$$
\newcommand{\RR}{\mathbb{R}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\FF}{\mathbb{F}}
\renewcommand{\epsilon}{\varepsilon}
% ALTERNATE VERSIONS
% \newcommand{\uppersum}[1]{{\textstyle\sum^+_{#1}}}
% \newcommand{\lowersum}[1]{{\textstyle\sum^-_{#1}}}
% \newcommand{\upperint}[1]{{\textstyle\smallint^+_{#1}}}
% \newcommand{\lowerint}[1]{{\textstyle\smallint^-_{#1}}}
% \newcommand{\rsum}[1]{{\textstyle\sum_{#1}}}
\newcommand{\uppersum}[1]{U_{#1}}
\newcommand{\lowersum}[1]{L_{#1}}
\newcommand{\upperint}[1]{U_{#1}}
\newcommand{\lowerint}[1]{L_{#1}}
\newcommand{\rsum}[1]{{\textstyle\sum_{#1}}}
% extra auxiliary and additional topic/proof
\newcommand{\extopic}{\bigstar}
\newcommand{\auxtopic}{\blacklozenge}
\newcommand{\additional}{\oplus}
\newcommand{\partitions}[1]{\mathcal{P}_{#1}}
\newcommand{\sampleset}[1]{\mathcal{S}_{#1}}
\newcommand{\erf}{\operatorname{erf}}
$$
In ?sec-function-continuity we give the definition of continuity and
In ?sec-function-properties we look at basic properties of continuous functions and their arithmetic.
In 18 Important Theorems we prove some foundational theorems about continuous functions, including the extreme value theorem and intermediate value theorem.
In 17 Power Series we introduce the theory of power series
In 20 Elementary Functions we give rigorous definitions of the familiar exponential , logarithmic and trigonometric functions