$$ \newcommand{\RR}{\mathbb{R}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\CC}{\mathbb{C}} \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\FF}{\mathbb{F}} \renewcommand{\epsilon}{\varepsilon} % ALTERNATE VERSIONS % \newcommand{\uppersum}[1]{{\textstyle\sum^+_{#1}}} % \newcommand{\lowersum}[1]{{\textstyle\sum^-_{#1}}} % \newcommand{\upperint}[1]{{\textstyle\smallint^+_{#1}}} % \newcommand{\lowerint}[1]{{\textstyle\smallint^-_{#1}}} % \newcommand{\rsum}[1]{{\textstyle\sum_{#1}}} \newcommand{\uppersum}[1]{U_{#1}} \newcommand{\lowersum}[1]{L_{#1}} \newcommand{\upperint}[1]{U_{#1}} \newcommand{\lowerint}[1]{L_{#1}} \newcommand{\rsum}[1]{{\textstyle\sum_{#1}}} % extra auxiliary and additional topic/proof \newcommand{\extopic}{\bigstar} \newcommand{\auxtopic}{\blacklozenge} \newcommand{\additional}{\oplus} \newcommand{\partitions}[1]{\mathcal{P}_{#1}} \newcommand{\sampleset}[1]{\mathcal{S}_{#1}} \newcommand{\erf}{\operatorname{erf}} $$

26  Power Series

26.1 Differentiating Term-By-Term

Uses Dominated Convergence for Derivatives

Proposition 26.1 (Differentiation & Radius of Convergence)  

  • Proof 1: assuming ratio test works
  • Proof 2: general case (hard!)

Theorem 26.1 (Term-by-Term Differentiation)  

Corollary 26.1 (Power Series are Smooth)  

26.2 Power Series Representations

Definition 26.1 (Power Series Representation)  

Remark: use a power series representation to generalize a function from real numbers to other objects (complex numbers, matrices).

Proposition 26.2 (Candidate Series Representation)  

Definition 26.2 (Taylor Series)  

26.2.1 Taylor’s Error Formula

Proposition 26.3 (A Generalized Rolle’s Theorem)  

Proposition 26.4 (A Polynomial Mean Value Theorem)  

Theorem 26.2 (Taylor Remainder)  

26.2.2 Series Centered at \(a\in\mathbb{R}\)

Theorem 26.3 Formula for taylor series and error based at arbitrary \(a\in\RR\).

26.3 \(\bigstar\) Smooth vs Analytic

Remark: most of the time a taylor series converges to the desired function, but this is not required. Give example.

Definition 26.3 (Analytic Function)  

Examples of analytic functions:

  • Polynomials
  • Exponential (to come)
  • Sine, Cosine (to come)

These have power series that converge everywhere. But other examples exist

\[\frac{1}{1+x^2}\]

Give example of smooth but not analytic function!