of Archimedes to measure the area of the circle.

Indeed, since we have defined area rigorously with integration, we can now make
sense of the area of the circle as long as we can express the unit circle as a function.
While this is not directly possible, we can take the implicit equation x? + y? = 1 and
solve for y giving two functions (one for the top half and one for the bottom). Then
we can measure the area of the circle as twice the top half, or

Areazzj V1 —x2

[_1’1]

Now we compute this integral with our newfound integration techniques (substitu-
tion), and show it equals the half-period of our trigonometric functions in natural
units.

Theorem 31.1.

ZJ' Nl1—x°=ox
[-1,1]

Proof. By subsitution, we see that the following two integrals are equal
J V1 —x2 = J \J1 = (sin(t))2(sin(t))’
[0,1] I

Where I = [a, b] is the interval such that [sin(a), sin(b)] = [0, 1]. Since sin(0) = 0 and
sin(n/2) = 1 we see I = [0,7/2]. Now we focus on simplifying the integrand:

By the Pythagorean identity, 1 — sin’(t) = cos?(t), thus by Example 2.3,

\1- sin®(t) = \Jcos?(t) = | cos(?)|
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and by definition we recall (sint)” = cost. Thus

J = J | cos(t)| cos(t)
[0,7/2] [0,7/2]

= J cos’(t)
[0.7/2]

Where we can drop the absolute value as cos is nonnegative on [0,7/2] (its first
zero is at half the period, so ). We can simplify this using the “half angle formula”
cos?(x) = (1 + cos(2x))/2

J' cos?(t) = J 1+ cos(2t)
[0,7/2] [0,7/2] 2

Using the linearity of the integral, this reduces to

J cos?(t) = 1 J 1+ 1 J cos(2t)
[0.7/2] 2Jion/2 2 Jjony2]

T 1

-+ = cos(2t

4 2 J[o,n/Z] =

The first of these integrals could be immediately evaluated as the integral of a con-
stant, but the second requires us to do another substitution. If u = 2t then

J cos(2t) = 1 J cosu
[0.7/2] 2 Jjox]

We recall again that by definition cos u = (sinu)’, so by the first fundamental theorem

cosu = sinu)’ = sinu
-LO,;T] J-[O,ﬂ] ( ) [0.z/]

But, sin is equal to 0 both at 0 and 7! So after all this work, this integral evaluates to
zero. Thus
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Now, we are ready to assemble the pieces. Because x? is an even function soisy/1 — x2,
and so its integral over [—1, 1] is twice its integral over [0, 1]. Thus

Area = ZJ-

1—x2:4J' 1-x2=4Z% ¢
[-1,1] [0,1] 4

O

This single result ties together so many branches of analysis, and proves a worthy
capstone calculation for the course. However after all this work we shouldn’t let
ourselves be satisfied too quickly! Now that we have related the area of a circle
to trigonometry, we can hope to use other techniques from analysis to accurately
calculate its value.

31.2. Calculating 7’s Value

31.2.1. From the Area Integral

Having proven that 7 is the area of the circle, we may attempt to estimate its value
by estimating the integral of /1 — x?:

z_- J V1 —x?
4 Joa

Using the evenly spaced partition P, with n bars of width A = 1/n and the fact that

\J1— x2 is monotone decreasing on [0, 1], we can evaluate this integral as a limit of
upper sums:

n
J V1-x? =limUN1 -2 B,) = Y 1 - (A)A
[0,1] i=1

Simplifying gives an explicit limit of sums to compute:

Example 31.1. The following limit of infinite sums converges to 7.

_y 42”: LBl 4z":\/n2—i2
JT = 11Im . n—zﬁ—lm . T
i=1 i=1
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This series is difficult to compute because it involves square roots: irrational quantities
that we will also have to approximate in order to get a good approximate value for
7. It also converges slowly, so there’s many square roots to approximate! Using a
computer to help we find

Z \/100

~ 2.904...
20 /10000 —
Z ~3.120...

10000
1009 /1000000 —
Z ~3.139...

1000000

31.2.2. From Inverse Trigonometry

One may use the inverse trigonometric functions to get integral representations of x.
Perhaps the most natural thought is to use that sin(r/2) = 1, so arcsin(1) = 7/2 or

% = arcsin(1) = J !

[0,1] /1 — x2

This integral is improper as the integrand becomes unbounded in a neighborhood of
x = 1: thus it must be calculated as a limit over intervals [0,¢] with t — 1 which is
rather difficult in practice: certainly more involved than the calculation from the area
integral above.

Remark 31.1. If we were not bothered by the square roots for our computation-
focused goals, one could easily replace the problematic integral above with something
avoiding its problems. For instance, since sin(r/4) = 1/ V2, we have

T 1
4 J[0,1/\5] V1 —x?

But this is much worse in terms of square roots: if you write out a Riemann sum here
it’ll be a sum of nested roots, and still more complicated than the estimate from the
area integral.

The same trouble plagues the cosine function, but things get much nicer with the

tangent. We know that sin and cos are equal when evaluated at /4, which means
their ratio is 1 = tan z/4. Inverting this,
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Corollary 31.1.

dx

Z- arctan(1) = J' ! ,
4 [0,1] 1+ x2

This function is integrable (its continuous), so we can compute its value as the limit
of any shrinking sequence of Riemann sums. Below is an explicit example, given for
evenly spaced partitions sampled at their right endpoints.

Example 31.2. The following infinite series converges to 7:

This sequence of sums is much better to work with: each term is a rational num-
ber, so it can be computed exactly, giving a sequence of better and better rational
approximations to 7.

10
10
4y —— ~3.039...
i; 100 + 2
100
4 Z L-z ~ 3.13155....
£410000 + i
1000
4 Z _ 1000 _ 5140592

£/ 1000000 + i?

1000000
Z 1000000

————————— ~3.14159165359 ...
& (1000000)% +i?

This is great - these sums are trivial to do on a computer (I did these in a simple
python for loop) and get us an accurate value for 7. But we shouldn’t be satisfied just
yet! First of all, these sums take a while to converge - we need a thousand terms to
get the first two digits after the decimal, and a million to get the first five!
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31.2.3. From Series

Power series are much easier to deal with than the limits arising from integrals: to
get a better approximation of a power series you keep the terms you have, and just add
more whereas to compute better approximate Riemann sums you need to start all over
from scratch! Thus its certainly advantageous from a computational perspective to
look for series converging to 7.

A particularly nice example is given by the arctangent, whose series we computed in

2n+1
Theorem 30.9 to be }},5,(=1)" chn+1 on the interval (—1, 1). Since tan(r/4) = 1, we

can calculate 7 as /4 = arctan(1), which lies right at the boundary of the interval
of convergence. Luckily, this proves not to be an issue

Proposition 31.1.
(G0
2n+1

T
— = arctan(1) =
" = axcan(1) = ),

n>0
Proof. The arctangent function is continuous on R, so
arctan(1) = arctan( lim x) = lim arctan(x)
x—17 x—17
For x € (-1, 1) the arctangent can be expressed as a power series, so

x2n+1

2n+1

lim arctan(x) = lim Z(—l)"
x—1" x—1" >0

This series converges at x = %1 by the alternating series test. Hence, by Abel’s
theorem (?@thm-pseries-continuous-endpoints) it defines a continuous function
on [—1, 1] and so the limit can be pulled inside:

x2n+1
lim Y (-1)">— =

x—1" S0 2n+1

(limx—>1‘ x)2n+1

2V

n=>0
12n+1

DI

n>0

o 1
=21 n+1

n>0

Putting this all together yields the claim:
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31.2. Calculating n’s Value

="

2n+1

T
— = arctan(1) =
" arctan(t) =

n>0

O

This formula is exceedingly beautiful, and worthy of writing out without summation
notation to take in

LA +
4

W | =
[S W
N -
O | =

However, way out here at the endpoint the series converges very slowly. Using a
computer to do a little experimenting:

10 n
-1

4 0" _ 3.2323...
pen+1
100 , \n
Z 0" _ 3.1549
spen+1
1000 (_qyn

4 Z = 3.1425
n=0 2n

Like the Riemann sum approach, we needed a thousand terms to get the first two
decimals right. This problem only occurs as we are evaluating a series at the very
boundary of its interval of convergence: we know via comparison that power series
converge exponentially quickly within their radius of convergence, so to get better
behavior we should seek a point inside (—1, 1) at which the arctan will give us infor-
mation aboout 7. How do we find such a value? Here’s one clever possibility: we
actually realize 7/4 as the sum of two different arctangent values:

Proposition 31.2.
3 = arctan(3) + aretan (3
— = arctan | — ) + arctan | —
4 2 3

Proof. Let @ = arctan(1/2) and = arctan(1/3). Now use the tangent addition law
tan(0 + ¢) = danfitany compute 0 + ¢:

1-tanOtany
1,1 5
—_ + - =
tan(0 + ¢) = 12_ 131 = _61 =1
23 6
Thus, tan(0 + ) = 1 s0 0 + ¢ = n/4, as claimed. O
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Now, both 1/2 and 1/3 lie well within the radius of convergence of the arctangent,
so we can add the two together to get a formula for 7. Since series converge abso-
lutely within their radii of convergence, we can re-arrange terms as we please, even
combining the two into a single sum:

Theorem 31.2.

T _ (G (D"
4 2. (2k + 1)2%k+1 2 (2k + 1)3%k+1

k>0 n>0

0k /1 1
- Z k + 1 \ 92k+1 + 2k+1
fzo 2k + 112 3

22k+1 32k+1

This series converges very quickly, as the exponents and in the denom-
inators grow rapidly. Indeed, summing up to N = TWO already gives the first two

decimal digits!
(G+3)-3(3+5)* 5 (55 + 55) = 314558
2 3 3\8 27 5\32 243
Using up until N = 10 terms in this series gives the approximation

T =~ 3.14159257960635

Which is correct to 7 decimal digits. To get 15 significant digits using 22 terms in this
series is enough!

This is truly a marvelous machine we have built - conjuring directly from the lowly

geometric series an efficient formula for 7.

Example 31.3. Want to be even more clever? In 1796 John Machin showed the
following identity:

% = 4arctan(1/5) — arctan(1/239)

Note: If you wish to prove this, probably the easiest way is to notice that (5+i)*(239—i) =
—114244(1 + i) and use the polar form of complex numbers to get the result. See here:
https://people.math.sc.edu/howard/Classes/555c/trig.pdf

This allows you to compute = to five or six decimals without much trouble. Just using
the first five terms in the series gives 7 = 3.14159268240440 so we are already good
to seven decimals. Using nine terms in the series gives you 15 significant digits
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